JPS6178397A - Reaction process of enzyme and microorganism - Google Patents

Reaction process of enzyme and microorganism

Info

Publication number
JPS6178397A
JPS6178397A JP59198778A JP19877884A JPS6178397A JP S6178397 A JPS6178397 A JP S6178397A JP 59198778 A JP59198778 A JP 59198778A JP 19877884 A JP19877884 A JP 19877884A JP S6178397 A JPS6178397 A JP S6178397A
Authority
JP
Japan
Prior art keywords
reaction
enzyme
microorganism
porous
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59198778A
Other languages
Japanese (ja)
Other versions
JPH0338834B2 (en
Inventor
Masanobu Tanigaki
谷垣 雅信
Ikizou Hashiba
羽柴 域三
Hidetoshi Wada
和田 英俊
Masaru Sakata
勝 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP59198778A priority Critical patent/JPS6178397A/en
Priority to DE19853533615 priority patent/DE3533615A1/en
Priority to GB8523279A priority patent/GB2164663B/en
Priority to FR8514012A priority patent/FR2570715B1/en
Publication of JPS6178397A publication Critical patent/JPS6178397A/en
Publication of JPH0338834B2 publication Critical patent/JPH0338834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material

Abstract

PURPOSE:To carry out the reaction of an enzyme and microorganism, in high efficiency, by placing a pair of membranes made of porous substance impermeable to the enzyme and the microorganism interposing a gap therebetween, charging the enzyme and microorganism in the gap, and supplying a substrate to the outside of the membrane pair, thereby separating the reaction product from the reaction system. CONSTITUTION:For example, a fatty acid and glycerol are produced as reaction product from the oil and water used as a substrate using lipase. In the above process, a polypropylene or polyethylene film 1 is used as the porous membrane passing only the oil and fatty acid, and a film 2 made of cellulose acetate or acrylonitrile polymer is used as the porous membrane passing only water and glycerol. Both films are arranged with a gap 4, microorganism and enzyme are charged to the gap, an oil is supplied to the outer surface 3 of one of the membrane to separate the fatty acid, and water is supplied to the surface 5 of the other membrane to separate glycerol.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酵素及び微生物の新規な反応方法に関する。更
に詳しくは本発明は2種類以上の物質が関与する酵素反
応或いは微化物反応において、酵素や微生物を自由に通
過させない多孔性材料の膜2枚で仕切られた内側の空間
(酵素室)に、これら酵素や微生物を存在させ、2枚の
多孔性材料の膜に接する両外側の空間には反応に関与す
る物質を存在させて、これら物質が多孔= 2− 性材料の膜を界して内側の空間へ透過し、中央の酵素室
で反応し、化成物がまた多孔性材料の膜を界して外側の
空間へ透過して、効率良く、酵素或いは微生物反応とと
もに生成物の分離も行いうる様にしたバイオリアクター
を用いる酵素及び微生物の反応方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel reaction method using enzymes and microorganisms. More specifically, in an enzymatic reaction or atomized reaction involving two or more types of substances, the present invention provides an enzyme chamber in an inner space (enzyme chamber) partitioned by two membranes made of a porous material that do not allow enzymes or microorganisms to freely pass through. These enzymes and microorganisms are allowed to exist, and substances involved in the reaction are made to exist in the space on both outsides that contact the two porous material membranes, and these substances interface with the porous material membranes to form the inside. The chemical products pass through the membrane of the porous material to the outside space, allowing efficient separation of the products as well as enzymatic or microbial reactions. This invention relates to a reaction method for enzymes and microorganisms using a bioreactor constructed as described above.

〔従来の技術及び問題点〕[Conventional technology and problems]

周知のように、酵素反応や微生物反応では2種類以上の
基質を必要としたり、或いは活性化剤として基質以外の
物質を必要とする場合が多く、単一物質のみが関与する
反応は少い。また反応生成物においても単一の場合だけ
ではなく、2種類以上の化成物を生産することが非常に
多い。このように酵素反応や微生物反応では1反応基質
だけでなく1反応生成物においても2f41!類以上の
物質が関与する反応は非常に多い。しかし、例えば、反
応生成物が2種類以上となる場合には、反応終了後、目
的の生産物を得るにはこれら反応生成物の分離操作が必
要である。
As is well known, enzymatic reactions and microbial reactions often require two or more types of substrates or a substance other than the substrate as an activator, and there are few reactions in which only a single substance is involved. In addition, not only a single reaction product but also two or more types of chemical compounds are often produced. In this way, in enzymatic reactions and microbial reactions, not only one reaction substrate but also one reaction product has 2f41! There are many reactions involving substances of a similar or higher class. However, for example, when there are two or more types of reaction products, it is necessary to separate these reaction products after the reaction is completed in order to obtain the desired product.

また2種類以上の基質を要する反応の場合には、時とし
て基質のうちのいずれかが酵素或いは微生物の阻害要因
や失活要因となる場合もある。
In addition, in the case of a reaction requiring two or more types of substrates, one of the substrates may sometimes become a factor that inhibits or deactivates the enzyme or microorganism.

また反応生成物自身が阻害要因となる場合もある0 これらのことを考えると、阻害要因物質を酵素反応系、
或いは微生物反応系へ与える量をコントロールしたり、
或いは阻害要因を系内から速やかに除去することができ
れば更に効率良く酵素反応、微生物反応を行うことがで
きると瑚見られる。捷た反応と同時に生成物の分離も可
能となるようなりアクタ−を用いれば、生産物の分離工
程を省略できる可能性がある。一方酵素は一般に非常に
高価なものであり、これを再利用することは生産コスト
を下げる上で欠くべからざる条件である。バイオリアク
ターを考える除には、当然酵素や微生物を反応系内から
簡単に取出して、再利用できることが重要なポイントと
なる。
In addition, the reaction product itself may become an inhibitory factor. Considering these factors, it is possible to use inhibitory substances in the enzyme reaction system,
Or control the amount given to the microbial reaction system,
Alternatively, it is believed that enzymatic reactions and microbial reactions can be carried out more efficiently if inhibiting factors can be quickly removed from the system. If an actor is used, it is possible to eliminate the step of separating the product since it becomes possible to separate the product at the same time as the breaking reaction. On the other hand, enzymes are generally very expensive, and reusing them is an essential condition for reducing production costs. When considering bioreactors, it is of course important to be able to easily remove enzymes and microorganisms from the reaction system and reuse them.

