JPS6179721A - Manufacture of grain-oriented silicon steel sheet having superior surface property and low iron loss - Google Patents
Manufacture of grain-oriented silicon steel sheet having superior surface property and low iron lossInfo
- Publication number
- JPS6179721A JPS6179721A JP19941584A JP19941584A JPS6179721A JP S6179721 A JPS6179721 A JP S6179721A JP 19941584 A JP19941584 A JP 19941584A JP 19941584 A JP19941584 A JP 19941584A JP S6179721 A JPS6179721 A JP S6179721A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- rolling
- temperature
- cold rolling
- silicon steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
低鉄損薄手一方向性珪素鋼板の表面性状改善とさらに2
次再結晶集合組織の制御による磁束密度の向上に関連し
てこの明細書で述べる技術内容は上記珪素鋼板の安定し
た工程における製造を可能ならしめることについての開
発研究の成果を提案することにある。[Detailed description of the invention] (Industrial field of application) Improvement of surface properties of thin unidirectional silicon steel sheet with low core loss and further 2
The technical content described in this specification in relation to improving magnetic flux density by controlling the secondary recrystallization texture is to propose the results of research and development to enable the production of the silicon steel sheet in a stable process. .
(従来の技術)
一方向性珪素鋼板は変圧器、電気機器の鉄心材料として
利用できるもので磁束密度(B、、値で代表される)が
高く、鉄損(W l 7/’S。値で代表される)が低
いことが要求されている。(Prior Art) Unidirectional silicon steel sheets can be used as iron core materials for transformers and electrical equipment, and have a high magnetic flux density (represented by the value B) and iron loss (W l 7/'S. value). ) is required to be low.
この目的の達成のために今までにおびただしい数の改善
がなされ、今日では磁束密度B + oが1.89T以
上で、鉄損WI7/S。が1.05W/kg以下の低鉄
損を有する一方向性珪素鋼板が製造されるようになった
。Numerous improvements have been made to achieve this goal, and today the magnetic flux density B + o is 1.89T or more, and the iron loss is WI7/S. A grain-oriented silicon steel sheet having a low core loss of 1.05 W/kg or less has now been manufactured.
しかしながらエネルギー危機を境にしてより鉄損の低い
一方向性珪素鋼板の製造が急務の問題となり、今日では
欧米を中心にして超低鉄損珪素鋼板についてはボーナス
を附するという精度(Loss evaluation
system)が普及して来ている0(従来の技術)
このように鉄損値を著しく低くした一方向性珪素鋼板の
製造方法としては、最近に至り次のような方法が提案さ
れている。However, in the wake of the energy crisis, the production of unidirectional silicon steel sheets with lower iron loss became an urgent issue, and today, especially in Europe and the United States, bonuses are given for ultra-low iron loss silicon steel sheets.
0 (Prior Art) Recently, the following method has been proposed as a method for producing unidirectional silicon steel sheets with extremely low iron loss values.
すなわち、特公昭57−2252号公報に記載されてい
るように、最終仕上焼鈍における不適当な方位の結晶粒
の成長を抑制するためのインヒビターとしてAAN析出
相を利用し、かつ製品の一方向性珪素鋼板の表面に圧延
方向に対しほぼ直角にレーザービームを数mm間隔で照
射することによって鋼板表面に人工粒界を導入し、この
人工粒界によって鉄損を小さくする方法である。That is, as described in Japanese Patent Publication No. 57-2252, the AAN precipitated phase is used as an inhibitor to suppress the growth of crystal grains with inappropriate orientation during final finish annealing, and the unidirectionality of the product is In this method, artificial grain boundaries are introduced onto the surface of a silicon steel sheet by irradiating the surface of the steel sheet with a laser beam at intervals of several mm approximately perpendicular to the rolling direction, and the iron loss is reduced by these artificial grain boundaries.
しかしながらこの提案の人工粒界導入方法では、局部的
に高転位密度領域を形成させであるため、このような処
理を行った製品は350℃程度以下の低温でしか安定に
使用できない問題があり、またレーザー照射後は製品の
絶縁性が劣化するから、再絶縁被膜形成処理を施さなけ
ればならず、そのためコストが上昇して製品の価格が極
めて高くなるなど、種々の問題がある。上掲引用の如き
/IN析出析出金目用した一方向性珪素鋼板の製造方法
においては、インヒビターとしてAINと共存させる!
、I n Sを解離固溶させるために、熱間圧延前のス
ラブ加熱を通常の鋼の場合よりも高温で行う必要がある
が、このような高温でのスラブ加熱を施せば、スラブ加
熱時あるいは熱間圧延時に熱間割れを生じて製品に表面
欠陥が発生し易く、特に熱間加工性を阻害するSiの含
有量が3.0%を越えれ(f製品の表面性状が著しく劣
化する。However, this proposed method of introducing artificial grain boundaries causes the formation of locally high dislocation density regions, which poses the problem that products subjected to such treatment can only be used stably at low temperatures of around 350°C or lower. Furthermore, since the insulation properties of the product deteriorate after laser irradiation, it is necessary to perform a re-insulating film formation process, which causes various problems such as an increase in cost and an extremely high price of the product. In the production method of unidirectional silicon steel sheet using /IN precipitation as cited above, AIN is used as an inhibitor!
, In order to dissociate and solidify I n S, it is necessary to heat the slab before hot rolling at a higher temperature than in the case of ordinary steel, but if the slab is heated at such a high temperature, Alternatively, hot cracking is likely to occur during hot rolling and surface defects are likely to occur in the product, especially if the content of Si, which inhibits hot workability, exceeds 3.0% (f) The surface quality of the product will deteriorate significantly.
この黒光に発明者らが特開昭59−85820号公報に
開示したようにAl1N析出相を利用した場合、Si含
有量の高いSi3.1〜4.5%の珪素鋼素材が本質的
に高磁束密度で低鉄損の製品を得るに適した素材である
ことに着目し、その場合の欠点である表面性状の劣悪化
を解決する手段として、熱延前の素材表面層に)Aoを
濃化させることにより高81含有量でも表面性状を良好
になし1尋る。しかしこの新しい手法により製品の表面
性状は以前に比べて大巾に改善されたが、最近、低鉄損
を得るため0.23〜0.17mm厚に薄手化した製品
に関しては表面性状の向上効果が少なく大きな問題とし
て残されている。When the inventors use the Al1N precipitate phase for this black light as disclosed in JP-A-59-85820, the silicon steel material with a high Si content of 3.1 to 4.5% is essentially Focusing on the fact that this material is suitable for obtaining products with low core loss due to magnetic flux density, we decided to add Ao (Ao) to the surface layer of the material before hot rolling as a means to solve the problem of poor surface quality. Even with high 81 content, the surface quality is good. However, with this new method, the surface quality of products has been greatly improved compared to before, but recently, products that have been made thinner to 0.23 to 0.17 mm in order to obtain low iron loss have had the effect of improving surface quality. However, this remains a major problem.
これとは別にAβN析出相を利用して薄手化した製品を
製造しようとすると、゛本来強冷延−回法によっていた
ため、二次再結晶粒が極めて不安定になり、GO8S方
位に強く集積した2次再結晶粒を発達させることが困難
であるという問題があった。Separately, when trying to manufacture a thinner product using the AβN precipitate phase, secondary recrystallized grains became extremely unstable and strongly accumulated in the GO8S orientation because the strong cold rolling process was originally used. There was a problem in that it was difficult to develop secondary recrystallized grains.
ごく最近特開昭59−126722号公報において、高
Si含有量の下でAj2N析出を目を利用して薄手化し
た製品を安定製造するためには、従来の一回の強冷延性
を大巾に変えた2回の冷間圧延をと(にAnNのほかに
小量のCuとSnとを複合添加した組成の熱延素材に適
用することが開示された。Very recently, in Japanese Patent Application Laid-Open No. 59-126722, in order to stably manufacture thinned products using Aj2N precipitation under high Si content, the conventional hard cold ductility of one time has been greatly improved. It has been disclosed that two times of cold rolling with a change in temperature is applied to a hot-rolled material having a composition in which small amounts of Cu and Sn are added in addition to AnN.
この手法は薄手化した製品の鉄損を安定して低下させる
のに効果的ではあるが、通常S1を増量した状況下では
スラブの高温加熱を必要とするので、表面性状の優れた
製品を得ることが困難であることと、さらに2次再結晶
粒の安定化のために小量のSnとCuを添加するため製
品が大巾にコスト高となる、まだ解決されるべき問題が
多く残されている。Although this method is effective in stably lowering the iron loss of thinned products, it usually requires heating the slab to a high temperature under conditions where S1 is increased, so it is possible to obtain products with excellent surface properties. In addition, there are many problems that still need to be solved, including the fact that small amounts of Sn and Cu are added to stabilize the secondary recrystallized grains, which significantly increases the cost of the product. ing.
(発明が解決しようとする問題点)
ところで一方向性珪素鋼板の鉄損を低下させる方法とし
ては、
■珪素鋼中のSi含有量を高めること、■製品板厚を薄
くする。(Problems to be Solved by the Invention) Methods for reducing the core loss of a unidirectional silicon steel plate include: (1) increasing the Si content in the silicon steel; and (2) reducing the thickness of the product plate.
■鋼板の純度を高めること、
■製品の2次再結晶粒のGa55方位集積度を低下させ
ないで細粒の2次再結晶粒を発達させることなどが基本
的に考えられている。The basic ideas are: (1) increasing the purity of the steel sheet; (2) developing fine secondary recrystallized grains without reducing the Ga55 orientation integration degree of the secondary recrystallized grains of the product.
まず■に関してSi含有量を通常の3.0%より増加し
たり、■に関して通常製品板厚0.35.0JOmmよ
り薄い0.23.0.20mmにすることが試みられた
が、何れも2次再結晶組織が不均一となり、Goss方
位集積度が低下する問題が生じる。First, attempts were made to increase the Si content from the usual 3.0% for (■) and to reduce the thickness of the regular product plate to 0.23. A problem arises in that the subsequent recrystallization structure becomes non-uniform and the Goss orientation degree of integration decreases.
加え■に従い通常よりもSi含有量を増加させた場合、
熱間ぜい化が顕著となり、スラブ加熱あるいは熱間圧延
途中で熱間割れを生じ、製品の表面性状が著しく劣化し
てしまうことはすでに述べた。In addition, if the Si content is increased more than usual according to ■,
As already mentioned, hot embrittlement becomes noticeable, hot cracking occurs during slab heating or hot rolling, and the surface quality of the product deteriorates significantly.
