JPS6179032A - Viscous fluid coupling device - Google Patents

Viscous fluid coupling device

Info

Publication number
JPS6179032A
JPS6179032A JP20137984A JP20137984A JPS6179032A JP S6179032 A JPS6179032 A JP S6179032A JP 20137984 A JP20137984 A JP 20137984A JP 20137984 A JP20137984 A JP 20137984A JP S6179032 A JPS6179032 A JP S6179032A
Authority
JP
Japan
Prior art keywords
return hole
valve plate
temperature
viscous fluid
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20137984A
Other languages
Japanese (ja)
Inventor
Masaharu Hayashi
正治 林
Kenji Hattori
賢治 服部
Toshiaki Shirai
白井 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP20137984A priority Critical patent/JPS6179032A/en
Priority to GB08521198A priority patent/GB2163835B/en
Priority to US06/770,583 priority patent/US4727969A/en
Publication of JPS6179032A publication Critical patent/JPS6179032A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D35/00Fluid clutches in which the clutching is predominantly obtained by fluid adhesion
    • F16D35/02Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part
    • F16D35/021Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part actuated by valves
    • F16D35/026Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part actuated by valves actuated by a plurality of valves; the valves being actuated by a combination of mechanisms covered by more than one of groups F16D35/022 - F16D35/025
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To supply the required quantity of cooling gas by turning a valve plate according to a radiator passing air temperature to control the opening and closing of the first return hole and axially moving the valve plate according to temperature of the water in a pump to control the opening and closing of the second return hole. CONSTITUTION:When a radiator passing air temperature reaches a designated value, a valve plate 31 interlocking with a bimetal 29 opens the first return hole 23. Then, viscous fluid is supplied to a torque transmission surface 22 to keep the rotation of a fan at the medium speed. When the temperature of the cooling water in a water pump 38 reaches a designated temperature, a rod 47 interlocking with a thermostat 46 is moved, whereby the valve plate 33 is moved to open the second return hole 24 to increase the rotating speed of the fan. Thus, the required quantity of gas according to a caloritic value of an engine can be supplied with good accuracy.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、粘性流体継手装置に関するもので、より詳し
くは温度に感応して出力トルク伝達を3段階に制御可能
な温度感応型粘性流体継手装置に関するもので、一般に
自動車エンジンの冷却ファン装置として利用される。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a viscous fluid coupling device, and more specifically, to a temperature-sensitive viscous fluid coupling device capable of controlling output torque transmission in three stages in response to temperature. This relates to a sensitive viscous fluid coupling device and is generally used as a cooling fan device for automobile engines.