従来これらの銖題全てを満足するバイオリアクターは未
だ開発されていない。例えば固定化酵素や固定化微生物
では反応系からの酵素、微生物の容易な分離、或いは、
酵素、微生物の再利用といった課題は解決できるかも知
れないが、反応と分離の同時操作や、阻害物質の制御と
いった問題の解決は不可能である。最近、固定化酵素や
固定化微生物の固定化担体に生成物分離機能(吸着能)
をもたせるという試みもあるが、これとて種々の問題点
を持っている。例えば阻害要因或いは失活要因となる物
質が反応に必要な場合、この方法ではこの物質の量をコ
ントロールするととVi難しい。また担体の吸着能を利
用する場合には、生成物質を吸着させるのに非常に多量
の担体を必要とし、工業化の面では大きな障害となる。
To date, a bioreactor that satisfies all of these issues has not yet been developed. For example, with immobilized enzymes and immobilized microorganisms, enzymes and microorganisms can be easily separated from the reaction system, or
Although it may be possible to solve problems such as the reuse of enzymes and microorganisms, it is impossible to solve problems such as simultaneous reaction and separation operations and control of inhibitors. Recently, immobilized enzymes and immobilized microorganism immobilized carriers have a product separation function (adsorption capacity).
There have been attempts to make it possible, but these have various problems. For example, if a substance that is an inhibitory or inactivating factor is required for the reaction, it is difficult to control the amount of this substance using this method. Furthermore, when the adsorption ability of a carrier is utilized, a very large amount of carrier is required to adsorb the product, which poses a major obstacle in terms of industrialization.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはこのような種々の課題をもつ酵素或い1−
i微生物反応のりアクタ−について鋭意検討の結果、こ
れらの課題を解決することができる画期的なりアクタ−
を開発した。
The present inventors have developed an enzyme that has various problems as described above.
As a result of intensive research on i-microbial reaction glue actors, we have developed an epoch-making glue actor that can solve these problems.
developed.

即ち本発明は2種類以上の物質が関与する酵素反応或い
は微生物反応において、これら酵素あるいは微生物が通
過できない多孔性材料2枚を1組とし、これらの多孔性
材料にはさまれた内側の空間部に酵素または微生物、或
いは、固定化酵素或いは固定化微生物を存在させ、2枚
の多孔性材料の両性側の空間には上記反応に関与する物
質を夫々存在させて、多孔性材料を界してこれらの物質
を透過させ上記内側空間部で反応を行なわせることを特
徴とする酵素及び微生物反応方法に関するものである。
That is, in an enzyme reaction or a microbial reaction involving two or more types of substances, the present invention uses a set of two porous materials through which these enzymes or microorganisms cannot pass, and an inner space sandwiched between these porous materials. Enzymes or microorganisms, or immobilized enzymes or immobilized microorganisms are present in the space on both sides of the two porous materials, and substances involved in the above reaction are present in the spaces on both sides of the two porous materials to separate the porous materials. The present invention relates to an enzyme and microorganism reaction method characterized by allowing these substances to permeate and allowing the reaction to occur in the inner space.

本発明による反応方法は、酵素や微生物を自由に通過さ
せない多孔性材料の膜2枚を1組とし、これらで仕切ら
れた空間に、酵素や微生物を存在させ、反応物質が多孔
性材料を通過して5中夫の空間で、酵素或いは微生物反
応を受け、反応後の生成物をまた、多孔性材料を通過せ
しめて、酵素反応系或いは微生物反応系から除去するこ
とを特徴とするものである。
In the reaction method according to the present invention, a set of two membranes made of a porous material that does not allow enzymes or microorganisms to freely pass through is used, the enzyme or microorganism is allowed to exist in a space partitioned by these, and the reactant passes through the porous material. It is characterized by undergoing an enzymatic or microbial reaction in the space of the fifth chamber, and passing the reaction product through a porous material to remove it from the enzymatic reaction system or microbial reaction system. .

〔作用〕[Effect]

本発明を更に詳しく、本発明の好適実施態様= 6− を示した図面に基いて説明する。−例としてリパーゼに
よる油脂分解反応のように、A+B→C+D(A、Bは
反応に関与する物質で、以下基質という。C2Dは生成
物。リパーゼ反応では、A−油、B=水、C−脂肪酸、
D=グリセリン)で表わされる酵素反応系について、第
1図を用いて説明すると、1及び2の多孔性材料で仕切
られた内側の空間4(酵素室)に酵素を存在させ、一方
の外側の空間5(反応物質室)に基質Aを、他方の外側
の空間5(反応物質室)に基質Bを存在させる。多孔性
材料1.2は酵素を通過させず、また基質Aが多孔性材
料1を通過し、また基質Bが多孔性材料2を通過し得る
様に構成されている。従って第1図のりアクタ−では、
夫々の反応物質室3,5から酵素室4へ通過した基質A
、Bは、酵素室4に存在する酵素により酵素反応を受け
て生成物CとDになる。ここで多孔性材料1は基質Aは
通すが、Bは通さず、また反応生成物○、Dのうちのい
ずれか一方のみ(仮にCとする)を通すものを選択する
。多孔性材料2は逆に基質Bのみを通すが、Aは通さず
、また反応生成物のうちのDのみを通すものを選択する
。これらの性質を多孔性材料に付与するには、多孔性材
料の材質及び孔径を適当に選択すれば良い。例えばリパ
ーゼの反応においては、基質の油と反応生成物の脂肪酸
のみを通す多孔性材料としては、ポリプロピレンやポリ
エチレン等の疎水性材料を選択すれば良く、また水及び
グリセリンのみを通す材料としては酢酸セルロースなど
のセルロース材料、アクリロニ) IJル重合物等に代
表される親水性材料を選択すれば良い。また一般に多孔
性材料の細孔径は酵素や微生物を通さない大いさである
ことが必要であって、酵素の大きさは数十〜数百オング
ストロームと言われているからこの程度の細孔が必要で
あることになるが、反応系によってはこれ程微細な細孔
ををしない場合もある。例えば、リパーゼの油脂分解反
応では、多孔性材料で仕切られた空間4での反応状態を
みてみると、油/水エマルジョンが形成され、このエマ
ルジョン表面に酵素が存在するような状態となっている
。従ってこのエマルジョンを通さない孔径であれば良く
、0.1〜数μmの孔径で酵素の通過を阻止できる。ま
た固定化酵素や、固定化微生物を用いれば、当然のこと
ながら微細な細孔は必要ない。
The present invention will be explained in more detail based on the drawings showing preferred embodiments of the present invention = 6-. - For example, in the lipase decomposition reaction, A+B→C+D (A and B are substances involved in the reaction, hereinafter referred to as substrates. C2D is the product. In the lipase reaction, A-oil, B=water, C- fatty acid,
To explain the enzyme reaction system represented by D=glycerin using FIG. 1, the enzyme is present in the inner space 4 (enzyme chamber) partitioned by porous materials 1 and 2, and Substrate A is present in space 5 (reactant chamber), and substrate B is present in the other outer space 5 (reactant chamber). The porous material 1.2 is impermeable to the enzyme and is constructed in such a way that the substrate A can pass through the porous material 1 and the substrate B can pass through the porous material 2. Therefore, in the glue actor in Figure 1,
Substrate A passed from the respective reactant chambers 3 and 5 to the enzyme chamber 4
, B undergo an enzymatic reaction by the enzyme present in the enzyme chamber 4 to become products C and D. Here, the porous material 1 is selected to be one that allows substrate A to pass through, but not B, and allows only one of the reaction products ○ and D (temporarily assumed to be C) to pass through. On the other hand, the porous material 2 is selected to allow only substrate B to pass through, but not A, and to allow only D of the reaction products to pass through. In order to impart these properties to a porous material, the material and pore diameter of the porous material may be appropriately selected. For example, in a lipase reaction, a hydrophobic material such as polypropylene or polyethylene may be selected as a porous material that allows only the substrate oil and the reaction product fatty acid to pass, and acetic acid may be selected as a material that only allows water and glycerin to pass through. Hydrophilic materials such as cellulose materials such as cellulose, acrylonitrile polymers, etc. may be selected. In general, the pore diameter of porous materials needs to be large enough to prevent enzymes and microorganisms from passing through.The size of enzymes is said to be several tens to hundreds of angstroms, so pores of this size are necessary. However, depending on the reaction system, such fine pores may not be formed. For example, in the fat and oil decomposition reaction of lipase, looking at the reaction state in the space 4 partitioned by a porous material, an oil/water emulsion is formed, and the enzyme is present on the surface of this emulsion. . Therefore, any pore size that does not allow this emulsion to pass through is sufficient, and a pore size of 0.1 to several μm can prevent passage of the enzyme. Furthermore, if an immobilized enzyme or an immobilized microorganism is used, fine pores are naturally not required.