一方において■の鋼板の純度向上又は■の方向性の改善
に関しては、現在極限と考えられる所まで来ている。例
えば現行製品の2次再結晶粒のGa55方位はすでに圧
延方向に平均3°〜4°以内に集積していて、このよう
に高度に集積した状況で結晶粒径をさらに小さくするこ
とは冶金学上きわめて困難とされている。On the other hand, improvements in the purity of steel sheets in (1) or in the directionality in (2) have now reached the limit. For example, the Ga55 orientation of the secondary recrystallized grains of current products is already accumulated within an average of 3° to 4° in the rolling direction, and it is difficult to further reduce the grain size in such a highly integrated situation. It is considered extremely difficult.
この発明は以上の事情を背景としすでに述べた従来技術
の最近の動向に鑑み表面性状が極めて優れしかも鉄損が
著しく小さく、またさらには高磁束密度の薄手一方向性
珪素鋼板を工業的に安定してとくに有利に製造し辱る方
法を提供することを目的とするものである。Against the background of the above-mentioned circumstances and in view of the recent trends in the prior art described above, this invention has been developed to produce industrially stable thin unidirectional silicon steel sheets with extremely excellent surface properties and extremely low iron loss, as well as with high magnetic flux density. The purpose is to provide a particularly advantageous method of manufacturing and humiliating.
(問題点を解決するための手段) 上記の目的は次のように成就される。(Means for solving problems) The above objectives are achieved as follows.
■、Si3.1〜4.5wt%、
Mo0.003〜0.1 wt%、
酸可溶AAO,005〜0.06wt%、そしてSおよ
びSeのいずれか1種または2種を合計量で0.005
〜0.1wt%、を含有するスラブを熱間圧延して熱延
板とした後、圧下率10〜60%の1次冷間圧延を施し
ついで中間焼鈍を経て、圧下率75〜90%の2次冷間
圧延を施し0.1〜0.25n+n+厚の最終板厚に仕
上げた薄手冷延板を、湿水素中で脱炭・1次再結晶焼鈍
後、高温仕上焼鈍することを特徴とする、表面性状の優
れた低鉄損薄手一方向性珪素鋼板の製造方法(第1発明
)。■, Si3.1-4.5wt%, Mo0.003-0.1wt%, acid-soluble AAO, 005-0.06wt%, and either one or two of S and Se in a total amount of 0 .005
After hot-rolling a slab containing ~0.1 wt% to make a hot-rolled plate, it is subjected to primary cold rolling with a rolling reduction of 10 to 60%, and then undergoes intermediate annealing to form a hot-rolled plate with a rolling reduction of 75 to 90%. A thin cold-rolled sheet that has been subjected to secondary cold rolling to a final thickness of 0.1 to 0.25n+n+ is decarburized and primary recrystallized annealed in wet hydrogen, and then subjected to high-temperature finish annealing. A method for producing a thin, unidirectional silicon steel sheet with excellent surface properties and low core loss (first invention).
2.5i 3.1〜4.5 wt%、
!、(o O,003〜0.1 wt%、酸可溶Aβ0
.005〜0.06wt%、そしてSおよびSeのいず
れか1種または2種を合計量で0.005〜0.1wt
%、
を含有するスラブを熱間圧延して熱延板とした後、圧下
率10〜60%の1次冷間圧延を施し、ついで中間焼鈍
を経て、圧下率75〜90%の2次冷間圧延を施し0.
1〜0.25mm厚の最終板厚に仕上げた薄手冷延板を
、その表面主に、局所的にSn、 P0. As、 S
b。2.5i 3.1~4.5 wt%, ! , (o O,003~0.1 wt%, acid soluble Aβ0
.. 005 to 0.06 wt%, and 0.005 to 0.1 wt% of one or both of S and Se in total
After hot rolling a slab containing Rolled between 0.
A thin cold-rolled sheet finished to a final thickness of 1 to 0.25 mm is mainly coated locally with Sn, P0. As, S
b.
B i、 s、 Se、 Te、 Mg、 Ca、 S
r、 Ba、におよびNaを含む化合物のうちから選ば
れる少なくとも一種を含む希薄溶液又は希薄懸濁液の塗
布領域の区画形成を経て、湿水素中で脱炭・1次再結晶
焼鈍後高温仕上焼鈍することを特徴とする表面性状の優
れた低鉄損薄手高磁束密度一方向性珪素鋼板の製造方法
(第2発明)。B i, s, Se, Te, Mg, Ca, S
After decarburization and primary recrystallization annealing in wet hydrogen, high-temperature finishing is carried out through the formation of sections of application areas of a dilute solution or dilute suspension containing at least one compound selected from compounds containing r, Ba, and Na. A method for producing a thin, high magnetic flux density, unidirectional silicon steel sheet with excellent surface properties and low core loss, which comprises annealing (second invention).
なお、中間焼鈍については、昇温過程、降温過程とも5
00〜900℃間をとくに毎秒5℃以上にて加熱又は冷
却することが実施上好適である。Regarding intermediate annealing, 5.
In practice, it is preferable to heat or cool between 00 and 900°C at a rate of 5°C or more per second.
発明者らは3.1〜4.5%の高珪素含有量の下でのA
AN析出相の利用による薄手一方向性珪素綱板を製造す
る際素材中に小量のMoを添加することによって表面性
状の優れた製品が得られまた、急熱・急冷の中間焼鈍を
含む2回の冷間圧延法の採用によってきわめて安定した
工程で低鉄損を有する一方向性珪素鋼板の製造が可能で
あることを発見し、この発明を完成するに至った。We found that A under high silicon content of 3.1-4.5%
When manufacturing thin unidirectional silicon steel sheets using AN precipitated phase, products with excellent surface properties can be obtained by adding a small amount of Mo to the material. The inventors discovered that it is possible to manufacture unidirectional silicon steel sheets with low iron loss in an extremely stable process by employing a double cold rolling method, and have completed this invention.
まず、第1発明の完成を導いた実験的事例につき具体的
に説明する。First, the experimental example that led to the completion of the first invention will be specifically explained.
C0,048wt%、Si3,4(ht%、Mo 0
.025wt%酸可溶A j20.026wt % お
よびS O,025wt%を含有する鋼塊(供試鋼I)
およびC0,053wt%。C0,048wt%, Si3,4(ht%, Mo 0
.. Steel ingot containing 0.025 wt% acid-soluble Aj20.026 wt% and SO, 025 wt% (sample steel I)
and C0,053wt%.
Si3.42wt%、酸可溶A i’ 0.027wt
%、 S O,024wt%。Si 3.42wt%, acid soluble A i' 0.027wt
%, SO, 024wt%.
SnO,11wt%およびCu0. 09wt%を含有
する鋼塊(比較鋼I)を何れも1420℃で4・時間加
熱してインヒビターを解離・固溶した後、熱間圧延して
2.2mm厚の熱延板とした。SnO, 11 wt% and Cu0. Each of the steel ingots (comparative steel I) containing 0.09 wt% was heated at 1420° C. for 4 hours to dissociate and dissolve the inhibitor, and then hot rolled to form a hot rolled sheet with a thickness of 2.2 mm.
その後70%以下の圧下率で1次冷間圧延を行なって後
、1050℃で3分間の中間焼鈍を行なった。Thereafter, primary cold rolling was performed at a reduction rate of 70% or less, and intermediate annealing was performed at 1050° C. for 3 minutes.
この中間焼鈍の際には500℃から900 t’までの
昇温は10℃/Sの急熱処理を施し、また中間焼鈍後9
00℃から500℃まで15℃/Sの急冷処理を施した
。During this intermediate annealing, the temperature was raised from 500°C to 900 t' by rapid heating treatment at 10°C/S, and after the intermediate annealing, 900 t' was heated.
A rapid cooling process of 15°C/S was performed from 00°C to 500°C.
その後70%〜91%圧下率で2次冷延圧延を施して0
.20mm厚の最終板厚の冷延板としてのち、850
t:の湿水素中で脱炭・1次再結晶焼鈍を施した。After that, it is subjected to secondary cold rolling at a reduction rate of 70% to 91%.
.. After making a cold rolled sheet with a final thickness of 20 mm, 850
Decarburization and primary recrystallization annealing were performed in wet hydrogen at t:.
その後鋼板表面上にM g Oを主成分とする焼鈍分離
剤を塗布して、とくに850℃〜1100 tまでの間
を8℃/hrで昇温しで2次再結晶させた後、1200
t:でlO時間乾水素中で純化焼鈍を施した。Thereafter, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, and the temperature was raised at a rate of 8°C/hr from 850°C to 1100 t for secondary recrystallization.
Purification annealing was performed in dry hydrogen for 10 hours at t:.
そのときの製品の磁気特性および表面欠陥発生率(綱板
表面上に存在する表面キズのブロック発生率を%で表示
)を第1図に示す。The magnetic properties and surface defect occurrence rate (block occurrence rate of surface flaws present on the steel plate surface expressed in %) of the product at that time are shown in FIG.
第1図の・印に示すプロットから明らかなように素材中
にMOを含有する供試鋼Iによる製品は1次冷間圧延の
圧下率が10〜60%(特に20〜40%)において磁
気特性が良好で、しかも製品の表面欠陥発生率が2%以
下(1次冷間圧延の圧下率が20〜50%の範囲におい
て0.5%以下となる)であることが注目される。As is clear from the plot shown in Fig. 1, the product made from sample steel I containing MO in the material has a magnetic field when the reduction ratio in the primary cold rolling is 10 to 60% (particularly 20 to 40%). It is noteworthy that the properties are good, and the surface defect incidence rate of the product is 2% or less (0.5% or less when the rolling reduction of the primary cold rolling is in the range of 20 to 50%).
これに対して従来通りの組成の比較鋼Iによる製品の磁
気特性は同図○印のプロットに明らかなようにB +o
、 WIT/sO共にMO添加材よりも若干悪く、とく
に製品の表面欠陥発生率は6〜18%と極端に高い。On the other hand, the magnetic properties of the product made of Comparative Steel I with the conventional composition are B + o as shown in the plot marked with ○ in the same figure
, WIT/sO are both slightly worse than the MO-added material, and in particular, the surface defect rate of the product is extremely high at 6-18%.
次にCO,049%、Si3.45%、 Mo 000
20%、酸可溶A!0.028%、 S O,026
%を含有する鋼塊(供試鋼■)を1410℃で5時間加
熱してインヒビターを解離・固溶した後、熱間圧延して
2.2mm厚の熱延板とした。Next, CO, 049%, Si3.45%, Mo 000
20% acid soluble A! 0.028%, SO,026
% (sample steel ■) was heated at 1410° C. for 5 hours to dissociate and dissolve the inhibitor, and then hot-rolled into a hot-rolled sheet with a thickness of 2.2 mm.