(従来の技術) 本発明に係る従来技術として、特開昭55−69326
号公報に記載されるものが知られている。上記公報に開
示されるものは添付第5図、第6図に示される様に、エ
ンジンによって駆動される回転シャフト51上にベアリ
ング52を介してケーシング53が回転自在に支承され
、該ケーシング53と内部空間を形成するようにケーシ
ング53上にカバー54が固定され、回転シャフト51
には更にロータ55が結合される。カバー54に固定さ
れる仕切板57により前記内部空間がロータ55を収容
する作動室58と粘性流体を貯える貯蔵室59とに分離
される。ロータ55とケーシング53との相対する面に
はラビリンス溝から成る第1トルク伝達面56が形成さ
れ、一方ロータ55と仕切板57との相対する面には同
じくラビリンス溝から成る第2トルク伝達面61が形成
される。仕切板57には貯蔵室59から作動室58へ粘
性流体を還流させる第1戻し穴62と第2戻し穴60が
夫々形成され(径方向外周側に第1戻し穴が内周側に第
2戻し穴が夫々形成)、ラジェータ通過空気温を検知し
て作動する渦巻状バイメタル65がカバー54の前面に
装着され、該バイメタル65に連結され仕切板57上を
回動するバルブ板67により前記両戻し穴62.60が
開閉制御される。即ち、第6図に示される様に、低温時
に於いてはバルブ板67は両戻し穴62,60う閉じる
位置aに保持され、温度が上昇し第1所定温度T1に達
すると径方向外周側に形成される第1戻し穴62のみを
開く位置すに保持され、更に温度が上昇し第2所定温度
T2 (ただし、T1くT2)に達すると、径方向内周
側に形成される第2戻し穴60も開く位置Cに保持され
、この様に回転シャフト(入力部材)51からケーシン
グ53及びカバー54(出力部材)へのトルク伝達が3
段階に制御されるので、出力部材に装着される冷却ファ
ンの回転数が、第1所定温度T1以下の低温時には低速
回転に(OF F状態)、第1所定温度T1と第2所定
温度T2との間の中温時には中速回転に(MIDDLE
状態)、第2所定温度T2以上の高温時には高速回転に
(ON状態)なるように3段階に制御される。
(Prior art) As a prior art related to the present invention, Japanese Patent Application Laid-Open No. 55-69326
The one described in the publication No. 1 is known. As shown in the attached FIGS. 5 and 6, a casing 53 is rotatably supported via a bearing 52 on a rotating shaft 51 driven by an engine. A cover 54 is fixed on the casing 53 to form an internal space, and a rotating shaft 51
A rotor 55 is further coupled to the rotor 55 . A partition plate 57 fixed to the cover 54 separates the internal space into a working chamber 58 that accommodates the rotor 55 and a storage chamber 59 that stores viscous fluid. A first torque transmission surface 56 formed of a labyrinth groove is formed on the opposing surface of the rotor 55 and the casing 53, while a second torque transmission surface 56 also formed of a labyrinth groove is formed on the opposing surface of the rotor 55 and the partition plate 57. 61 is formed. A first return hole 62 and a second return hole 60 are formed in the partition plate 57 to allow the viscous fluid to flow back from the storage chamber 59 to the working chamber 58. A spiral bimetal 65 that is activated by detecting the air temperature passing through the radiator is attached to the front surface of the cover 54, and a valve plate 67 connected to the bimetal 65 and rotating on the partition plate 57 allows the valve plate 67 to rotate on the partition plate 57. The return holes 62, 60 are controlled to open and close. That is, as shown in FIG. 6, when the temperature is low, the valve plate 67 is held at the position a where both the return holes 62 and 60 are closed, and when the temperature rises and reaches the first predetermined temperature T1, the valve plate 67 is held at the radially outer peripheral side. When the temperature rises further and reaches the second predetermined temperature T2 (however, T1 - T2), the second return hole 62 formed on the radially inner circumferential side The return hole 60 is also held at the open position C, and in this way, the torque is transmitted from the rotating shaft (input member) 51 to the casing 53 and the cover 54 (output member).
Since the rotation speed of the cooling fan attached to the output member is controlled in stages, when the temperature is lower than the first predetermined temperature T1, the rotation speed is reduced to low speed (OFF state), and when the temperature is lower than the first predetermined temperature T1 and the second predetermined temperature T2. When the temperature is medium between (MIDDLE
state), and when the temperature is higher than the second predetermined temperature T2, the rotation is controlled in three stages so that the rotation is at high speed (ON state).

(発明が解決しようとする問題点) 上述した様に従来装置は、ラジェータ通過空気温度を渦
巻状バイメタルで検知して、出力部材に装着される冷却
ファンの回転数をOFF、MIDDLE、 ○Nの3段
階に制御するものである。その為、車両の市街地走行の
ように、エンジン水温が上昇せずラジェータ通過空気温
度が低いにも拘らず(OFFまたはMIDDLE状態に
相当する温度であるにも拘らず)、ラジェータ通過風量
が小で通過風速が低で出力部材の前面に装着されるバイ
メタルへの風当りが悪いので、エンジンルーム内の温度
が上昇し、該上昇温度をバイメタルが感知してしまいフ
ァン回転数が高速回転(ON状態)になってしまうとい
う問題があった。
(Problems to be Solved by the Invention) As described above, the conventional device detects the temperature of the air passing through the radiator using a spiral bimetal, and controls the rotation speed of the cooling fan attached to the output member to OFF, MIDDLE, ○N. It is controlled in three stages. Therefore, even though the engine water temperature does not rise and the temperature of the air passing through the radiator is low (even though the temperature corresponds to the OFF or MIDDLE state), as when the vehicle is driving in the city, the amount of air passing through the radiator is small. Since the passing wind speed is low and the air does not hit the bimetal installed on the front of the output member, the temperature in the engine room increases, and the bimetal senses this increased temperature, causing the fan to rotate at high speed (ON state). ).