従って本発明に於ては多孔性材料の材質、細孔径につい
ては特に限定するものではなく、上記の様な基準に従っ
て適当に選択される。
Therefore, in the present invention, the material of the porous material and the pore diameter are not particularly limited, and are appropriately selected according to the above-mentioned criteria.

多孔性材料で仕切られた空間4に存在させる酵素或いは
微生物は、粉末のまま存在させても良いし、また酵素や
微生物を失活させない溶媒に溶かすか、或いは懸濁させ
て存在させても良い。本発明の実施に当っては酵素が一
部に片寄るのを防ぐため、スペーサを空間4に設け、酵
素或いは微生物をこの上に散布、或いは流延させるのが
一つの好ましいやり方である。また或いは、後述するよ
うに酵素液或いは微生物液をポンプでこの空間、即ち酵
素室4へ循環させても良い。なお、空間4に設けるスペ
ーサの材質、一 9− 形態等については特に限定するものではなく。
The enzyme or microorganism present in the space 4 partitioned by a porous material may be present in powder form, or may be dissolved or suspended in a solvent that does not inactivate the enzyme or microorganism. . In carrying out the present invention, one preferred method is to provide a spacer in the space 4 and spray or cast the enzyme or microorganism onto the space 4 in order to prevent the enzyme from being concentrated in one part. Alternatively, the enzyme solution or microbial solution may be circulated into this space, that is, the enzyme chamber 4, using a pump, as will be described later. Note that the material, form, etc. of the spacer provided in the space 4 are not particularly limited.

例えば、スペーサとして酵素を吸着させるような性質を
有する材1例えば、イオン交換繊維のようなものを用い
れば、その上に酵素を固定化することもでき、又この場
合の様にこのスペーサに伺らかの新たな機能を付加させ
ることもできる。
For example, if a material such as ion-exchange fiber is used as a spacer, the enzyme can be immobilized thereon, and as in this case, the spacer can be used to adsorb enzymes. It is also possible to add new functions.

第1図の反応物質室5及び5に存在する基質は濃度拡散
により酵素室4へ拡散し、また反応生成物も濃度拡散に
より酵素室4から反応物質室3或いは5へ拡散する。し
かし、濃度拡散だけでは拡散速度が遅く、十分な反応速
度が得られない場合は、拡散を促進する力1例えば圧力
や温度をそれぞれの室に与えて拡散を促進することも出
来る。或いはまた。酵素反応、微生物反応を阻害せず、
且つ多孔性材料を通過しない第3物質をそれぞれの室に
添加して、この物質の浸透圧差を拡散の促進力とするこ
とも可能である。
The substrate present in the reactant chambers 5 and 5 in FIG. 1 diffuses into the enzyme chamber 4 by concentration diffusion, and the reaction product also diffuses from the enzyme chamber 4 into the reactant chamber 3 or 5 by concentration diffusion. However, if the diffusion rate is slow and a sufficient reaction rate cannot be obtained by concentration diffusion alone, diffusion can be promoted by applying a force for promoting diffusion, such as pressure or temperature, to each chamber. Or again. Does not inhibit enzyme reactions or microbial reactions,
It is also possible to add a third substance that does not pass through the porous material to each chamber, and use the difference in osmotic pressure of this substance as a diffusion promoting force.