その後圧下率約40%の1次冷間圧延を施した後105
0℃で3分間の中間焼鈍を行なった。この中間焼鈍の際
に500℃から900℃までの昇温速度、中間焼鈍後の
900℃から500℃のでの冷却速度を何れも1℃〜1
00℃までの範囲で実験を行なった。After that, after primary cold rolling with a reduction rate of about 40%, 105
Intermediate annealing was performed at 0°C for 3 minutes. During this intermediate annealing, the temperature increase rate from 500°C to 900°C and the cooling rate from 900°C to 500°C after intermediate annealing are both 1°C to 1°C.
Experiments were conducted at temperatures up to 00°C.
中間焼鈍後の鋼板は圧下率約83%の2次冷間圧延を施
して0.23mm厚の最終冷延板とし、その後850℃
の湿水素中て脱炭・1次再結晶焼鈍を施した後、鋼板表
面上にM g Oを主成分とする焼鈍分離剤を塗布した
後850℃から1100℃まで10℃/hrで昇温しで
2次再結晶させた後、1200℃で10時間乾水素中で
純化焼鈍を行なった。そのときの製品の磁気特性を第2
図に示す。The steel plate after intermediate annealing is subjected to secondary cold rolling at a reduction rate of approximately 83% to form a final cold rolled plate with a thickness of 0.23 mm, and then heated at 850°C.
After decarburization and primary recrystallization annealing in wet hydrogen, an annealing separator containing MgO as the main component was applied to the surface of the steel sheet, and the temperature was increased from 850°C to 1100°C at a rate of 10°C/hr. After secondary recrystallization, purification annealing was performed in dry hydrogen at 1200° C. for 10 hours. The magnetic properties of the product at that time are
As shown in the figure.
第2図から明らかなように中間焼鈍時に500℃から9
00℃までの昇温速度及び中間焼鈍後の900 ℃から
500℃までの冷却速度を5℃/S以上なかでも10℃
/S以上とした場合において著しく磁気特性の優れた製
品を得ることができる。As is clear from Figure 2, from 500℃ to 9℃ during intermediate annealing.
The temperature increase rate to 00℃ and the cooling rate from 900℃ to 500℃ after intermediate annealing should be 5℃/S or more, especially 10℃.
/S or more, a product with extremely excellent magnetic properties can be obtained.
このような中間焼鈍時の急熱・急冷処理による特性向上
の理由は発明者らが既に特開昭59−35625号公報
(前出)に開示したと同じように(110)<001>
方位の集合組織を優先的に発達させるのに有利なためと
考えられる。なお、さきに触れたように特開昭59−1
26722号公報における、冷延2回法のAIN析出相
利用による薄手一方向性珪素鋼板の製造方法では、従来
の強冷延1回法の際における均−化焼鈍後の急冷処理に
よるAlxの微細析出処理を、1次冷間圧延後の中間焼
鈍後の冷却過程に援用するにすぎないのに反してこの発
明では、中間焼鈍後の急冷のみならず、中間焼鈍の昇温
過程における急熱との組合わせにつき、とくに)110
を含有する場合に限ってすぐれた磁気特性が得られるこ
とを新たに解明したものである。The reason for the improvement in properties due to the rapid heating and cooling treatment during intermediate annealing is as previously disclosed by the inventors in JP-A-59-35625 (mentioned above) (110) <001>
This is thought to be because it is advantageous for preferentially developing the texture of the orientation. In addition, as mentioned earlier, JP-A-59-1
In the method for producing a thin unidirectional silicon steel sheet by utilizing the AIN precipitate phase in the two-step cold rolling method disclosed in Publication No. 26722, fine Al On the contrary, in this invention, precipitation treatment is only used in the cooling process after intermediate annealing after primary cold rolling, but in this invention, precipitation treatment is applied not only to rapid cooling after intermediate annealing, but also to rapid heating in the temperature rising process of intermediate annealing. (especially for combinations of) 110
It has been newly clarified that excellent magnetic properties can be obtained only when containing .
次に第2発明の開発経緯を下に説明する。Next, the development history of the second invention will be explained below.
CO,053%、S13゜43%、 Mo 0.023
%、酸可溶AAO,028%、 S O,027%を
含有する銅塊(供試鋼I ) CO,056%、Si
3.46%、酸可溶Aβo、o2eqgS O,026
%、SnO,1%、Cu0.1 %を含有する鋼塊(比
較鋼■)何れもを1430℃で3時間加熱してインヒビ
ターを解離・固溶した後、熱間圧延して2.2mm厚の
熱延板とした。CO, 053%, S13°43%, Mo 0.023
%, acid-soluble AAO, 028%, SO, 027% (sample steel I) CO, 056%, Si
3.46%, acid soluble Aβo, o2eqgS O,026
%, SnO, 1%, and Cu0.1% (comparative steel ■) were heated at 1430°C for 3 hours to dissociate and dissolve the inhibitor, and then hot rolled to a thickness of 2.2 mm. It was made into a hot rolled sheet.
その後70%以下の圧下率で1次冷間圧延を行なった後
、1100で3分間の中間焼鈍を行なった。この中間焼
鈍の際には500℃から900℃までの昇温は加熱速度
13℃/Sで急熱処理し、また中間焼鈍後900℃から
500℃まで冷却速度18℃/Sで急冷処理した。Thereafter, primary cold rolling was performed at a rolling reduction ratio of 70% or less, and intermediate annealing was performed at 1100 for 3 minutes. During this intermediate annealing, the temperature was raised from 500°C to 900°C at a heating rate of 13°C/S, and after the intermediate annealing, the material was rapidly cooled from 900°C to 500°C at a cooling rate of 18°C/S.
その後70%〜91%、の圧下率で2次冷間圧延を施し
0.20mm厚の最終冷延板としたが、冷間圧延の途中
で250℃の温間圧延を施した。Thereafter, secondary cold rolling was performed at a rolling reduction ratio of 70% to 91% to obtain a final cold rolled plate having a thickness of 0.20 mm, but warm rolling at 250° C. was performed during the cold rolling.
その後鋼板表面を温度110℃において脱脂した後!A
g S O4の希薄水溶液(80℃で0. O1mo
l/I)をスプレーで圧延方向と直角に5mm間隔に0
.5mm巾で塗布した。また参考のためにIgltff
1表面を脱脂したままの試料(参考例)も同時に用意し
た。After that, the surface of the steel plate was degreased at a temperature of 110℃! A
g S O4 dilute aqueous solution (0.01 mo at 80 °C
l/I) by spraying at 5 mm intervals perpendicular to the rolling direction.
.. It was applied in a width of 5 mm. Also for reference Igltff
A sample (reference example) whose surface was left degreased was also prepared at the same time.
これらの試料は850℃の湿水累中で脱炭・1次再結晶
焼鈍を施した後、鋼板表面上にM g Oを主成分とす
る焼鈍分離剤を塗布した後850℃から1100℃まで
10℃/hrで昇温しで2次再結晶させた後、1200
℃で10時間乾水素中で純化焼鈍を施した。These samples were subjected to decarburization and primary recrystallization annealing in wet water at 850°C, then coated with an annealing separator mainly composed of MgO on the steel plate surface, and then annealed from 850°C to 1100°C. After secondary recrystallization by heating at 10°C/hr,
Purification annealing was performed in dry hydrogen for 10 hours at °C.
そのときの製品の磁気特性および表面欠陥発生率(a板
表面上に存在する表面キズのプロ・ツク発生率を%で表
示)を第3図に示す。The magnetic properties and surface defect occurrence rate of the product at that time (the occurrence rate of surface scratches on the surface of the A-plate is expressed in %) are shown in FIG.
第3図から明らかなように素材中にMOを添加した供試
鋼■(■1口印)は1次冷間圧延の圧下率が10から6
0%(特に20〜40%)において磁気特性が良好で、
しかも製品の表面欠陥発生率が3%以下(とくに1次冷
間圧延圧下率が20〜50%の範囲おいて1,0%以下
)であることが注目される。こりに対して従来組成の比
較鋼■(ム、△印)の特性はB IQ+ WB7s。共
にMoi加材よりも若干悪く、かつ製品の表面欠陥発生
率は6〜2096と極端に高い。As is clear from Figure 3, the reduction ratio in the primary cold rolling of the sample steel ■ (■ 1 mark) in which MO was added to the material was 10 to 6.
Good magnetic properties at 0% (especially 20-40%),
Moreover, it is noteworthy that the surface defect occurrence rate of the product is 3% or less (particularly 1.0% or less when the primary cold rolling reduction is in the range of 20 to 50%). In terms of stiffness, the characteristics of comparative steel with conventional composition ■ (mu, △ mark) are B IQ + WB7s. Both are slightly worse than Moi filler material, and the surface defect rate of the product is extremely high at 6 to 2096.
次に最終冷延板表面上にMg5O< の希薄水溶液をス
プレーで圧延方向と直角に5mm間隔にQ、 5mm巾
で塗布したときの磁気特性は、供試鋼可の■印プロット
のように1次冷間圧延圧下率30〜4096(2次冷間
圧延圧下率87〜85%)で、Wltyso が0、7
2 W / kgと極端に磁気特性が良好であり、しか
も製品の表面欠陥発生率も1%以下と良好である。Next, when a dilute aqueous solution of Mg5O < is sprayed on the surface of the final cold-rolled sheet at 5 mm intervals perpendicular to the rolling direction in a width of 5 mm, the magnetic properties are as shown in the plot marked with ■ for the test steel. At a secondary cold rolling reduction rate of 30 to 4096 (secondary cold rolling reduction rate of 87 to 85%), Wltyso is 0, 7
The magnetic properties are extremely good at 2 W/kg, and the surface defect rate of the product is also good at 1% or less.
これに対して)、10を添加しない比較鋼Hによる塗布
処理においてもム印プロットのように鉄損W1?/So
が1次冷間圧延圧下率30〜40%において0.75
W/kgと良好であるが、製品の表面欠陥発生率が6〜
7%と高い。On the other hand), even in the coating treatment with comparative steel H without the addition of 10, the iron loss W1? /So
is 0.75 at the primary cold rolling reduction rate of 30 to 40%.
W/kg is good, but the surface defect rate of the product is 6~6
It is high at 7%.
従ってこれらの実験例から表面性状の優れた低鉄損薄手
一方向性珪素鋼板を製造するには高珪素素材中に小量の
Maの添加を行うこと、冷延2回法を採用すること、そ
して最終冷延板表面上に特定した元素を含有する希薄水
溶液又は懸濁液塗布を区画形成することの結合によって
達成されることを示している。Therefore, from these experimental examples, in order to produce a thin, unidirectional silicon steel sheet with excellent surface quality and low core loss, it is necessary to add a small amount of Ma to the high-silicon material, and to adopt a two-step cold rolling method. It is shown that this can be achieved by a combination of sectioning the application of a dilute aqueous solution or suspension containing the specified elements on the surface of the final cold-rolled sheet.