そこで本発明は、エンジンの発熱量に応じた必要冷却風
量を適切に供給する様に、することを、その技術的課題
とする。
Therefore, the technical problem of the present invention is to appropriately supply the required amount of cooling air according to the amount of heat generated by the engine.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記技術的課題を解決するために講じた技術的手段は、
ラジェータ通過空気温を検出して作動する渦巻状バイメ
タルに連動してバルブプレートが前記仕切板上を回動し
前記第1戻し穴を開閉制御し、ウォータポンプの温室内
の水温を検出して作動するサーモスタットに連動して前
記バルブプレートが軸方向に移動し前記第2戻し穴を開
閉制御する、゛ことである。
(Means to solve the problem) The technical measures taken to solve the above technical problem are:
The valve plate rotates on the partition plate in conjunction with the spiral bimetal, which operates by detecting the air temperature passing through the radiator, and controls the opening and closing of the first return hole, and the water pump operates by detecting the water temperature in the greenhouse. The valve plate moves in the axial direction in conjunction with a thermostat that controls opening and closing of the second return hole.

(作用) 上記技術的手段は次の様に作用する。温度が第1所定温
度より低い低温時に於いては、仕切板上に配設された第
1.第2戻し穴はバルブプレートにより夫々閉じられ、
ファン回転はOFF状態に保持される。温度上昇に伴い
第1所定温度に達すると、バイメタルがラジェータ通過
空気温を検出し、バイメタルに連動したバルブプレート
が仕切板上を回動し第1戻し穴を開き、ファン回転をM
I D D L、E状態に保持する。更に温度が上昇し
第2所定温度に達すると、サーモスタットがウォータポ
ンプの温室内の水温を検出し、サーモスタットに連動し
たバルブプレートが軸方向に移動し第2戻し穴を開き、
ファン回転はON状態に保持される。従って、バイメタ
ルは第1戻し穴を開閉するためにバルブプレートを回動
させファン回転をOFFとMIDDLE状態に切替制御
するものであり、一方サーモスタットは第2戻し穴を開
閉するためにバルブプレートを軸方向に移動させファン
回転をMIDDLEとON状態に切替制御するものであ
る。サーモスタットはウォータポンプの温室内に流入す
る冷却水温を直接感知して作動するので、エンジンルー
ム内の雰囲気温度でファン回転がON状態になってしま
う誤作動は生じない。この様に、ファン回転のMIDD
LEとON状態の切替制御を、サーモスタットによりエ
ンジン冷却水温を直接検出しているので、エンジン発熱
量に応じた必要風量を精度よく供給することができる。
(Operation) The above technical means operates as follows. When the temperature is lower than the first predetermined temperature, the first predetermined temperature is lower than the first predetermined temperature. the second return holes are each closed by a valve plate;
Fan rotation is maintained in the OFF state. When the first predetermined temperature is reached as the temperature rises, the bimetal detects the air temperature passing through the radiator, and the valve plate linked to the bimetal rotates on the partition plate to open the first return hole and reduce the fan rotation to M.
Hold in I D D L, E state. When the temperature further increases and reaches a second predetermined temperature, the thermostat detects the water temperature in the greenhouse of the water pump, and the valve plate linked to the thermostat moves in the axial direction to open the second return hole.
Fan rotation is maintained in the ON state. Therefore, the bimetal rotates the valve plate to open and close the first return hole and controls the fan rotation between the OFF and MIDDLE states, while the thermostat rotates the valve plate to open and close the second return hole. This is to control the rotation of the fan by switching it between the MIDDLE and ON states. Since the thermostat operates by directly sensing the temperature of the cooling water flowing into the greenhouse of the water pump, there is no possibility of a malfunction in which the fan rotation is turned on due to the ambient temperature in the engine room. In this way, MIDD of fan rotation
Since the engine cooling water temperature is directly detected by the thermostat to control switching between the LE and ON states, the required air volume according to the engine heat generation amount can be supplied with high accuracy.