本発明に使用されるバイオリアクターは種々の酵素反応
、微生物反応に適用でき、前述したリパーゼによる油脂
分解反応以外にも、リパーゼによるトリグリセリドの合
成、トリグリセリドのエステル交換反応、ホスホリパー
ゼによるリン脂質の分解反応、ホスホリラーゼによる多
糖類の加リン酸分解反応に代表される転移酵素(トラン
スフェラーゼ)群による一連の反応、フマラーゼによる
リンゴ酸の合成反応、ホスファターゼ、ヌクレオチオダ
ーゼ等の加水分解酵素群の一連の反応、或いは、アルコ
ールデヒドロゲナーゼやアミノ酸酸化還元酵素等に代表
される酸化還元酵素群の反応等、2aI類以上の物質が
関与する酵素反応系に使用できる。また微生物反応系に
おいては、反応基質以外にも、微生物の生育に数多くの
物質を必要とすることから、殆どの微生物反応に本リア
クターは適用できる。例えば、corynebacte
rium glutamieum等によるグルタミン酸
発酵では、基質のグルコースからグルタミン酸を発酵生
産するが、重曹の生育にはビオチンを必要とし、ビオチ
ン量によってグルタミン酸生産量の増減がみられる。
The bioreactor used in the present invention can be applied to various enzymatic reactions and microbial reactions, and in addition to the oil decomposition reaction using lipase described above, it can also be used for triglyceride synthesis using lipase, transesterification reaction of triglyceride, and phospholipid decomposition reaction using phospholipase. , a series of reactions by a group of transferases represented by the phosphorolytic reaction of polysaccharides by phosphorylase, a synthesis reaction of malic acid by fumarase, a series of reactions by a group of hydrolytic enzymes such as phosphatase and nucleothiodase, Alternatively, it can be used in enzyme reaction systems involving substances of the 2aI class or higher, such as reactions of oxidoreductase groups such as alcohol dehydrogenase and amino acid oxidoreductase. Furthermore, in microbial reaction systems, in addition to reaction substrates, many substances are required for the growth of microorganisms, so this reactor can be applied to most microbial reactions. For example, corynebacterium
In glutamic acid fermentation by Rium glutamieum and the like, glutamic acid is fermented and produced from the substrate glucose, but biotin is required for the growth of baking soda, and the amount of glutamic acid produced increases or decreases depending on the amount of biotin.

このように微生物反応では、反応基質以外にビオチンな
どのビタミン類、無機塩、アミノ酸等を必要とする場合
が多く、本リアクターはこれら微生物反応の殆どに適用
できる。
As described above, microbial reactions often require vitamins such as biotin, inorganic salts, amino acids, etc. in addition to the reaction substrate, and this reactor can be applied to most of these microbial reactions.

本発明で用いる酵素或いは微生物は、必ずしも高度に精
製されているものである必要はなく、抽出液や部分精製
品、また或いは発酵液も用いることができる。
The enzyme or microorganism used in the present invention does not necessarily have to be highly purified, and an extract, a partially purified product, or a fermentation liquid can also be used.

本発明によるバイオリアクターで効率的に反応を行うに
は、第2図に示したように酵素室7をはさんで多孔性材
料9,10を多数組、同種の多孔性材料が相互に相対し
て、一方の多孔性材料9の間には反応物質室5が、又他
方の多孔性材料10の間には反応物質室6が形成される
様セットし、反応に関与する物質を夫々ポンプ3a、3
bで夫々の反応物質室5,6へ循環させる様にするのが
良い。第2図に於てはまた、酵素或いは微生物もポンプ
3で酵素室7へ循環可能にしである。第2図に於て1,
2は反応物質貯留容器、4は酵素或いは微生物液貯留容
器、8は外枠である。同、酵素、微生物は前述のように
酵素室7内に設けたスペーサ上に散布するか流延するこ
とによって静置して存在させても良い。
In order to carry out the reaction efficiently in the bioreactor according to the present invention, multiple sets of porous materials 9 and 10 are placed across the enzyme chamber 7, as shown in FIG. A reactant chamber 5 is formed between one porous material 9 and a reactant chamber 6 is formed between the other porous material 10, and the substances involved in the reaction are pumped 3a. ,3
It is preferable to circulate the reactants to the respective reactant chambers 5 and 6 at step b. In FIG. 2, enzymes or microorganisms can also be circulated to the enzyme chamber 7 by means of a pump 3. In Figure 2, 1,
2 is a reactant storage container, 4 is an enzyme or microorganism liquid storage container, and 8 is an outer frame. Similarly, the enzymes and microorganisms may be left standing by being sprayed or cast on the spacer provided in the enzyme chamber 7 as described above.

伺本発明の方法に用いるリアクターの形態は、第1図及
び第2図に示したよりな平膜型に限られず、第3図のよ
うな管型、第4図のようなスパイラル型など種々の形態
が可能であり、特にその形態について限定するものでは
ない。第3図の管W リアクターでは、1,2が多孔性
材料で、これらの間に酵素室4があシ、多孔性材料の管
状膜1の内側に反応物質室3が、又多孔性材料の管状膜
2の外側に反応物質室5があり、6は外枠である。第4
図のスパイラル型リアクターでは、多孔性材料の膜1,
3にはさまれた空間に酵素が置かれたスペーサ2が挾ま
れて、これが酵素室を形成している。そして多孔性材料
の膜1,3を2枚の外枠4がはさんでおり、これらがス
パイラル状に巻かれておシ、外枠4と多孔性栃料の膜1
,3の夫々との間に反応物質室を形成している。
The shape of the reactor used in the method of the present invention is not limited to the flat membrane type shown in Figures 1 and 2, but can also be of various types, such as a tube type as shown in Figure 3 or a spiral type as shown in Figure 4. Any form is possible, and the form is not particularly limited. In the tube W reactor shown in Fig. 3, 1 and 2 are porous materials, and there is an enzyme chamber 4 between them, and a reactant chamber 3 is located inside the tubular membrane 1 made of porous material. There is a reactant chamber 5 outside the tubular membrane 2, and 6 is an outer frame. Fourth
In the spiral reactor shown in the figure, a membrane 1 of porous material,
A spacer 2 in which an enzyme is placed is sandwiched between the spacers 3 and 3, and this forms an enzyme chamber. The membranes 1 and 3 made of porous material are sandwiched between two outer frames 4, and these are wound into a spiral shape.
, 3, forming a reactant chamber between them.

本発明の一つの特徴は固定化酵素と同様に、反応系から
酵素や微生物を容易に除去できる一方、酵素や微生物を
多孔性材料に固定化してい力いため、酵素や微生物が失
活した場合、多孔性材料を交換すること力<、酵素や微
生物のみを交換することができることである。従って高
価な多孔性材料のロスを防げる。
One feature of the present invention is that, like immobilized enzymes, enzymes and microorganisms can be easily removed from the reaction system, but because the enzymes and microorganisms are immobilized on porous materials, they can be easily removed if the enzymes or microorganisms become inactivated. By replacing porous materials, only enzymes and microorganisms can be replaced. Therefore, loss of expensive porous materials can be prevented.

また前述したように酵素や微生物に対して阻害物があれ
ば、多孔性材料の膜の材質、細孔径をコントロールする
ことによシ、これら阻害物を酵素反応系あるいは微生物
反応系へ与える量をコントロールしたシ、また生成物が
阻害する場合は、この生成物を反応系から速やかに除く
ことが可能となる。従って酵素、微生物の失活血抑え、
これらを再利用することが可能となる。
In addition, as mentioned above, if there are inhibitors to enzymes or microorganisms, the amount of these inhibitors applied to the enzyme reaction system or microorganism reaction system can be reduced by controlling the material and pore size of the porous membrane. If the product is controlled or inhibits the reaction, the product can be quickly removed from the reaction system. Therefore, enzymes suppress the inactivation of microorganisms,
It becomes possible to reuse these.