これらの一部の構成はすでに特願昭58−220134
号明細書において冷間圧延終了後の冷延鋼板の表面上に
局部的にSn、 P0. As、 S0. Bi、 S
、 SeおよびTeまたはそれらの化合物のうちから選
ばれる少なくとも一種を含む希薄水溶液又は希薄懸濁液
を塗布して、脱酸遅滞領域を区画形成することによる鉄
損の低い一方向性珪素鋼板の製造方法として発明者らが
提案しているところであるが、これを第2発明と比較し
最終冷延板表面塗布前に急熱・急冷の中間焼鈍を含む冷
延2回法を用いることにより、とくに2次再結晶粒の安
定成長を図ること、また最終冷延板表面塗布の際の塗布
液の温度を40〜100℃、および/または鋼板の温度
を20〜300℃で処理すること、さらに上記の脱炭遅
滞剤と遅滞剤とのみでなく 、!4g、 Ca、 Sr
、 Ba、 KおよびNaを含む化合物の希薄水溶液の
塗布あるいはこれらの脱炭促進剤の混合によって、きわ
めて安定した工程で特性向上を図ることができることの
発見がさらに加わっている。Some of these structures have already been disclosed in Japanese Patent Application No. 58-220134.
In this specification, Sn, P0. As, S0. Bi, S
, Production of a grain-oriented silicon steel sheet with low core loss by applying a dilute aqueous solution or dilute suspension containing at least one selected from Se and Te or their compounds to define deoxidation retardation regions. As a method, the inventors have proposed, and compared this with the second invention, it was found that by using a two-step cold rolling method including intermediate annealing of rapid heating and rapid cooling before final coating on the surface of the cold rolled sheet, Aiming for stable growth of secondary recrystallized grains, and treating the temperature of the coating liquid during final coating on the surface of the cold rolled sheet at 40 to 100°C and/or the temperature of the steel sheet at 20 to 300°C, and further the above-mentioned. Not only with decarburization retarders and retarders, but! 4g, Ca, Sr
It has been further discovered that properties can be improved in a very stable process by applying a dilute aqueous solution of a compound containing , Ba, K and Na or by mixing these decarburization promoters.
次に供試鋼■としてCO,061%、Si3.45%。Next, sample steel (■) was made of CO, 061% and Si 3.45%.
M、o O,025%、酸可溶An0.026%、
S O,030%。M, o O, 025%, acid soluble An 0.026%,
SO, 030%.
を含有する鋼塊を溶製し、1450℃で3時間加熱して
インヒビタ〜を解離・固溶した後、熱間圧延して2.2
mm厚の熱延板とした。A steel ingot containing 2.2
It was made into a hot-rolled plate with a thickness of mm.
その後約30%の圧下率で1次冷間圧延を行なった後、
1050℃で3分間の中間焼鈍を行なった。この中間焼
鈍の際には500℃から900℃までの昇温は15℃/
Sで急熱処理し、また中間焼鈍後900℃から500℃
までの降温は20℃/Sで急熱処理した。After that, after performing the first cold rolling at a reduction rate of about 30%,
Intermediate annealing was performed at 1050°C for 3 minutes. During this intermediate annealing, the temperature increase from 500℃ to 900℃ is 15℃/
Rapid heat treatment with S, and after intermediate annealing 900℃ to 500℃
The temperature was lowered by rapid heat treatment at 20°C/S.
その後約85%の圧下率で2次冷間圧延を施して最終厚
0.23mmの冷延板としたが、この冷間圧延途中で2
50℃の温間圧延を施した。After that, secondary cold rolling was performed at a reduction rate of about 85% to obtain a cold rolled sheet with a final thickness of 0.23 mm.
Warm rolling was performed at 50°C.
その後脱脂処理により鋼板表面を清浄にするとともに鋼
板の表面温度を約100℃に保った状態での希薄水溶液
の種類と水溶液の液温を100℃以下で種々に変え、圧
延方向にほぼ直角で間隔5mm。After that, the surface of the steel plate is cleaned by degreasing treatment, and while the surface temperature of the steel plate is maintained at about 100℃, the type of dilute aqueous solution and the temperature of the aqueous solution are variously changed below 100℃, and the temperature is approximately perpendicular to the rolling direction. 5mm.
幅0.5mmでスプレー塗布した。また比較のために鋼
板表面を脱脂したままの試料も同時に用意した。Spray coating was applied to a width of 0.5 mm. For comparison, a sample with the surface of the steel plate left degreased was also prepared at the same time.
これらの試料は830℃の湿水素中で脱炭・1次再結晶
焼鈍を施した後、鋼板表面上にMgOを主成分とする焼
鈍分離剤を塗布した後、850℃から1100℃まで1
0℃/hrで昇温しで2次再結晶させた後、1200℃
で10時間乾水素中で純化焼鈍を施した。These samples were subjected to decarburization and primary recrystallization annealing in wet hydrogen at 830°C, then coated with an annealing separator containing MgO as a main component on the steel plate surface, and then heated from 850°C to 1100°C for 1 time.
After secondary recrystallization by heating at 0°C/hr, 1200°C
Purification annealing was performed in dry hydrogen for 10 hours.
そのときの製品の磁気特性を第4図に示す。第4図から
明らかなように鋼板表面上の塗布液の温度は(A)
〜(E)で区別した塗布液の種類によらずすべてを通し
40℃以上で良好な磁気特性を示すことが注目される。Figure 4 shows the magnetic properties of the product at that time. As is clear from Figure 4, the temperature of the coating liquid on the steel plate surface is (A)
It is noteworthy that all of the coating liquids shown in (E) show good magnetic properties at temperatures of 40° C. or higher, regardless of the type of coating liquid.
すなわち脱脂後の最終冷延板表面上に圧延方向にほぼ直
角方向に一定間隔でスプレー塗布する際は、スプレーの
希薄水溶液のスプレ一温度を高温にすることによってス
プレー領域とスプレーしない領域の濃度差を強くするこ
とによってさらに特性向上を図ることができることを示
している。In other words, when spray coating the surface of the final cold-rolled sheet after degreasing at regular intervals in a direction approximately perpendicular to the rolling direction, the spray temperature of the dilute aqueous solution is raised to a high temperature to reduce the concentration difference between the sprayed area and the non-sprayed area. This shows that it is possible to further improve the characteristics by increasing the strength.
以上のように第2発明は、素材中にMoを添加すること
、冷延2回法を採用すること、モして脱炭・1次再結晶
前の鋼板表面上に限定された希薄水溶液を区画形成させ
ることによって、安定した工程で良好な鉄損と表面性状
とを有する一方向性珪素鋼板の製造が可能であることを
見出した点で前掲した先行技術とは発想の基本を異にし
、またそれらの工程の採用によって得られる効果も従来
に比べてはるかにすぐれている。As described above, the second invention involves adding Mo to the material, adopting a two-step cold rolling method, and applying a limited dilute aqueous solution onto the surface of the steel sheet before decarburization and primary recrystallization. The basic idea is different from the prior art mentioned above in that it has been discovered that by forming compartments, it is possible to manufacture unidirectional silicon steel sheets with good iron loss and surface properties in a stable process, Furthermore, the effects obtained by adopting these processes are far superior to those of the conventional methods.
(作 用)
各発明において、Siは前述したとおり珪素鋼板の電気
抵抗を高めて渦電流損を減少させるのに有効な元素で、
とくに薄手製品の鉄損を減少させるため3.1wt%以
上とする必要がある。しかしSi含有量が4,5wt%
を越えると冷間圧延の際の脆性割れが生じ易くなるから
、Si含有量を3.1〜4.5wt%の範囲とした。な
お従来のAnNをインヒビターとして利用する通常の一
方向性珪素鋼板の31含有量は2.8〜3. Owt%
程度であり、またSiを増加させた場合第1図、第3図
に示した比較鋼1.IIIのように製品の表面性状が著
しく劣化するが、第1゜第2各発明において素材中に0
.003〜0.1wt%のMoを添加することによって
表面欠陥発生防止が可能となったものである。(Function) In each invention, Si is an element effective in increasing the electrical resistance of silicon steel sheets and reducing eddy current loss, as described above.
In particular, in order to reduce iron loss in thin products, it is necessary to set the content to 3.1 wt% or more. However, the Si content is 4.5 wt%.
If the Si content exceeds the Si content, brittle cracks are likely to occur during cold rolling, so the Si content is set in the range of 3.1 to 4.5 wt%. Note that the 31 content of a conventional unidirectional silicon steel sheet using conventional AnN as an inhibitor is 2.8 to 3. Owt%
Comparative steel 1. shown in FIGS. 1 and 3 when Si was increased. As in III, the surface quality of the product is significantly deteriorated, but in each of the first and second inventions, zero
.. By adding 0.03 to 0.1 wt% of Mo, it is possible to prevent surface defects from occurring.
この素材中に添加するMolは0.OO’3wt%未満
では磁気特性向上ならびに表面欠陥発生の防止力が弱く
、また0、1%をこえると脱炭時に鋼中の脱炭を遅らせ
るため0.003〜0.1wt%の範囲に限定すべきで
ある。The Mol added to this material is 0. If OO' is less than 3 wt%, the ability to improve magnetic properties and prevent surface defects is weak, and if it exceeds 0.1%, decarburization in the steel will be delayed during decarburization, so it is limited to a range of 0.003 to 0.1 wt%. Should.
Alは鋼中に含まれるNと供給してAlxの微細析出物
を形成し、強力なインヒビターとして作用する。とくに
薄手一方向性珪素w4板の製造においてGoss方位に
強く集積した2次再結晶粒を発達させるためには0.0
05〜0.06wt%の範囲の酸可溶Alが必要である
。Al is supplied with N contained in steel to form fine precipitates of Alx, and acts as a strong inhibitor. In particular, in the production of thin unidirectional silicon W4 plates, in order to develop secondary recrystallized grains that are strongly concentrated in the Goss orientation, it is necessary to
Acid-soluble Al in the range of 0.05 to 0.06 wt% is required.
酸可溶Alが0.005wt%未満ではインヒビターと
してのAIN微細析出物の析出量が不足し、(110)
<Ool >方位の2次再結晶粒の発達が不充分とな
り、一方0.06wt%を越えれば再び(110)<0
01 >方位の2次再結晶粒の発達が著しく悪(なる。When acid-soluble Al is less than 0.005 wt%, the amount of AIN fine precipitates as an inhibitor is insufficient, (110)
The development of secondary recrystallized grains with <Ool> orientation becomes insufficient, and on the other hand, if it exceeds 0.06 wt%, (110) <0
01> The development of secondary recrystallized grains in the orientation is extremely poor.
S 、 SeはAlxとともにMnS もしくは!A
n S eの分散析出相を形成してインヒビター効果を
増進させる。SまたはSeは合計量で0.005wt%
よりも少なければ!J n S またはM n S e
によるインヒビター効果が弱く、一方今計量でO,,1
wt%を越えれば熱間および冷間加工性が著しく劣化す
るから、S 、 Seの1種または2種は合計量で0.