(実施例) 以下、本発明の技術的手段を具体化した一実施例につい
て、添付図面に従って説明する。
(Example) An example embodying the technical means of the present invention will be described below with reference to the accompanying drawings.

第1図に示される粘性流体継手装置10は、エンジンの
駆動力をプーリ11を介して受ける入力部材としての回
転シャフト12を有し、該シャフト12上にベアリング
13を介してケーシング14が回転自在に支承され、且
つシャフト12の図示左端部にはロータ15が一体結合
される。ケーシング14上にはカバー16が内部空間を
形成するようにシール用O−リング17を介して固定さ
れ、カバー16に固定される仕切板1日によりケーシン
グ14とカバー16間の内部空間が、粘性流体が貯えら
れる貯蔵室19とロータ15が収容される作動室20と
に分離される。ロータ15とケーシング14の相対面に
は周知のラビリンス溝から構成される第1トルク伝達面
21が形成され、一方ロータ15とカバーIGの相対面
には同様に周知のラビリンス溝から構成される第2トル
ク伝達面22が形成される。仕切板18上には貯蔵室1
9内の粘性流体を作動室20に還流させる通路として、
径方向外周側に第1戻し穴23が内周側に第2戻し穴2
4が夫々形成され、更に該第2戻し宛24を介して第1
トルク伝達面21に粘性流体を給送できるようにロータ
15には通路25が形成される。また、ロータ15の外
周側面に形成されるノツチ26と、仕切板1日の外周部
に形成されるポンプ突起27と、ポンプ穴28とにより
ポンプ機構が形成され、ロータ15と仕切板18との間
に相対回転が生じると、上記ポンプ機構の作用によって
作動室20内の粘性流体が貯蔵室19に給送される。
The viscous fluid coupling device 10 shown in FIG. 1 has a rotating shaft 12 as an input member that receives the driving force of an engine via a pulley 11, and a casing 14 is rotatably mounted on the shaft 12 via a bearing 13. A rotor 15 is integrally connected to the left end of the shaft 12 in the drawing. A cover 16 is fixed on the casing 14 via a sealing O-ring 17 to form an internal space, and the partition plate fixed to the cover 16 creates a viscous space between the casing 14 and the cover 16. It is separated into a storage chamber 19 in which fluid is stored and an operating chamber 20 in which the rotor 15 is housed. A first torque transmission surface 21 formed from a well-known labyrinth groove is formed on the opposing surface between the rotor 15 and the casing 14, while a first torque transmission surface 21 formed from a well-known labyrinth groove is formed on the opposing surface between the rotor 15 and the cover IG. 2 torque transmission surfaces 22 are formed. Storage room 1 is located on the partition plate 18.
As a passage for circulating the viscous fluid in 9 to the working chamber 20,
A first return hole 23 is provided on the outer circumferential side in the radial direction, and a second return hole 2 is provided on the inner circumferential side.
4 are formed respectively, and the first
A passage 25 is formed in the rotor 15 so that viscous fluid can be fed to the torque transmission surface 21 . Further, a pump mechanism is formed by a notch 26 formed on the outer peripheral side of the rotor 15, a pump projection 27 formed on the outer peripheral part of the partition plate 1, and a pump hole 28. When relative rotation occurs between them, the viscous fluid in the working chamber 20 is fed to the storage chamber 19 by the action of the pump mechanism.