例えば、リパーゼによる油脂分解反応では、反応基質の
水がリパーゼの失活要因となり、水の量が多くなシすぎ
ると酵素は著しく失活する。
For example, in a lipase decomposition reaction, water, which is a reaction substrate, becomes a factor in deactivating the lipase, and if the amount of water is too large, the enzyme will be significantly deactivated.

従って多孔性材料の木造過量をコントロールすることに
より反応に必要な量の水だけを反応系に与えることがで
きる。従ってこれによりリパーゼの失活を抑制すること
ができる。
Therefore, by controlling the amount of water in the porous material, only the amount of water necessary for the reaction can be provided to the reaction system. Therefore, it is possible to suppress the deactivation of lipase.

本発明の方法のもう一つの大きガ特徴としては、反応生
成物の分離が反応と同時に行いうろことがあげられる。
Another major feature of the method of the present invention is that the reaction products can be separated simultaneously with the reaction.

例えばリパーゼによる油脂分解反応では、反応生成物で
ある脂肪酸とグリセリンの分離は反応と同時に行いうる
For example, in a fat and oil decomposition reaction using lipase, separation of fatty acids and glycerin, which are reaction products, can be performed simultaneously with the reaction.

また本発明によるバイオリアクターにおける酵素反応或
いは微生物反応の速度は、基質(反応物質)等の多孔性
材料の膜を透過する透過速度と、多孔性材料の膜の表面
積に大きく依存する。従って反応速度を上げるには、基
質等の透過速度の速い材質の多孔性材料を選ぶことが重
要である。また多孔性材料の膜の表面積が反応速度に大
きく関与することから、表面積を増大させることにより
反応時間を大巾に短縮することも可能である。
Furthermore, the rate of the enzymatic reaction or microbial reaction in the bioreactor of the present invention largely depends on the permeation rate through the membrane of the porous material such as the substrate (reactant) and the surface area of the membrane of the porous material. Therefore, in order to increase the reaction rate, it is important to select a porous material that has a high permeation rate, such as a substrate. Furthermore, since the surface area of the membrane of porous material has a large influence on the reaction rate, it is also possible to significantly shorten the reaction time by increasing the surface area.

以上述べてきたように、本発明によるバイオリアクター
は酵素や微生物をマクロに多孔性材料間に固定化する方
法であシ、酵素や微生物が反応系内から容易に除去でき
る一方、酵素、微生物の再利用、失活防止、また反応と
分離の同時操作が可能となるなど、従来の固定化酵素を
利用する方法にみられなかった利点をも併せ持った全く
新しい反応方法であり、その工業的有用性は非常に大き
いものである。
As described above, the bioreactor of the present invention is a method in which enzymes and microorganisms are immobilized macroscopically between porous materials, and while enzymes and microorganisms can be easily removed from the reaction system, enzymes and microorganisms are This is a completely new reaction method that has advantages not seen in conventional methods using immobilized enzymes, such as reuse, prevention of inactivation, and simultaneous reaction and separation, and its industrial utility. Gender is a huge thing.

〔実施例〕〔Example〕

以下本発明の実施例について説明するが、本発明はこれ
ら実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these Examples.

実施例−1 面積0.02 m2をもつポリアクリロニトリルの多孔
質膜(限外沖過膜、分画分子量20000 )及びテフ
ロンの多孔質膜(ポアサイズ0.1μ)全10枚ずつ用
意した。油脂分解酵素(リパーゼ)2fを少量の大豆油
に懸濁し、約1/10ずつ両膜間のスペーサ上に流延し
、両膜でこれをはさむようにしてセットし、第2図に示
したよりな平膜型反応器を作成した。但し、第2図の酵
素液はポンプで循環しているが、ここではスペーサ上に
流延して静置する方法をとった。
Example 1 A total of 10 polyacrylonitrile porous membranes (ultra-filter membrane, molecular weight cut off 20,000) and Teflon porous membranes (pore size 0.1 μm) each having an area of 0.02 m2 were prepared. Oil-fat degrading enzyme (lipase) 2f was suspended in a small amount of soybean oil, cast in approximately 1/10 portion onto the spacer between both membranes, and set so that it was sandwiched between the two membranes. A flat membrane reactor was created. However, although the enzyme solution in FIG. 2 is circulated by a pump, here a method was adopted in which it was cast onto a spacer and left standing.

大豆油400 F 、水400fを大豆油はテフロン膜
と接するように、水はポリアクリロニトリル膜と接する
ように循環送液した。温度は恒温槽で30℃に保持して
大豆油のリパーゼによる分解反応を行った。
400F of soybean oil and 400F of water were circulated so that the soybean oil was in contact with the Teflon membrane and the water was in contact with the polyacrylonitrile membrane. The temperature was maintained at 30° C. in a constant temperature bath to carry out the decomposition reaction of soybean oil with lipase.

24時間後、大豆油の分解率は70%、−志木中のグリ
セリン濃度は7%であった。また油中のグリセリン及び
水中の脂肪酸はそれぞれ0.1%以下でちった。
After 24 hours, the decomposition rate of soybean oil was 70%, and the glycerin concentration in Shiki was 7%. Furthermore, the glycerin in the oil and the fatty acid in the water were each 0.1% or less.

この結果より、大豆油及び水は多孔質膜を透過して中央
の酵素室で反応し、反応後の脂肪酸は油側へ、グリセリ
ンは水側へ、再び多孔質膜を透過して拡散分離されたこ
とがわかる。このように反応と分離の同時操作も可能で
あった。
From this result, soybean oil and water permeate through the porous membrane and react in the central enzyme chamber, and after the reaction, fatty acids go to the oil side, glycerin goes to the water side, and then permeates through the porous membrane and is diffused and separated. I can see that. In this way, simultaneous reaction and separation operations were possible.

実施例−2 実施例−1で使用した酵素をそのままにして、反応後の
脂肪酸溶液及びグリセリン水溶液を抜き出した後フレッ
シュな大豆油400 F、及び水400fを実施例−1
と全く同様に送液した。24時間後の大豆油分解率は実
施例−1と同じ70%が得られた。
Example-2 The enzyme used in Example-1 was left as is, the fatty acid solution and glycerin aqueous solution were extracted after the reaction, and fresh soybean oil 400F and water 400F were added to Example-1.
The solution was pumped in exactly the same manner. The soybean oil decomposition rate after 24 hours was 70%, the same as in Example-1.