005〜0.1wt%の範囲内とする必要がある。なお
このような合計量範囲内においても、Sが0.008w
t%より少ない場合もしくはSeが0.003wt%よ
り少ない場合にはそれぞれインヒビター効果が不足し、
一方それぞれ0.05wt%を越えれば熱間および冷間
加工性が劣化するから、Sは0.008〜0.05wt
%の範囲内、Seは0.003〜0.05wt%の範囲
内とすることが望ましい。S, Se is MnS with Alx or! A
A dispersed precipitated phase of n S e is formed to enhance the inhibitor effect. The total amount of S or Se is 0.005wt%
If less than! J n S or M n S e
The inhibitor effect of
If the amount exceeds wt%, hot and cold workability will be significantly deteriorated, so the total amount of one or both of S and Se should be 0.
It is necessary to keep it within the range of 0.005 to 0.1 wt%. Even within this total amount range, S is 0.008w
When it is less than t% or when Se is less than 0.003wt%, the inhibitor effect is insufficient, respectively.
On the other hand, if each exceeds 0.05wt%, hot and cold workability deteriorates, so S is 0.008 to 0.05wt%.
%, and Se is preferably within the range of 0.003 to 0.05 wt%.
各発明の方法に適合する素材としては、上述のように3
.1〜4.5%のSiを含有しかつ小量のMoとAβと
SおよびSeを含有している必要があるが、その他通常
の珪素鋼中に添加される公知の元素の存在を妨げるもの
ではない。As mentioned above, there are three materials that are compatible with the methods of each invention.
.. It must contain 1 to 4.5% Si and small amounts of Mo, Aβ, S, and Se, but must not contain any other known elements added to ordinary silicon steel. isn't it.
例えばMnは0.02〜2wt%程度含有されているこ
とが好ましい。For example, it is preferable that Mn is contained in an amount of about 0.02 to 2 wt%.
またCはAβNの微細析出に関連して、熱延板焼鈍中に
鋼板の一部にT変態を生せしめるために必要であり、こ
の発明の81含有量3.1〜4.5wt%の範囲ではC
含有量は0.030〜0.080wt%程度が適当であ
る。Further, C is necessary to cause T transformation in a part of the steel sheet during hot-rolled sheet annealing in connection with fine precipitation of AβN, and the 81 content of this invention is in the range of 3.1 to 4.5 wt%. Then C
A suitable content is about 0.030 to 0.080 wt%.
さらに通常の珪素鋼中に添加されることのある公知の一
次再結晶粒成長抑制剤としてのS0. Sn、 Cu。Furthermore, S0. Sn, Cu.
Bのいずれか1種あるいは2種以上を合計量で0、2w
t%以下含有しても良い。その他Cr、Ti、v。0, 2w of any one or two or more of B in total amount
It may be contained in an amount of t% or less. Others Cr, Ti, v.
Zr、 N0. Ta、 Co、 N i、 p、 A
s等の一般的な不可避的元素が微量含有されることは許
容される。Zr, N0. Ta, Co, Ni, p, A
It is permissible for general unavoidable elements such as s to be contained in trace amounts.
次にこの発明の一連の製造工程について説明する。Next, a series of manufacturing steps of this invention will be explained.
先ずこの発明の方法に使用される素材を溶製する手段と
しては、し口転炉、平炉その他の公知の製鋼方法を用い
ることができ、また真空処理、真空溶解を併用しても良
いことは勿論である。First, as means for melting the material used in the method of this invention, a converter furnace, an open hearth furnace, and other known steelmaking methods can be used, and vacuum treatment and vacuum melting may also be used in combination. Of course.
またスラブ作成の手段としても、通常の造塊−分塊圧延
法のほか、連続鋳造も好適に用いることができる。In addition to the usual ingot-blubber rolling method, continuous casting can also be suitably used as a means for producing the slab.
上述のようにして得られた珪素鋼スラブは公知の方法に
より加熱後、熱間圧延に附される。この熱間圧延によっ
て得られる熱延前の厚みは後続の冷延工程における圧下
率によっても異なるが、通常1゜5〜3.0mm程度が
望ましい。The silicon steel slab obtained as described above is heated by a known method and then subjected to hot rolling. The thickness before hot rolling obtained by this hot rolling varies depending on the rolling reduction rate in the subsequent cold rolling step, but it is usually desirably about 1.5 to 3.0 mm.
この発明では表面性状の良好な珪素鋼板を得るために素
材中に少量のMOを添加することを必要条件とするが、
その他発明者らが特開昭59−85820号公報で開示
したように熱延終了後までに表面にMO化合物を塗布す
る等の手段によって鋼板表面層にMoを濃化させる手段
の併用も勿論可能である。In this invention, it is necessary to add a small amount of MO to the material in order to obtain a silicon steel sheet with good surface quality.
As disclosed by the inventors in JP-A No. 59-85820, it is of course also possible to use a method of concentrating Mo in the surface layer of the steel sheet by applying an MO compound to the surface after hot rolling. It is.
熱間圧延を終了した熱延板には、次に1次冷間圧延が施
される。The hot rolled sheet that has been hot rolled is then subjected to primary cold rolling.
1次冷間圧延の際の圧下率は、製品板厚によって若干異
なるが、この発明で良好な特性を有する薄手製品を得る
には第1図から明らかなように10〜60%(望ましく
は20〜50%)に限定される。The rolling reduction rate during the primary cold rolling differs slightly depending on the product plate thickness, but in order to obtain a thin product with good properties in this invention, it is 10 to 60% (preferably 20% ~50%).
次の中間焼鈍は900〜1100℃の温度で30秒〜3
0分間程度の焼鈍を施すが、良好な磁気特性を得るには
、500℃から900℃の昇温そして中間焼鈍後の90
0℃から500℃の降温を5℃/S以上なかでもlO℃
/S以上にすることが望ましい。この急熱急冷処理は通
常の連続炉あるいはバッチ炉等公知の手法を用いて良い
。The next intermediate annealing is at a temperature of 900-1100℃ for 30 seconds to 3
Annealing is performed for about 0 minutes, but in order to obtain good magnetic properties, the temperature must be increased from 500°C to 900°C and 90°C after intermediate annealing.
Temperature drop from 0℃ to 500℃ more than 5℃/S, especially lO℃
It is desirable to set it to /S or more. This rapid heating and cooling process may be carried out using a known method such as an ordinary continuous furnace or a batch furnace.
次の2次冷間圧延は第1図、第3図から明らかなように
75〜90%の圧下率で適合し、最終冷延板厚0.1〜
0.25mm厚に仕上げる。As is clear from Figures 1 and 3, the subsequent secondary cold rolling is suitable for a reduction ratio of 75 to 90%, and the final cold rolled plate thickness is 0.1 to 90%.
Finish to a thickness of 0.25mm.
各発明では薄手高磁束密度電磁鋼板の製造を目的とした
ものであり、熱延板の板厚1.5〜3.0mm厚程度で
、第1図、第3図に示す冷間圧延および2次冷間圧延の
各圧下率において0.1〜0.25mm厚の薄手最終冷
延板に仕上げることにより、特性の良好な鋼板が得られ
る。The purpose of each invention is to manufacture thin high magnetic flux density electrical steel sheets, and the hot-rolled sheets have a thickness of about 1.5 to 3.0 mm. By finishing the steel plate into a thin final cold-rolled plate having a thickness of 0.1 to 0.25 mm at each reduction rate in the subsequent cold rolling, a steel plate with good properties can be obtained.
この時、特公昭54−13866号、公報に開示されて
いるように複数パス間に50〜600℃の時効処理を行
なってもよい。At this time, aging treatment at 50 to 600° C. may be performed between multiple passes as disclosed in Japanese Patent Publication No. 54-13866.
このようにして0.1〜0.25mmの薄手の板厚とさ
れた冷延板に対しては、750〜870℃程度の温度範
囲において一次再結晶を兼ねる脱炭焼鈍を施す。The cold-rolled sheet thus made thin with a thickness of 0.1 to 0.25 mm is subjected to decarburization annealing, which also serves as primary recrystallization, in a temperature range of approximately 750 to 870°C.
この脱炭焼鈍は通常は露点+30〜65℃程度の湿水素
ガス雰囲気あるいは水素・窒素混合ガス雰囲気中で数分
間貸なえば良い。This decarburization annealing can normally be carried out for several minutes in a wet hydrogen gas atmosphere or a hydrogen/nitrogen mixed gas atmosphere with a dew point of about +30 to 65°C.
次いで脱炭焼鈍後の鋼板に対しMgOを主成分とする焼
鈍分離剤を塗布し、仕上焼鈍を施して(110) <
ool>方位の2次再結晶粒を発達させる。この仕上焼
鈍の具体的条件は従来公知のものと同様であれば良いが
、通常は1150〜1250℃まで3〜b
を発達させた後、飽水素中で5〜20時間の純化焼鈍を
行うことが望ましい。Next, an annealing separator containing MgO as a main component was applied to the steel plate after decarburization annealing, and finish annealing was performed (110) <
Develop secondary recrystallized grains with ool> orientation. The specific conditions for this final annealing may be the same as those conventionally known, but usually, after developing 3-b to 1150-1250°C, purification annealing is performed for 5-20 hours in saturated hydrogen. is desirable.
ついで最終冷延を終えて、製品板厚に仕上げた鋼板につ
き、表面脱脂後、脱炭・1次再結晶焼鈍処理が施される
が、第2発明ではすでにのべたように脱脂後の最終冷延
板表面にSn、 P0. As、 S0. Bi、 S
。After finishing the final cold rolling, the steel plate finished to the product thickness is subjected to surface degreasing, followed by decarburization and primary recrystallization annealing, but in the second invention, as already mentioned, the final cooling after degreasing is performed. Sn, P0. As, S0. Bi, S
.
Se、 Te、 Mg、 Ca、 Sr、 Ba、 K
およびNaを含む無機化合物のうちから選ばれた少なく
とも一種以上の希薄溶液もしくは希薄懸濁液を塗布する
わけである。ところでかかる処理液の塗布に当っては発
明者らが特開昭58−220134号公報に開示したよ
うに、1〜50mmの間隔で塗布する領域と塗布しない
領域とを交互に区画形成することがより好ましい。Se, Te, Mg, Ca, Sr, Ba, K
A dilute solution or dilute suspension of at least one kind selected from inorganic compounds containing Na and Na is applied. By the way, when applying such a treatment liquid, as disclosed by the inventors in JP-A-58-220134, areas to be coated and areas not to be coated may be formed alternately at intervals of 1 to 50 mm. More preferred.