カバー16の前面にはラジェータ通過空気温を検出して
作動する/I11巻状バイメタル29が装着される。該
バイメタル29の外方端はカバー16に固定され、一方
その内方端はカバー16に回動可能に装着されるロッド
30に固定される。
A /I11-wound bimetal 29 is attached to the front surface of the cover 16 and is activated by detecting the air temperature passing through the radiator. The outer end of the bimetal 29 is fixed to the cover 16, while its inner end is fixed to a rod 30 which is rotatably mounted on the cover 16.

仕切板18上の貯蔵室191j!IJに配設されるバル
ブプレート31は、その軸心部に於いて、バルブシャフ
ト32と該シャフト32にネジ結合されるガイド部材3
3との間に挟着固定される。該ガイド部材33は、第2
図及び第3図に示される様に、図示左方突出部33aが
、ロッド30の図示右方突出部30aに形成される/a
34に嵌合している。従って、ロッド30の回転に伴い
、ロッド30の溝34に嵌合するガイド部材突出部33
aの二面中により、ガイド部材33はバルブプレート3
1と一体に回転する構成になっている。すなわち、バイ
メタル29に連動して、バルブプレート31は仕切板1
8上を回動し第1戻し穴23を開閉制御する。尚、第4
図に示される35.36は、バルブプレート31の回動
を制限するストッパ35は低温時の回動をストッパ36
は高温時の回動を夫々阻止している。バルブプレート3
1はロッド30のフランジ部30bに一端が係止される
スプリング37により、常時第2戻し穴24を閉じる方
向に付勢される。ガイド部材33の二面中の突出部33
aはロッド30の溝34内を軸方向に移動可能であるの
で、バルブプレート31は後述のサーモスタットにより
軸方向に変移して第2戻し穴24を開閉制御する。
Storage room 191j on partition plate 18! The valve plate 31 disposed in the IJ has a valve shaft 32 and a guide member 3 screwed to the shaft 32 at its axial center.
It is clamped and fixed between 3 and 3. The guide member 33
As shown in the figures and FIG. 3, the illustrated left protrusion 33a is formed on the illustrated right protrusion 30a of the rod 30.
34 is fitted. Therefore, as the rod 30 rotates, the guide member protrusion 33 fits into the groove 34 of the rod 30.
The guide member 33 is connected to the valve plate 3 by the two sides of a.
It is configured to rotate together with 1. That is, in conjunction with the bimetal 29, the valve plate 31 is connected to the partition plate 1.
8 to open and close the first return hole 23. Furthermore, the fourth
35 and 36 shown in the figure are a stopper 35 that limits rotation of the valve plate 31 and a stopper 36 that limits rotation at low temperatures.
respectively prevent rotation at high temperatures. Valve plate 3
1 is always urged in the direction of closing the second return hole 24 by a spring 37 whose one end is locked to the flange portion 30b of the rod 30. Projections 33 on two sides of guide member 33
Since a can move in the axial direction within the groove 34 of the rod 30, the valve plate 31 is moved in the axial direction by a thermostat, which will be described later, to control opening and closing of the second return hole 24.

さて、エンジン冷却水の循環用として使用されるウォー
タポンプ3日、エンジンの静止部分に固定されるポンプ
ボディ39を有し、該ボディ39内に回転シャフト40
が回転自在に配設される。
Now, a water pump used for circulating engine cooling water has a pump body 39 fixed to a stationary part of the engine, and a rotating shaft 40 inside the body 39.
is arranged rotatably.