更に同様に酵素をそのま捷にして、再びフレッシュな大
豆油、水を400tずつ送液した。5回目も全く同様に
24時間後の大豆油分解率70%が得られた。
Furthermore, the enzyme was lysed in the same manner, and 400 tons each of fresh soybean oil and water were fed again. A soybean oil decomposition rate of 70% was obtained after 24 hours in exactly the same manner for the fifth time.

このように本バイオリアクターでは酵素の失活は無かっ
た。
In this way, there was no enzyme deactivation in this bioreactor.

また一方、酵素はそのままにして単に液を抜き出し、フ
レッシュな油、水を送液するだけで、効率よく反応が行
なえた。
On the other hand, the reaction could be carried out efficiently by simply extracting the liquid and feeding fresh oil and water while leaving the enzyme as is.

このように酵素を系内から分離する工程は必要ないこと
がわかる。
It can be seen that there is no need for a step to separate the enzyme from the system.

実施例−5 実施例−1と同様の条件だが、油に接する多孔質膜とし
てポアサイズ2.5μのポリ塩化ビニル系膜(表面積0
.02m2)10枚を用いた。水に接する多孔質膜は実
施例−1と同じポリアクリロニトリル膜を用いた。実施
例−1と同様の条件で、大豆油400F、水400?を
循環送液し、油脂分解反応を行った。なお、塩ビ系膜で
は、油側への水の拡散が認められたので、油側に約o、
o 3Kt/an2の差圧をかけて、油側への水の侵入
を防いだ。
Example 5 The conditions were the same as in Example 1, but a polyvinyl chloride membrane with a pore size of 2.5μ (surface area 0) was used as the porous membrane in contact with oil.
.. 02m2) were used. The same polyacrylonitrile membrane as in Example-1 was used as the porous membrane in contact with water. Under the same conditions as Example-1, soybean oil 400F and water 400F. was circulated to carry out an oil and fat decomposition reaction. In addition, with the PVC membrane, water diffusion to the oil side was observed, so approximately
o A pressure difference of 3Kt/an2 was applied to prevent water from entering the oil side.

24時間後の大豆油分解率は80%、水中のグリセリン
濃度8.1%が得られた。また48時間後の大豆油分解
率90%、水中のグリセリン濃度9%が得られた。
After 24 hours, the soybean oil decomposition rate was 80%, and the glycerin concentration in water was 8.1%. Further, after 48 hours, a soybean oil decomposition rate of 90% and a glycerin concentration in water of 9% were obtained.

このように実施例−1と比較すると、膜材質、孔径によ
って反応速度に差がみられることがわかった。
As described above, when compared with Example-1, it was found that there were differences in the reaction rate depending on the membrane material and pore size.

実施例−4 実施例−1と同様の多孔質膜を用い、膜枚数をそれぞれ
5枚とした。大豆油400 ? 、水400Vを同様に
して送液したところ24時間後の分解率44%が得られ
た。
Example-4 The same porous membranes as in Example-1 were used, and the number of membranes was five each. Soybean oil 400? When water was fed at 400 V in the same manner, a decomposition rate of 44% was obtained after 24 hours.

このように反応速度は膜面積に大きく依存していること
がわかる。
It can thus be seen that the reaction rate is largely dependent on the membrane area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される装置の構成を示す図であう
、1,2は多孔性材料、3,5け反応物質室、4td、
酵素室、6は外枠である。第2図は本発明に用いられる
平膜型リアクターの説明図、第3図は管型リアクター、
第4図はスノくイラル型リアクターの略示図である。 出願人代理人  古  谷     馨第3図 第4図 千糸売肴11j「νF (自発) 昭和59年107]31++ 特許1i’−E#官 志賀 学 殿 1、事件の表示 特願昭59−198778号 2、発明の名称 酵素及び微生物の反応方法 3、補正をする渚 ・1)件との関係  41y訂出願人 (091)花 −1石 的株 式 会 着4、  代 
 理  人 明細書の特3′1請求の範囲及び発明の(1)明細、1
)2真下から4行「の膜」を「(例えばII!IりJ 
と訂11 2、特許請求の範囲 1 2種類以上の物質か関Ij−する酵素反応或いは微
生物反応において、これら酵素あるいは微生物が通過で
きない多孔+1材料2枚を1M1とし、これらの多孔性
材ネ゛1にはさまれた内側の空間部に酵素または微生物
、或いは、固)1−゛化酵素或いは国定化微生物を存在
させ、2枚の多孔性材ネ;Iの両性側の空間には1.記
反応に関与する物質を夫々仏前させて、多孔に1材料を
界してこれらの物質を透過させ1−記内側空間部で反応
を行なわせることを特徴とする酵素及び微生物反応方I
ノ、。 2.2枚の多孔性材料が、1枚は反応に関りする物質の
うちの1部のみを及び反応後の生成物のうちの1部のみ
を通過させ易く、他の1枚は反応に関与する物質のうち
の残りの物質及び残りの反応生成物のみを通過させ易い
P1質をもつものである特許請求の範囲第1ダ1記載の
方V、。 32枚ifの多孔性材料の複数組が同種の多孔性材ネ;
Iが向い合う様に順次配列されている特許請求の範囲第
1項または第2項記載の方1人。 4 反応に関ケーする物質が木及び油であり、酵素反応
が酵素としてリパーゼを用いる油脂の加水分解反応であ
る特許請求の範囲第1項、第2項または第3項記載の方
法。
FIG. 1 is a diagram showing the configuration of the apparatus used in the present invention. 1 and 2 are porous materials, 3 and 5 reactant chambers, 4td,
6 is the outer frame of the enzyme chamber. Fig. 2 is an explanatory diagram of a flat membrane reactor used in the present invention, Fig. 3 is a tubular reactor,
FIG. 4 is a schematic diagram of a snow-like reactor. Applicant's agent Kaoru Furuya Figure 3 Figure 4 Thousand Threads 11j ``νF (Spontaneous) 1981 107] 31++ Patent 1i'-E# Official Manabu Shiga 1, Indication of Case Patent Application 1987-198778 No. 2, Name of the invention Reaction method of enzymes and microorganisms 3, Relationship with amendment Nagisa 1) Matter 41y revised Applicant (091) Hana-1 Ishiki Stock Company Arrival 4, Representative
Feature 3'1 Claims and (1) Specification of the invention, 1
) 2 4th line from directly below ``membrane'' to ``(for example, II!IriJ
Amendment 11 2. Claim 1 In an enzyme reaction or microbial reaction involving two or more types of substances, two sheets of porous +1 material through which these enzymes or microorganisms cannot pass are defined as 1M1, and these porous materials are Enzymes or microorganisms, 1-1-transforming enzymes, or standardized microorganisms are present in the inner space between the two porous materials; 1. Enzyme and microorganism reaction method I, characterized in that the substances involved in the above reaction are placed in front of each other, and one material is enclosed in a porous hole to allow these substances to pass through, and the reaction is carried out in the inner space.
of,. 2. Two porous materials, one that allows only part of the substances involved in the reaction and only one part of the products after the reaction to pass through, and the other that allows only one part of the reaction products to pass through. The method V according to claim 1, which has P1 quality that allows only the remaining substances among the substances involved and the remaining reaction products to easily pass through. If multiple sets of 32 pieces of porous material are the same type of porous material;
One person according to claim 1 or 2, wherein the I's are arranged in sequence so that they face each other. 4. The method according to claim 1, 2, or 3, wherein the substances involved in the reaction are wood and oil, and the enzymatic reaction is a hydrolysis reaction of fats and oils using lipase as an enzyme.