かかる領域幅は、狭いほど2次再結晶粒は細粒となるが
、製品の2辻再結晶粒径の2倍以内すなわち3〜50+
r+m幅で鋼板板表面の1次再結晶集合組織を変化させ
れば細粒の2次再結晶粒を得ることが可能となる。また
このような表面塗布は通常鋼板の両面に行なわれるが、
片面のみの塗布でも、充分効果を発揮する。The narrower the area width, the finer the secondary recrystallized grains will be, but it should be within twice the two-way recrystallized grain size of the product, that is, 3 to 50+.
By changing the primary recrystallized texture on the surface of the steel sheet with a width of r+m, fine secondary recrystallized grains can be obtained. Also, this kind of surface coating is usually done on both sides of the steel plate,
It is fully effective even when applied to only one side.
さらに鋼板表面の塗布方法と゛しては、通常溝付きある
いは凹凸のゴムロールを用いて塗布する方法や塗布不要
領域にマスキングプレートをあてがった上で噴射を行な
う方法がとりわけ有利に適合する。Furthermore, as a coating method for the surface of a steel plate, a method in which coating is normally performed using a grooved or uneven rubber roll, and a method in which spraying is performed after applying a masking plate to areas where coating is not required are particularly advantageous.
この鋼板表面上の塗布液の温度は上述したように40〜
100℃の範囲とすること、また塗布時の鋼板の板温2
0〜300℃に限定することが望ましい。As mentioned above, the temperature of the coating liquid on the surface of the steel plate is 40~
The temperature of the steel plate at the time of application should be within the range of 100℃2.
It is desirable to limit the temperature to 0 to 300°C.
これら塗布液の液温又は鋼板温度を制御する方法は従来
公知のいずれかの方法を用いてもよい。また鋼板表面上
に付着させるSn、 P0. As、 S0. S、
Se、 Te。Any conventionally known method may be used to control the temperature of the coating liquid or the temperature of the steel plate. Further, Sn, P0. As, S0. S,
Se, Te.
Mo、 Mg、 Ca、 Sr、 Ba、 kおよびN
aの化合物については低炭素冷延鋼板表面への黒鉛析出
に対する種々の元素の希薄水溶液塗布の影響を示す公知
の文献(例えばY、Inokuti : Trans
、[SIJ、Vol、15(1975)、P、324)
の教示に従えば良いが念のために引用すると次のとおり
である。Mo, Mg, Ca, Sr, Ba, k and N
Regarding the compound a, there are known documents showing the influence of applying dilute aqueous solutions of various elements on graphite precipitation on the surface of low carbon cold rolled steel sheets (for example, Y. Inokuti: Trans.
, [SIJ, Vol. 15 (1975), P, 324)
You can just follow the teachings, but just to be sure, I quote them as follows:
a)Snを含む化合物: 5nC1z、 Sn (NO
3) 4.5n12.Na25nOb)pbを含む化合
物: PbCl2. PbO(OH) 2. Pb (
NO3) 2+Pb (C)1.cOO) 2
c)Asを含む化合物: A9S3. NaAs03.
H3ASO4,KH2ASO4Na2HAs03.
(NH4) 3ASO4,ASC+2. AS203.
K3ASO3d)Sbを含む化合物: 5bC13,
5bBr3.5bOC1,5b2o3゜5LS3.5b
2(SO4) 3
e)Biを含む化合物: Na2B+Oa、 BiCl
3.812(S04)3゜Bi(NL)3
f)Sを含む化合物+ K、S、 Na2S2O3,K
2S2O5,Na2S。a) Compounds containing Sn: 5nC1z, Sn (NO
3) 4.5n12. Compounds containing Na25nOb)pb: PbCl2. PbO(OH) 2. Pb (
NO3) 2+Pb (C)1. cOO) 2 c) Compound containing As: A9S3. NaAs03.
H3ASO4, KH2ASO4Na2HAs03.
(NH4) 3ASO4, ASC+2. AS203.
K3ASO3d) Compound containing Sb: 5bC13,
5bBr3.5bOC1,5b2o3゜5LS3.5b
2(SO4) 3 e) Compounds containing Bi: Na2B+Oa, BiCl
3.812(S04)3゜Bi(NL)3 f) Compound containing S + K, S, Na2S2O3,K
2S2O5, Na2S.
FeSO4,KHSO3,NaH3O4,52C12,
に2SO4,Al2(SO4)!+Cr5Os、LSJ
t、に2S208.Na2S2O3,Na25Ja、N
a2SO3゜(NH4)2SO4,NH4tlsOa、
(N)14)2S208.NH−O302NH2゜Na
zSO<。FeSO4, KHSO3, NaH3O4, 52C12,
2SO4, Al2(SO4)! +Cr5Os, LSJ
t, to 2S208. Na2S2O3, Na25Ja, N
a2SO3゜(NH4)2SO4,NH4tlsOa,
(N)14)2S208. NH-O302NH2゜Na
zSO<.
Zn5O=、TI (SO4)4
g)Seを含む化合物: H2Se0.、5eC12,
SeO[:l。、 5eS2゜H2SeO4,5eOz
、に2Se、Na25e、に2Se03.に2SeO4
゜NazSeL、 Na25eL。Zn5O=, TI (SO4)4 g) Compound containing Se: H2Se0. ,5eC12,
SeO[:l. , 5eS2゜H2SeO4,5eOz
, 2Se, Na25e, 2Se03. 2SeO4
゜NazSeL, Na25eL.
h)Teを含む化合物: )lsTeos、 K2S2
O5,K2Te04゜Na2TeO*、Na2TeO4
,TeCl<i)Mgを含む化合物: MgCl2.
Mg(NO3) 2j)Caを含む化合物: CaC1
□、 Ca(No、) 2k)Srを含む化合物: 5
rC12,Sr (NO3) 21)Baを含む化合物
: BaCl2. Ba(NOs> 2m)Naを含む
化合物: NaJO<、 NaCrzOt、 NaOH
。h) Compounds containing Te: )lsTeos, K2S2
O5, K2Te04゜Na2TeO*, Na2TeO4
, TeCl<i) Mg-containing compound: MgCl2.
Mg(NO3) 2j) Compound containing Ca: CaC1
□, Ca(No,) 2k) Compound containing Sr: 5
rC12, Sr (NO3) 21) Compound containing Ba: BaCl2. Compounds containing Ba(NOs>2m)Na: NaJO<, NaCrzOt, NaOH
.
Na104.NaJPO<、NaH2P[14,Naa
C611sOv、NaF、NaHCO+NanP20t
、Na[
n)Kを含む化合物: KNO,、に10.、Kl、K
CI、 KM、、O,。Na104. NaJPO<, NaH2P[14, Naa
C611sOv, NaF, NaHCO+NanP20t
, Na[n)K-containing compound: KNO, 10. ,Kl,K
CI, KM,,O,.
K4P2O7,に8r、KNO3,KClO3,KBr
Oa、KF以上すべて結晶水を持つものも含む。K4P2O7, ni8r, KNO3, KClO3, KBr
Including those with crystal water of Oa, KF and above.
このように鋼板表面上で上記処理液の塗布領域と未塗布
領域とを区画形成させた後の鋼板は750〜880℃の
温度範囲で湿水素中で3〜15分程度の1次再結晶を兼
ねる脱炭焼鈍を施す。この脱炭焼鈍は通常露点+30〜
65℃程度の湿水素ガス雰囲気あるいは水素・窒素混合
ガス雰囲気中で数分間行えば良い。After dividing the steel plate surface into areas coated with the treatment liquid and areas not coated, the steel plate undergoes primary recrystallization in wet hydrogen for about 3 to 15 minutes at a temperature range of 750 to 880°C. Perform decarburization annealing that also serves as decarburization. This decarburization annealing usually has a dew point of +30~
This may be carried out for several minutes in a wet hydrogen gas atmosphere or a hydrogen/nitrogen mixed gas atmosphere at about 65°C.
次いで脱炭焼鈍後の鋼板表面上にはMgOを主成分とす
る焼鈍分離剤を塗布し、仕上焼鈍を施して(110)
< ool>方位に強く集積した2次再結晶粒を発達さ
せる。この仕上焼鈍の具体的条件は従来公知の焼鈍方法
と同様であれば良いが、通常は1150〜1250℃ま
で3〜b
しで2次再結晶粒を発達させた後、吃水素中5〜20h
「のは純化焼鈍を行うことが望ましい。Next, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet after decarburization annealing, and finish annealing is performed (110).
Develops secondary recrystallized grains that are strongly concentrated in the <ool> orientation. The specific conditions for this final annealing may be the same as those of conventionally known annealing methods, but usually, secondary recrystallized grains are developed at 1150 to 1250°C for 3 to 5 hours, and then for 5 to 20 hours in a hydrogen bath.
``It is desirable to perform purification annealing.
以下第1発明の実施例を示す。Examples of the first invention will be shown below.
実施例 I
CO,059%、Si 3.49%、 Mo0.024
%。Example I CO, 059%, Si 3.49%, Mo 0.024
%.
酸可溶Aβ0.034%、 S O,029%を含有す
る連鋳スラブを1430℃で3時間加熱後、熱間圧延し
て2、2mm厚の熱延板とした。その後約50%の1次
冷間圧延を施して後、1100℃で3分間の中間焼鈍を
施した。この中間焼鈍の際には500℃から900℃ま
でを12℃/Sの急熱処理および中間焼鈍後900℃か
ら500℃までを15℃/Sで急冷処理を施した。A continuously cast slab containing 0.034% of acid-soluble Aβ and 0.029% of S O was heated at 1430° C. for 3 hours and then hot-rolled into a hot-rolled plate with a thickness of 2.2 mm. Thereafter, it was subjected to primary cold rolling of approximately 50%, and then intermediate annealing was performed at 1100° C. for 3 minutes. During this intermediate annealing, a rapid heat treatment was performed from 500° C. to 900° C. at 12° C./S, and after the intermediate annealing, a rapid cooling treatment was performed from 900° C. to 500° C. at 15° C./S.
その後約80%の冷間圧延を施して0.20mm厚の最
終冷延板に仕上げた後、830℃の湿水素中で脱炭を兼
ねる1次再結晶焼鈍を施した。Thereafter, the sheet was cold rolled by about 80% to produce a final cold rolled sheet with a thickness of 0.20 mm, and then primary recrystallization annealing was performed in wet hydrogen at 830° C., which also served as decarburization.
その後850℃から10℃/hrで1100℃まで昇温
しで2次再結晶させた後、1200℃で10時間乾水素
中で純化焼鈍を行なった。そのときの製品の磁気特性お
よび表面性状は次のようであった。Thereafter, the temperature was raised from 850°C to 1100°C at a rate of 10°C/hr for secondary recrystallization, and then purification annealing was performed in dry hydrogen at 1200°C for 10 hours. The magnetic properties and surface properties of the product at that time were as follows.