該回転シャフト40は粘性流体継手装置10の回転シャ
フト12に一体結合され、エンジンの駆動力を同様に受
ける。シャフト40上に固定されるポンプロータ41の
インペラ部42により、ラジェータからボディ39内の
渦室43に流入するエンジン冷却水を吐出通路44に給
送される。渦室43内冷却水のシャフト40の駆動部4
0a側へのシールは、周知のメカニカルシール45によ
り行なわれる。渦室43内の冷却水温を検出して作動す
るサーモスタット46はシャフト40の図示右端部に装
着され、該サーモスタット46に連動する第10ツド4
7は、シャフト40内の貫通穴40bに軸方向移動可能
に配設される。第10ツド47に結合される第20ツド
48はシャフト12内に軸方向移動可能に収容され、該
第20ツド48の図示左端に固定されるシート部材48
aに、前記バルブシャフト34内に収容されるポール4
9が接触する。
The rotating shaft 40 is integrally connected to the rotating shaft 12 of the viscous fluid coupling device 10 and similarly receives the driving force of the engine. An impeller portion 42 of a pump rotor 41 fixed on the shaft 40 feeds engine cooling water flowing from the radiator into a vortex chamber 43 in the body 39 to a discharge passage 44 . Drive part 4 of shaft 40 of cooling water in vortex chamber 43
Sealing to the 0a side is performed by a well-known mechanical seal 45. A thermostat 46 that is activated by detecting the temperature of the cooling water in the vortex chamber 43 is attached to the right end of the shaft 40 in the figure, and a tenth tube 4 that operates in conjunction with the thermostat 46
7 is disposed in the through hole 40b in the shaft 40 so as to be movable in the axial direction. A 20th tube 48 coupled to the 10th tube 47 is accommodated in the shaft 12 so as to be movable in the axial direction, and a seat member 48 is fixed to the left end of the 20th tube 48 in the drawing.
a, a pole 4 accommodated within the valve shaft 34;
9 makes contact.

上記構成の粘性流体継手装置に於いて、次にその作用を
説明すると、ラジェータ通過空気温が第1所定温度TI
より低い低温時に於いては、第4図に示す様にバルブプ
レート31は第1戻し穴23と第2戻し穴24を夫々閉
じる位置にあり、作動室20内の粘性流体の量が最小と
なり、カバー(出力部材)16に装着されるファン回転
が低速(OF F状態)に保持される。次に温度が上昇
しラジェータ通過空気温が第1所定温度Tlに達すると
、該空気温を検出して作動する渦巻状バイメタル29に
連動するバルブプレート31が第1戻し穴23を開き、
その結果粘性流体が貯蔵室I9から第1戻し穴23を介
して作動室20内の第2トルク伝達面22に供給され、
ファン回転が中速(MIDDLE状!3)に保持される
。更に温度が上昇し、ウォータポンプ38の渦室43内
の冷却水温が上述の第、1所定温度T1より高い第2所
定温度T2(ただし、Tl<T2)に達すると、該冷却
水温をサーモスタット46が検出して軸方向に伸長し、
該サーモスタット46に連動する第10ツド47を図示
左方向に移動させ・る。従って、第10ツド47に連結
した第20ツド48が同様に図示左方向に移動し、スプ
リング37の付勢力に抗してバルブプレート33を軸方
向に移動させる。即ち、バルブプレート33は仕切板1
8上から離れ第2戻し穴24を開き、その結果粘性流体
が貯蔵室19から第2戻し穴24及びロータ15を貫通
する通路25を介して第1トルク伝達面21にも供給さ
れ、ファン回転は高速(ON状態)に保持される。
Next, the operation of the viscous fluid coupling device having the above configuration will be explained. When the radiator passing air temperature reaches the first predetermined temperature TI
At lower temperatures, the valve plate 31 is in a position to close the first return hole 23 and the second return hole 24, respectively, as shown in FIG. 4, and the amount of viscous fluid in the working chamber 20 is minimized. The rotation of the fan attached to the cover (output member) 16 is maintained at a low speed (OFF state). Next, when the temperature rises and the air temperature passing through the radiator reaches the first predetermined temperature Tl, the valve plate 31 that is linked to the spiral bimetal 29 that detects the air temperature and operates opens the first return hole 23.
As a result, the viscous fluid is supplied from the storage chamber I9 to the second torque transmission surface 22 in the working chamber 20 through the first return hole 23,
Fan rotation is maintained at medium speed (MIDDLE state! 3). When the temperature further rises and the cooling water temperature in the vortex chamber 43 of the water pump 38 reaches a second predetermined temperature T2 (however, Tl<T2) which is higher than the above-mentioned first predetermined temperature T1, the temperature of the cooling water is changed to the thermostat 46. detects and extends in the axial direction,
The tenth rod 47 that is linked to the thermostat 46 is moved to the left in the drawing. Therefore, the 20th arm 48 connected to the 10th arm 47 similarly moves to the left in the drawing, and moves the valve plate 33 in the axial direction against the biasing force of the spring 37. That is, the valve plate 33 is the partition plate 1
8 and opens the second return hole 24, so that viscous fluid is also supplied from the storage chamber 19 through the second return hole 24 and the passage 25 passing through the rotor 15 to the first torque transmission surface 21, causing the fan to rotate. is maintained at high speed (ON state).