Claims (1)

【特許請求の範囲】 1 2種類以上の物質が関与する酵素反応或いは微生物
反応において、これら酵素あるいは微生物が通過できな
い多孔性材料2枚を1組とし、これらの多孔性材料には
さまれた内側の空間部に酵素または微生物、或いは、固
定化酵素或いは固定化微生物を存在させ、2枚の多孔性
材料の両外側の空間には上記反応に関与する物質を夫々
共存させて、多孔性材料を界してこれらの物質を透過さ
せ上記内側空間部で反応を行なわせることを特徴とする
酵素及び微生物反応方法。 2 2枚の多孔性材料が、1枚は反応に関与する物質の
うちの1部のみを及び反応後の生成物のうちの1部のみ
を通過させ、他の1枚は反応に関与する物質のうちの残
りの物質及び残りの反応生成物のみを通過させ易い性質
をもつものである特許請求の範囲第1項記載の方法。 3 2枚1組の多孔性材料の複数組が同種の多孔性材料
が向い合う様に順次配列されている特許請求の範囲第1
項または第2項記載の方法。 4 反応に関与する物質が水及び油であり、酵素反応が
酵素としてリパーゼを用いる油脂の加水分解反応である
特許請求の範囲第1項、第2項または第3項記載の方法
[Claims] 1. In an enzymatic reaction or microbial reaction involving two or more types of substances, a set of two porous materials through which these enzymes or microorganisms cannot pass, and an inner surface sandwiched between these porous materials. An enzyme or a microorganism, or an immobilized enzyme or an immobilized microorganism is present in the space of the porous material, and substances involved in the above reaction are allowed to coexist in the spaces on both sides of the two porous materials. An enzyme and microorganism reaction method characterized in that the reaction is carried out in the inner space by allowing these substances to pass through the inner space. 2 Two porous materials, one sheet allows only a part of the substances involved in the reaction and only one part of the products after the reaction to pass through, and the other sheet allows the substances involved in the reaction to pass through. The method according to claim 1, which has a property of allowing only the remaining substances and the remaining reaction products to easily pass through. 3. Claim 1, in which a plurality of sets of two porous materials are arranged in sequence so that the porous materials of the same type face each other.
or the method described in paragraph 2. 4. The method according to claim 1, 2, or 3, wherein the substances involved in the reaction are water and oil, and the enzymatic reaction is a hydrolysis reaction of fats and oils using lipase as an enzyme.
JP59198778A 1984-09-22 1984-09-22 Reaction process of enzyme and microorganism Granted JPS6178397A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59198778A JPS6178397A (en) 1984-09-22 1984-09-22 Reaction process of enzyme and microorganism
DE19853533615 DE3533615A1 (en) 1984-09-22 1985-09-20 METHOD FOR CARRYING OUT AN ENZYMATIC OR MICROBIAL REACTION
GB8523279A GB2164663B (en) 1984-09-22 1985-09-20 Process for carrying out enzymatic or microbial reactions
FR8514012A FR2570715B1 (en) 1984-09-22 1985-09-20 PROCESS FOR CARRYING OUT AN ENZYMATIC OR MICROBIAL REACTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198778A JPS6178397A (en) 1984-09-22 1984-09-22 Reaction process of enzyme and microorganism

Publications (2)

Publication Number Publication Date
JPS6178397A true JPS6178397A (en) 1986-04-21
JPH0338834B2 JPH0338834B2 (en) 1991-06-11

Family

ID=16396761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198778A Granted JPS6178397A (en) 1984-09-22 1984-09-22 Reaction process of enzyme and microorganism

Country Status (4)

Country Link
JP (1) JPS6178397A (en)
DE (1) DE3533615A1 (en)
FR (1) FR2570715B1 (en)
GB (1) GB2164663B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171672A (en) * 1985-10-24 1987-07-28 Oosakashi Bioreactor
JP2010279328A (en) * 2009-06-08 2010-12-16 Futamura Chemical Co Ltd Structure for organism-enclosed bioreactor, organism-enclosed bioreactor and method for producing structure for organism-enclosed bioreactor
JP2011050320A (en) * 2009-09-02 2011-03-17 Futamura Chemical Co Ltd Method for preserving microorganism, member for preserving microorganism, and method for producing porous sheet-formed material for preserving microorganism