磁気特性はBaa :1.93T 、 WI7/so
+0.80W/kg表面性状は表面欠陥のブロック発
生率で0,8%と、きわめて良好であった。Magnetic properties are Baa: 1.93T, WI7/so
+0.80 W/kg The surface quality was extremely good, with a block generation rate of surface defects of 0.8%.
実施例 2
CO,064%、Si 3.39%、 Mo0. 01
9%。Example 2 CO, 064%, Si 3.39%, Mo0. 01
9%.
酸可溶AA0.029%、 Se O,020%、 S
b0.022%を含有する連鋳スラブを1420℃で4
時間加熱後熱間圧延して2.2mm厚に仕上げた。その
後約40%の1次冷間圧延を施した後、1100℃で2
分間の中間焼鈍を行なった。この中間焼鈍の際には50
0℃から900℃までを12℃/Sで急熱処理および中
間焼鈍後900℃から500℃までを18℃の急冷処理
を施した。その後約83%の2次冷延を施して0.23
m1Tl厚の最終冷延板としたのち、840℃の湿水素
中で脱炭・1次再結晶焼鈍を施した。Acid soluble AA 0.029%, SeO, 020%, S
Continuously cast slab containing 0.022% b was heated at 1420℃ for 4 hours.
After heating for a period of time, it was hot rolled to a thickness of 2.2 mm. After that, after primary cold rolling of about 40%, 2
Intermediate annealing was performed for 1 minute. During this intermediate annealing, 50
After rapid heat treatment from 0°C to 900°C at 12°C/S and intermediate annealing, rapid cooling treatment at 18°C from 900°C to 500°C was performed. After that, it was subjected to secondary cold rolling of about 83% to 0.23
After forming a final cold-rolled sheet with a thickness of m1Tl, decarburization and primary recrystallization annealing were performed in wet hydrogen at 840°C.
その後鋼板表面上にMgOを主成分とする焼鈍分離剤を
塗布した後850℃から10℃/hrで1100℃まで
昇温しで2次再結晶させた後1200℃で15時間乾水
素中で純化焼鈍した。そのときの製品の磁気特性および
表面性状は次のようであった。After that, an annealing separator mainly composed of MgO was applied to the surface of the steel sheet, and the temperature was raised from 850°C to 1100°C at 10°C/hr for secondary recrystallization, followed by purification in dry hydrogen at 1200°C for 15 hours. Annealed. The magnetic properties and surface properties of the product at that time were as follows.
磁気特性はBaa :1.93T 、 W+tzso
:0,83W/kg表面性状は表面欠陥のブロック発
生率で0,6%と非常に良好であった。Magnetic properties are Baa: 1.93T, W+tzso
:0.83 W/kg The surface quality was very good with a block generation rate of surface defects of 0.6%.
実施例 3
CO,058%、S13.59%、 Mo0.035%
。Example 3 CO, 058%, S13.59%, Mo0.035%
.
酸可溶Aβ0.033%、 S 0.023%、CuO
,15%。Acid soluble Aβ 0.033%, S 0.023%, CuO
,15%.
Sn0.11%を含有する鋼塊を熱延して2.0mm厚
の熱延板としたのち、1次冷間圧延を施した(冷延率は
約40%)。その後1050℃で5分間の中間焼鈍を施
したが、このときの500℃から900℃までの昇温は
18℃/Sの急冷処理および中間焼鈍後の900℃〜5
00℃までの降温は20℃/Sの急冷処理を施した。そ
の後約89%の強冷延を施して0.17mm厚の最終冷
延板としたが、冷延途中で300℃の温間圧延を施した
。その後840℃の湿水素中で脱炭・1次回結晶焼鈍後
850℃から15℃/hrで1100℃まで昇温しで2
次再結晶させた後、1200℃で15時間乾水素中で純
化焼鈍を施した。そのときの製品の磁気特性はBoo
:1.93T、 W+tzso :0.76W/kg
、表面性状の表面欠陥のブロック発生率は0.9%と良
好であった。A steel ingot containing 0.11% Sn was hot-rolled into a hot-rolled sheet with a thickness of 2.0 mm, and then subjected to primary cold rolling (cold rolling rate was about 40%). After that, intermediate annealing was performed at 1050℃ for 5 minutes, but the temperature increase from 500℃ to 900℃ at this time was 18℃/S quenching treatment and 900℃ to 5 minutes after intermediate annealing.
The temperature was lowered to 00°C by rapid cooling at 20°C/S. Thereafter, it was hard-rolled by about 89% to obtain a final cold-rolled sheet with a thickness of 0.17 mm, and warm-rolled at 300° C. during the cold rolling. After that, after decarburization and first crystal annealing in wet hydrogen at 840℃, the temperature was raised from 850℃ to 1100℃ at 15℃/hr.
After recrystallization, purification annealing was performed in dry hydrogen at 1200° C. for 15 hours. The magnetic properties of the product at that time are Boo
:1.93T, W+tzso :0.76W/kg
The block occurrence rate of surface defects was as good as 0.9%.
以下に第2発明の実施例を示す。Examples of the second invention are shown below.
実施例 4
CO,064%、Si 3.45%、 Mo0.025
%。Example 4 CO, 064%, Si 3.45%, Mo0.025
%.
酸可溶へ10.025%、 S O,028%を含有す
る連鋳スラブを1420℃で4時間加熱後熱延して2.
2mm厚の熱延板とした。その後約30%の1次冷間圧
延を施した後、1080℃で3分間の中間焼鈍を施した
。2. A continuously cast slab containing 10.025% acid-soluble and 028% SO was heated at 1420° C. for 4 hours and then hot rolled.
It was made into a hot-rolled plate with a thickness of 2 mm. Thereafter, after primary cold rolling of about 30%, intermediate annealing was performed at 1080° C. for 3 minutes.
この中間焼鈍の際には500℃から900℃までを13
t/sで急熱処理および中間焼鈍後900℃から500
℃までを18℃/Sで急冷処理を施した。その後約85
%の冷間圧延を施して0.23++++++厚の最終冷
延板に仕上げた。その後鋼板(表面温度ニア0℃)を脱
脂した後Mg5On (0,Olmol /β)の85
℃の希薄水溶液を圧延方向にほぼ直角の方向に5mm間
隔で0、5mm幅の治具を用いてスプレー塗布し、塗布
領域と未塗布領域を交互に区画形成したのち、840℃
の湿水素中で脱炭・1次再結晶焼鈍を施し、次いでM
g Oを主体とする焼鈍分離剤を塗布したのち、850
℃から1100℃まで10℃/hrで除熱したのち、水
素雰囲気中で1200℃で10時間の純化焼鈍を施した
。得られた製品の磁気特性および表面性状は次のようで
あった。During this intermediate annealing, the temperature is 13°C from 500°C to 900°C.
After rapid heat treatment and intermediate annealing at t/s from 900℃ to 500℃
A rapid cooling process was performed at 18°C/S. After that, about 85
% cold rolling to produce a final cold rolled sheet with a thickness of 0.23++++++. After that, after degreasing the steel plate (surface temperature near 0℃), 85% of Mg5On (0, Olmol/β) was removed.
℃ dilute aqueous solution was spray coated at 5 mm intervals in a direction almost perpendicular to the rolling direction using a jig with a width of 0.5 mm, and after forming coated areas and uncoated areas alternately, 840℃
decarburization and primary recrystallization annealing in wet hydrogen, then M
g After applying an annealing separator mainly composed of O, 850
After removing heat from 1100°C at a rate of 10°C/hr, purification annealing was performed at 1200°C for 10 hours in a hydrogen atmosphere. The magnetic properties and surface properties of the obtained product were as follows.
磁気特性B、。: 1.93 T 、 W 、1/S。Magnetic properties B. : 1.93 T, W, 1/S.
: 0.82W/ kg 。: 0.82W/kg.
表面性状の表面欠陥のブロック発生率は1.2%できわ
めて良好であった。The block occurrence rate of surface defects was 1.2%, which was very good.
実施例 5
CO,066%、s13.51%、 Mo0.035%
。Example 5 CO, 066%, s13.51%, Mo0.035%
.
酸可溶Al101030%、 S O,026%、 S
n0.1%、CuO,1%を含有する連鋳スラブを14
30℃で4時間加熱後熱間圧延して2.2mm厚の熱延
板とした。Acid soluble Al101030%, SO,026%, S
14 continuous cast slabs containing n0.1%, CuO, 1%
After heating at 30° C. for 4 hours, it was hot rolled to obtain a hot rolled sheet with a thickness of 2.2 mm.
その後約40%の1次冷延を施した後、1050℃で5
分間の中間焼鈍を行なった。この中間焼鈍の際には50
0℃から900℃までを15℃/Sで急熱処理および中
間焼鈍後900℃から500℃までを20℃/Sで急冷
処理を施した。次に約85%の2次冷延を施して0、2
0mm厚の冷延板としたが、この冷間圧延の際には25
0℃で温間圧延を施した。After that, after primary cold rolling of about 40%,
Intermediate annealing was performed for 1 minute. During this intermediate annealing, 50
After rapid heat treatment from 0°C to 900°C at 15°C/S and intermediate annealing, rapid cooling treatment was performed from 900°C to 500°C at 20°C/S. Next, about 85% secondary cold rolling is applied to 0.2
A cold rolled sheet with a thickness of 0 mm was used, but during this cold rolling, 25
Warm rolling was performed at 0°C.
次に鋼板表面を脱脂後、表面温度を約100℃に保定し
た後Mg5O< (0,Olmol / Il)とMg
(NL)2(0,Olmol / jl! )の混合液
(90℃)を凹凸表面を有するゴムロールにより鋼板表
面に塗布し、塗布領域と未塗布領域を交互に区画形成し
たのち、850℃の湿水素中で脱炭・1次再結晶焼鈍を
施し、次いでMgOを主体とする焼鈍分離剤を塗布して
から850℃から1100℃まで8℃/hrで除熱した
のち、水素雰囲気中で1200℃、10時間の純化焼鈍
を施した。得られた製品の磁気特性および表面性状は次
のようであった。Next, after degreasing the steel plate surface and maintaining the surface temperature at approximately 100°C, Mg5O< (0, Olmol/Il) and Mg
A mixed solution (90°C) of (NL)2(0,Olmol/jl!) was applied to the steel plate surface using a rubber roll with an uneven surface, and after forming coated areas and uncoated areas alternately, it was heated to 850°C. After decarburizing and primary recrystallization annealing in hydrogen, then applying an annealing separator mainly composed of MgO, and removing heat from 850°C to 1100°C at a rate of 8°C/hr, heating to 1200°C in a hydrogen atmosphere. , 10 hours of purification annealing was performed. The magnetic properties and surface properties of the obtained product were as follows.