C発明の効果〕 上述した説明から明らかな様に本発明社於いては、ファ
ン回転の中速から高速(MIDDLEからON状態)へ
の切替制御を、サーモスタットでエンジン冷却水を直接
検出しているので、エンジン発熱量に応した必要風量を
適格に供給することができる。また、渦巻状バイメタル
が第1所定温度を検出しサーモスタットが第2所定温度
を検出するものであるので、第1、第2所定温度の設定
が容易となり、渦巻状バイメタルのみで第1.第2所定
温度を検出させる従来装置に比して作動信頼性が向上す
る。
C Effect of the Invention] As is clear from the above explanation, the present invention directly detects the engine cooling water using the thermostat to control the switching of the fan rotation from medium speed to high speed (from MIDDLE to ON state). Therefore, it is possible to appropriately supply the necessary air volume according to the engine heat generation amount. Further, since the spiral bimetal detects the first predetermined temperature and the thermostat detects the second predetermined temperature, it is easy to set the first and second predetermined temperatures, and the spiral bimetal alone detects the first and second predetermined temperatures. Operational reliability is improved compared to conventional devices that detect the second predetermined temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従った粘性流体継手装置の一実施例を
示す断面図、第2図は第1図に於けるA部拡大図、第3
図は第2図に於けるB視図、第4図は第1図に於ける仕
切板の正面図、第5図は従来装置の一例を示す断面図、
第6図は第5図のC−C断面図である。 工0・・・粘性流体継手装置、12・・・回転シャフト
、14・・・ケーシング、15・・・ロータ、16・・
・カバー、18・・・仕切板、19・・・貯蔵室、20
・・・作動室、23・・・第1戻し穴、24・・・第2
戻し穴、29・・・・渦巻状バイメタル、31・・・バ
ルブプレート。 38・・・ウォータポンプ、43・・・渦室、46・・
・サーモスタット
FIG. 1 is a sectional view showing an embodiment of a viscous fluid coupling device according to the present invention, FIG. 2 is an enlarged view of part A in FIG. 1, and FIG.
The figure is a B view in FIG. 2, FIG. 4 is a front view of the partition plate in FIG. 1, and FIG. 5 is a sectional view showing an example of a conventional device.
FIG. 6 is a sectional view taken along line CC in FIG. Work 0... Viscous fluid coupling device, 12... Rotating shaft, 14... Casing, 15... Rotor, 16...
・Cover, 18... Partition plate, 19... Storage room, 20
... Working chamber, 23... First return hole, 24... Second
Return hole, 29... spiral bimetal, 31... valve plate. 38... Water pump, 43... Vortex chamber, 46...
·thermostat

Claims (1)

【特許請求の範囲】[Claims] エンジンにより駆動されその上にロータを有する入力部
材と、該入力部材上に回転自在に支承される出力部材と
、該出力部材に固定され該出力部材の内部空間を粘性流
体を貯える貯蔵室と前記ロータを収容する作動室とに分
離する仕切板と、該仕切板に形成され前記貯蔵室から前
記作動室へ粘性流体を還流させる第1戻し穴、第2戻し
穴と、前記仕切板上に配設され該第1、第2戻し穴を開
閉制御するバルブプレートとを具備し、温度上昇時に先
ず前記第1戻し穴を開き次に前記第2戻し穴を開いて、
前記入力部材から前記出力部材へのトルク伝達を3段階
に制御する粘性流体継手装置に於いて、ラジエータ通過
空気温を検出して作動する渦巻状バイメタルに連動して
前記バルブプレートが前記仕切板上を回動し前記第1戻
し穴を開閉制御し、ウォータポンプの温室内の水温を検
出して作動するサーモスタットに連動して前記バルブプ
レートが軸方向に移動し前記第2戻し穴を開閉制御する
粘性流体継手装置。
an input member driven by an engine and having a rotor thereon; an output member rotatably supported on the input member; a storage chamber fixed to the output member and storing a viscous fluid in an internal space of the output member; a partition plate that separates a working chamber that accommodates a rotor; a first return hole and a second return hole that are formed in the partition plate and that allow the viscous fluid to flow back from the storage chamber to the working chamber; a valve plate provided therein for controlling opening and closing of the first and second return holes, first opening the first return hole and then opening the second return hole when the temperature rises;
In the viscous fluid coupling device that controls torque transmission from the input member to the output member in three stages, the valve plate is moved onto the partition plate in conjunction with a spiral bimetal that is activated by detecting the air temperature passing through the radiator. The valve plate rotates to control the opening and closing of the first return hole, and the valve plate moves in the axial direction in conjunction with a thermostat activated by detecting the water temperature in the greenhouse of the water pump to control the opening and closing of the second return hole. Viscous fluid coupling device.
JP20137984A 1984-08-30 1984-09-26 Viscous fluid coupling device Pending JPS6179032A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20137984A JPS6179032A (en) 1984-09-26 1984-09-26 Viscous fluid coupling device
GB08521198A GB2163835B (en) 1984-08-30 1985-08-23 Viscous fluid couplings
US06/770,583 US4727969A (en) 1984-08-30 1985-08-29 Viscous fluid coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20137984A JPS6179032A (en) 1984-09-26 1984-09-26 Viscous fluid coupling device

Publications (1)

Publication Number Publication Date
JPS6179032A true JPS6179032A (en) 1986-04-22

Family

ID=16440097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20137984A Pending JPS6179032A (en) 1984-08-30 1984-09-26 Viscous fluid coupling device

Country Status (1)

Country Link
JP (1) JPS6179032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381761A (en) * 1992-08-20 1995-01-17 Aisin Seiki Kabushiki Kaisha Fan coupling for an engine of a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381761A (en) * 1992-08-20 1995-01-17 Aisin Seiki Kabushiki Kaisha Fan coupling for an engine of a vehicle

Similar Documents

Publication Publication Date Title
US4727969A (en) Viscous fluid coupling
JP4410530B2 (en) Electronically controlled viscous fan drive
JP4614842B2 (en) Clutchless viscous fan drive device including a main body that supports a sealing member and an input member that functions as a cover
US7621386B2 (en) Viscous fan drive having modified land design and armature venting
EP2049811B1 (en) Viscous fan drive systems having fill and scavenge control
JPH0159451B2 (en)
JPH0355698B2 (en)
US5484045A (en) Fluid clutch
US20140209180A1 (en) Viscous fan drive systems having fill and scavenge control
GB2396199A (en) A valve assembly for automatic and proportional control of coolant flow between an engine and a radiator
JP2002257248A (en) Flow control valve and cooling device for internal combustion engine using the same
JPS6179032A (en) Viscous fluid coupling device
JP5034949B2 (en) Thermostat device and associated method
JPS6158913A (en) Viscous fluid coupling device
EP0197796B1 (en) Viscous fluid transmissions
JPS59190521A (en) Viscous fluid joint
JP2802289B2 (en) Temperature sensitive fluid type fan coupling device
JPH0229227Y2 (en)
JPH0293126A (en) Viscous fluid joint device
JPS6091032A (en) Fluid coupling
JPS61228131A (en) Viscous fluid coupling
JPS6179817A (en) Variable volume water pump
JP3713796B2 (en) Viscous fluid coupling
KR100210175B1 (en) Fluid fan clutch having the characteristics proportional to temperature change
JPH10148225A (en) Fan coupling device