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2597498B1 (en) * 1986-04-18 1990-02-02 Centre Nat Rech Scient PROCESS FOR THE RETENTION AND MAINTAINING OF THE ACTIVITY OF MICROORGANISMS IN STRUCTURES CARRYING SAID ACTIVITY, RESULTING STRUCTURES AND THEIR ANALYTICAL AND BIOTECHNOLOGICAL APPLICATIONS
FR2599381B1 (en) * 1986-05-30 1990-01-26 Centre Nat Rech Scient METHOD FOR EXTRACTING HIGH-VALUE ADDED COMPOUNDS FROM COMPLEX SOLUTIONS AND MEMBRANE DEVICE FOR CARRYING OUT SAID METHOD
DE3633891A1 (en) * 1986-10-04 1988-04-07 Akzo Gmbh METHOD AND DEVICE FOR CULTIVATING ANIMAL CELLS
US4956289A (en) * 1987-03-16 1990-09-11 Brunswick Corporation Thin film membrane enzyme reactor and method of using same
US4800162A (en) * 1987-04-01 1989-01-24 Sepracor, Inc. Method for resolution of steroisomers in multiphase and extractive membrane reactors
WO1989000188A1 (en) * 1987-06-30 1989-01-12 Brunswick Corporation Cell growth reactor with three compartments formed by hydrophobic and hydrophilic membranes
US5079168A (en) * 1988-08-10 1992-01-07 Endotronics, Inc. Cell culture apparatus
FR2659076A1 (en) * 1990-03-02 1991-09-06 Centre Nat Rech Scient BIOLOGICAL PROCESS FOR DENITRIATING LIQUID MEDIA AND APPARATUS FOR IMPLEMENTING SAID METHOD
DE4008411A1 (en) * 1990-03-16 1991-09-26 Forschungszentrum Juelich Gmbh Prepn. of optically active cyanohydrin derivs.
CH678632A5 (en) * 1990-07-16 1991-10-15 Sulzer Ag Bio-reactor for catalysed reactions - comprises biological catalyst inside hollow semi-permeable plates in reaction vessel
DE19913862C2 (en) * 1999-03-26 2003-04-10 Forschungszentrum Juelich Gmbh Process for the biocatalyzed conversion of poorly water-soluble substances
FR2798137A1 (en) * 1999-09-07 2001-03-09 Bonneau Marguerite Gabr Calone GENERATING APPARATUS FOR OXYGENIC CHEMICAL RADICALS AND INDUSTRIAL APPLICATIONS
US20050042741A1 (en) * 2002-02-05 2005-02-24 Guritza Dennis A. Stenoprophiluric generation and isolation of chemical products
US9168469B2 (en) 2004-12-22 2015-10-27 Chemtor, Lp Method and system for production of a chemical commodity using a fiber conduit reactor
US10526299B2 (en) 2004-12-22 2020-01-07 Chemtor, Lp Fiber conduit reactor with a heat exchange medium inlet and a heat exchange medium outlet
WO2014047195A1 (en) 2012-09-18 2014-03-27 Chemtor, Lp Use of a fiber conduit contactor for metal and/or metalloid extraction
WO2014100454A1 (en) * 2012-12-19 2014-06-26 John Lee Massingill Enzymatic chemical processing in a fiber conduit apparatus
WO2015089675A1 (en) * 2013-12-20 2015-06-25 Anaergia Inc. A novel membrane bioreactor suitable for retaining specialized microorganisms

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1037759A (en) * 1965-06-17 1966-08-03 John Hanna Brewer Apparatus for culturing microorganisms
DE2726313C3 (en) * 1977-06-10 1980-02-07 Battelle-Institut E.V., 6000 Frankfurt Process for the in vitro biosynthesis of hormones, in particular of insulin
DE2825636A1 (en) * 1978-06-12 1979-12-20 Boehringer Mannheim Gmbh DEVICE FOR MICROBIOLOGICAL WORK
JPS6029475B2 (en) * 1978-09-29 1985-07-10 株式会社日立製作所 Immobilized enzyme membrane and its manufacturing method
US4251633A (en) * 1979-06-11 1981-02-17 Orlowski David C Multi-stage continuous system for production of heteropolysaccharides
DE2932694C2 (en) * 1979-08-11 1982-11-04 Eberhard Dr. 4930 Detmold Breuker Device for the detection of microorganisms
EP0064855B1 (en) * 1981-05-07 1986-09-17 Unilever Plc Fat processing
NO834682L (en) * 1982-12-20 1984-06-21 Monsanto Co BIOCATALYTIC REACTOR

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171672A (en) * 1985-10-24 1987-07-28 Oosakashi Bioreactor
JP2010279328A (en) * 2009-06-08 2010-12-16 Futamura Chemical Co Ltd Structure for organism-enclosed bioreactor, organism-enclosed bioreactor and method for producing structure for organism-enclosed bioreactor
JP2011050320A (en) * 2009-09-02 2011-03-17 Futamura Chemical Co Ltd Method for preserving microorganism, member for preserving microorganism, and method for producing porous sheet-formed material for preserving microorganism

Also Published As

Publication number Publication date
FR2570715B1 (en) 1989-04-21
GB8523279D0 (en) 1985-10-23
DE3533615A1 (en) 1986-04-03
FR2570715A1 (en) 1986-03-28
GB2164663B (en) 1987-12-09
GB2164663A (en) 1986-03-26
JPH0338834B2 (en) 1991-06-11
DE3533615C2 (en) 1989-06-08

Similar Documents

Publication Publication Date Title
JPS6178397A (en) Reaction process of enzyme and microorganism
Giorno et al. Biocatalytic membrane reactors: applications and perspectives
Rios et al. Progress in enzymatic membrane reactors–a review
KR970005052B1 (en) Method for resolution of stereo-isomers in multiphase and extractive membrane reactors
JPS59154999A (en) Method for biochemical reaction and biochemical reactor
Long et al. Chiral resolution of racemic ibuprofen ester in an enzymatic membrane reactor
Giorno et al. Use of stable emulsion to improve stability, activity, and enantioselectivity of lipase immobilized in a membrane reactor
Chung et al. Process development for degradation of phenol by Pseudomonas putida in hollow‐fiber membrane bioreactors
D'Souza et al. Immobilization of bakers yeast on jute fabric through adhesion using polyethylenimine: application in an annular column reactor for the inversion of sucrose
Vladisavljević Biocatalytic membrane reactors (BMR)
EP0112812A2 (en) Biocatalytic reactor
US6653112B2 (en) Method for producing L-carnitine from crotonobetaine using a two stage continuous cell-recycle reactor
Li et al. Effect of immobilization site and membrane materials on multiphasic enantiocatalytic enzyme membrane reactors
JPS6185195A (en) Continuous hydrolysis of lipid
Karube et al. Glucose oxidase pellets
JPH0640815B2 (en) Bioreactor
McConville et al. Enzymatic resolution of ibuprofen in a multiphase membrane reactor
DK144277B (en) FIVE-METHOD OF PREPARING 6-AMINOPENICILLANIC ACID
EP4183864A1 (en) Process and devices for efficient partial or total solid-liquid separation using gas-controlled conditions
Giorno Membrane bioreactors
Drioli Membranes and membrane processes in biotechnology
JP2984748B2 (en) Method for culturing microorganisms using air-permeable membrane
JPS6090096A (en) Preparation of deoxidized water
FR2514782A1 (en) PROCESS FOR THE PREPARATION OF AQUEOUS SOLUTION, PRACTICALLY FREE OF CELLS, ASPARTASE AND ITS APPLICATION TO THE MANUFACTURE OF ASPARTIC ACID
JPS61173790A (en) Method of hydrolyzing fat and oil with lipase