磁気特性B1゜: 1.94T 、 W=qys。二〇
、72W/kg。Magnetic properties B1°: 1.94T, W=qys. 20.72W/kg.
表面性状の表面欠陥のブロック発生率は1.0%できわ
めて良好であった。The block occurrence rate of surface defects was 1.0%, which was very good.
(発明の効果)
以上の説明で明らかなように第1発明の方法によればB
IOが1.92 T以上で、焼鈍が0.85W/ kg
(0,23mm厚)以下の底鉄損で、しかも製品の表面
性状が極めて優れた薄手一方向性珪素鋼板を工業的に安
定して製造することができる顕著な効果を有するもので
ある。(Effect of the invention) As is clear from the above explanation, according to the method of the first invention, B
IO is 1.92 T or more, annealing is 0.85 W/kg
This method has the remarkable effect that it is possible to industrially and stably manufacture thin unidirectional silicon steel sheets with a bottom core loss of (0.23 mm thickness) or less and an extremely excellent product surface quality.
また第2発明によれば、素材中にMOとAlとを含有さ
せて冷延2回法で最終冷延板とした後の綱板表面に局部
的に区画形成した領域に限定した無機化合物を塗布する
ことにより不均一で而も細粒のGoss方位2次再結晶
組織を発達させて鉄損特性、表面性状がともに優れた製
品が安定した工程で製造できる。Further, according to the second invention, the inorganic compound is contained in the raw material to form a final cold-rolled sheet in a two-step cold-rolling process, and then the inorganic compound is limited to locally partitioned areas on the surface of the steel sheet. By coating, a non-uniform, yet fine-grained Goss-oriented secondary recrystallized structure is developed, and products with excellent iron loss characteristics and surface properties can be manufactured in a stable process.
第1図は製品の磁気特性と1次冷間圧延および2法論間
圧延の圧下率との関係および表面性状の状況を示す 図
表、
第2図は中間焼鈍の際の昇温速度および冷却速度と製品
の磁気特性との関係を示す図表、第3図は製品の磁気特
性と1次冷間圧延および2法論間圧延圧下率との関係お
よび表面性状を示す図表、
第4図は最終冷延板表面上の塗布液(A) 〜(IE
)と塗布液の温度と製品の磁気特性との関係を示す図表
である。
第1図
f挾瞠/Ill犀T叩(%)10 20 30 40
5t) 60 70第2図Figure 1 is a chart showing the relationship between the magnetic properties of the product and the rolling reduction ratio in primary cold rolling and two-way rolling, as well as the surface texture. Figure 2 shows the relationship between the temperature rise rate and cooling rate during intermediate annealing. A chart showing the relationship between the product's magnetic properties, Figure 3 is a chart showing the relationship between the product's magnetic properties and the primary cold rolling and secondary rolling reduction ratios, and the surface properties, and Figure 4 is the final cold rolled plate. Coating liquid on the surface (A) ~ (IE
) is a chart showing the relationship between the temperature of the coating liquid and the magnetic properties of the product. Figure 1 f 挾枠/Ill Sai T hit (%) 10 20 30 40
5t) 60 70Figure 2
Claims (1)
で0.005〜0.1wt%、 を含有するスラブを熱間圧延して熱延板とした後、圧下
率10〜60%の1次冷間圧延を施し、ついて中間焼鈍
を経て、圧下率75〜90%の2次冷間圧延を施し0.
1〜0.25mm厚の最終板厚に仕上げた薄手冷延板を
、湿水素中で脱炭・1次再結晶焼鈍後、高温仕上焼鈍す
ることを特徴とする、表面性状の優れた低鉄損薄手一方
向性珪素鋼板の製造方法。 2、中間焼鈍が500℃から900℃までの温度範囲の
昇温過程における加熱速度毎秒5℃以上、900℃から
500℃までの温度範囲の降温過程における冷却速度毎
秒5℃以上である1記載の方法。 3、Si3.1〜4.5wt%、 Mo0.003〜0.1wt%、 酸可溶Al0.005〜0.06wt%、 そしてSおよびSeのいずれか1種または2種を合計量
で0.005〜0.1wt%、 を含有するスラブを熱間圧延して熱延板とした後、圧下
率10〜60%の1次冷間圧延を施し、ついで中間焼鈍
を経て、圧下率75〜90%の2次冷間圧延を施し0.
1〜0.25mm厚の最終板厚に仕上げた薄手冷延板を
、その表面上に、局所的にSn、Pb、As、Sb、B
i、S、Se、Te、Mg、Ca、Sr、Ba、Kおよ
びNaを含む化合物のうちから選ばれる少なくとも一種
を含む希薄溶液又は希薄懸濁液の塗布領域の区画形成を
経て、湿水素中で脱炭・1次再結晶焼鈍後高温仕上焼鈍
することを特徴とする表面性状の優れた低鉄損薄手高磁
束密度一方向性珪素鋼板の製造方法。[Claims] 1. 3.1 to 4.5 wt% of Si, 0.003 to 0.1 wt% of Mo, 0.005 to 0.06 wt% of acid-soluble Al, and one or two of S and Se. A slab containing a total of 0.005 to 0.1 wt% of , subjected to secondary cold rolling with a rolling reduction of 75 to 90%.
A low-iron product with excellent surface properties, which is produced by decarburizing and primary recrystallization annealing in wet hydrogen, followed by high-temperature finish annealing of a thin cold-rolled sheet finished to a final thickness of 1 to 0.25 mm. A method for producing a loss-resistant thin unidirectional silicon steel sheet. 2. The intermediate annealing according to 1, wherein the heating rate is 5°C per second or more in the temperature rising process in the temperature range from 500°C to 900°C, and the cooling rate is 5°C per second or more in the temperature decreasing process in the temperature range from 900°C to 500°C. Method. 3. 3.1 to 4.5 wt% of Si, 0.003 to 0.1 wt% of Mo, 0.005 to 0.06 wt% of acid-soluble Al, and a total amount of 0.0. After hot-rolling a slab containing 0.005 to 0.1 wt% to form a hot-rolled plate, it is subjected to primary cold rolling at a rolling reduction of 10 to 60%, and then subjected to intermediate annealing to a rolling reduction of 75 to 90%. % secondary cold rolling.
A thin cold-rolled sheet finished to a final thickness of 1 to 0.25 mm is locally coated with Sn, Pb, As, Sb, and B.
After partitioning the application area of a dilute solution or dilute suspension containing at least one compound selected from compounds containing i, S, Se, Te, Mg, Ca, Sr, Ba, K, and Na, in wet hydrogen. A method for producing a thin, low core loss, high magnetic flux density unidirectional silicon steel sheet with excellent surface properties, characterized by performing decarburization and primary recrystallization annealing at a temperature followed by high-temperature finish annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19941584A JPS6179721A (en) | 1984-09-26 | 1984-09-26 | Manufacture of grain-oriented silicon steel sheet having superior surface property and low iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19941584A JPS6179721A (en) | 1984-09-26 | 1984-09-26 | Manufacture of grain-oriented silicon steel sheet having superior surface property and low iron loss |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18675987A Division JPS6372825A (en) | 1987-07-28 | 1987-07-28 | Manufacture of grain-oriented silicon steel sheet having superior surface property and small iron loss |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6179721A true JPS6179721A (en) | 1986-04-23 |
JPS6256927B2 JPS6256927B2 (en) | 1987-11-27 |
Family
ID=16407422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19941584A Granted JPS6179721A (en) | 1984-09-26 | 1984-09-26 | Manufacture of grain-oriented silicon steel sheet having superior surface property and low iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6179721A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948433A (en) * | 1987-11-10 | 1990-08-14 | Nippon Steel Corporation | Process for preparation of thin grain oriented electrical steel sheet having excellent iron loss and high flux density |
EP0398114A2 (en) * | 1989-05-13 | 1990-11-22 | Nippon Steel Corporation | Process for preparation of thin grain oriented electrical steel sheet having superior iron loss and high flux density |
CN104694855A (en) * | 2015-03-20 | 2015-06-10 | 苏州科胜仓储物流设备有限公司 | High-strength steel plate for drive-in type goods shelf and heat treatment process thereof |
-
1984
- 1984-09-26 JP JP19941584A patent/JPS6179721A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948433A (en) * | 1987-11-10 | 1990-08-14 | Nippon Steel Corporation | Process for preparation of thin grain oriented electrical steel sheet having excellent iron loss and high flux density |
EP0398114A2 (en) * | 1989-05-13 | 1990-11-22 | Nippon Steel Corporation | Process for preparation of thin grain oriented electrical steel sheet having superior iron loss and high flux density |
US5066343A (en) * | 1989-05-13 | 1991-11-19 | Nippon Steel Corporation | Process for preparation of thin grain oriented electrical steel sheet having superior iron loss and high flux density |
CN104694855A (en) * | 2015-03-20 | 2015-06-10 | 苏州科胜仓储物流设备有限公司 | High-strength steel plate for drive-in type goods shelf and heat treatment process thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS6256927B2 (en) | 1987-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100297046B1 (en) | Very low iron loss oriented electrical steel sheet and its manufacturing method | |
EP0420238B1 (en) | Process for preparing unidirectional silicon steel sheet having high magnetic flux density | |
KR20150007360A (en) | Process for producing grain-oriented electrical steel sheet | |
US4576658A (en) | Method for manufacturing grain-oriented silicon steel sheet | |
JPH02259020A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH0686631B2 (en) | Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density | |
US6280534B1 (en) | Grain oriented electromagnetic steel sheet and manufacturing thereof | |
US5858126A (en) | Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same | |
US4623406A (en) | Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density | |
EP0588342B1 (en) | Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same | |
EP0484904B1 (en) | Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties | |
JP3846064B2 (en) | Oriented electrical steel sheet | |
US4702780A (en) | Process for producing a grain oriented silicon steel sheet excellent in surface properties and magnetic characteristics | |
JPS6179721A (en) | Manufacture of grain-oriented silicon steel sheet having superior surface property and low iron loss | |
JPH08269552A (en) | Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density | |
JP2014208895A (en) | Method of producing grain oriented electrical steel | |
RU2771130C1 (en) | Method for producing electrical steel sheet with oriented grain structure | |
JPS6372825A (en) | Manufacture of grain-oriented silicon steel sheet having superior surface property and small iron loss | |
JPH06100937A (en) | Production of silicon steel sheet having no glass film and extremely excellent in core loss | |
JPH05295447A (en) | Annealing method for finishing grain oriented electrical steel sheet in short time | |
JPH0317892B2 (en) | ||
JPH0657856B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet having excellent surface properties | |
JPS6089521A (en) | Production of grain oriented silicon steel sheet having excellent magnetic characteristic | |
JPS60114522A (en) | Production of grain oriented silicon steel sheet having high magnetic flux density and low iron loss | |
WO2024096082A9 (en) | Grain-oriented electromagnetic steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |