JPS6177740A - Evaluating method of kneading property of ceramic powder and resin - Google Patents

Evaluating method of kneading property of ceramic powder and resin

Info

Publication number
JPS6177740A
JPS6177740A JP20028084A JP20028084A JPS6177740A JP S6177740 A JPS6177740 A JP S6177740A JP 20028084 A JP20028084 A JP 20028084A JP 20028084 A JP20028084 A JP 20028084A JP S6177740 A JPS6177740 A JP S6177740A
Authority
JP
Japan
Prior art keywords
resin
ceramic powder
kneading
kneaded
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20028084A
Other languages
Japanese (ja)
Inventor
Kazunori Higashide
一規 東出
Takenobu Sakai
武信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20028084A priority Critical patent/JPS6177740A/en
Publication of JPS6177740A publication Critical patent/JPS6177740A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0063Control arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PURPOSE:To evaluate kneading property, by measuring specified amounts of resin and ceramic powder to be used before injection molding, inputting the resin and the ceramic powder in a rotary viscosimeter, which is kept at a specified temperature, kneading them at a specified number of rotations, and measuring the duration of the maximum fluctuation width of the rotary torque. CONSTITUTION:Ceramic powder and a resin are kneaded, and a required molded product is manufactured by injection molding. Before manufacture, specified amounts of the resin and the ceramic powder to be used are measured and put into a rotary viscosimeter, which is kept at a specified temperature. They are kneaded at a specified number of rotations. After the start of kneading, the time period, during which the fluctuation width of the rotary torque value keeps the maximum value, is measured. Based on the measured time period, the kneading property of the ceramic powder and the resin used for the injection molding is evaluated. The kneading property of the ceramic powder and the resin is accurately evaluated before the kneading. Thus the fluidic molding pressure of the kneaded material can be accurately controlled.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はセラミック粉末と樹脂とを混練して混練物と
なし射出成形によって所要の成形品を得る場合に、セラ
ミック粉末と樹脂とを混練するに先立って、その混練性
を推定評価する方法に関するものである。
[Detailed Description of the Invention] Industrial Field of Application This invention relates to a method for kneading ceramic powder and resin to form a kneaded product, and when obtaining a desired molded product by injection molding, the invention is applied before kneading the ceramic powder and resin. The present invention relates to a method for estimating and evaluating its kneading properties.

従来技術 近年、非酸化物系の窒化珪素や炭化珪素等のセラミック
を構造用材料として適用することが研究されている。実
際にそれ等のセラミックを用いて所要の形状の製品を得
るには、それ等のセラミック粉末を樹脂と共に混練し、
流動性のある混練物となして射出成形する場合が多い。
BACKGROUND OF THE INVENTION In recent years, research has been conducted on the use of non-oxide ceramics such as silicon nitride and silicon carbide as structural materials. In order to actually obtain a product in the desired shape using such ceramics, the ceramic powder is kneaded with resin.
It is often injection molded as a fluid kneaded product.

そのようにセラミック粉末と樹脂とを混練し射出成形す
る場合には、混練物の粘度、換言すれば成形流動圧が射
出成形の作業性や成形品の[的特性等に大きく影響する
ことから、その混練物の成形流動圧を適切に調整する必
要がある。
When kneading ceramic powder and resin and injection molding in this way, the viscosity of the kneaded material, in other words, the molding flow pressure, greatly affects the workability of injection molding and the [characteristics] of the molded product. It is necessary to appropriately adjust the molding fluid pressure of the kneaded product.

ところで、セラミック粉末と樹脂とを混練して得られる
混練物の成形流動圧にはセラミック粉末の特性が大きく
影響する。すなわち、セラミック粉末と樹脂とを混練す
ると、ミクロには個々のセラミック粉末粒子の外表面に
樹脂が付着し、そのように個々のセラミック粉末粒子の
外表面に樹脂が・付着する度合によって、混練物の流動
性が変化する。具体的には、個々のセラミック粉末粒子
の外表面に樹脂が付着する度合が大きい場合には混練物
の流動性が小さくなり、付着する度合が小さい場合には
混練物の流動性が大きくなる。そしてさらに、そのセラ
ミック粉末粒子の外表面に樹脂が付着する度合は、個々
のセラミック粉末粒子の粒径および樹脂に対する濡れ性
によって左右される。すなわち、個々の粒子の粒径が小
さい程セラミック粉末全体としては樹脂が付着する度合
が大きく、また、個々の粒子の樹脂に対する濡れ性が大
きい程やはり樹脂が付着する度合が大きい。
By the way, the properties of the ceramic powder greatly influence the molding flow pressure of the kneaded product obtained by kneading the ceramic powder and the resin. In other words, when ceramic powder and resin are kneaded, the resin adheres to the outer surface of each ceramic powder particle, and the quality of the kneaded product depends on the degree to which the resin adheres to the outer surface of each ceramic powder particle. liquidity changes. Specifically, when the degree of resin adhesion to the outer surface of each ceramic powder particle is large, the fluidity of the kneaded product becomes low, and when the degree of adhesion is small, the fluidity of the kneaded product becomes high. Furthermore, the degree to which resin adheres to the outer surface of the ceramic powder particles depends on the particle size and resin wettability of the individual ceramic powder particles. That is, the smaller the particle size of each individual particle, the greater the degree to which the resin adheres to the ceramic powder as a whole, and the greater the wettability of each individual particle to the resin, the greater the degree to which the resin adheres.

以上のように、セラミック粉末と樹脂との混練物の成形
流動圧はセラミック粉末の特性、具体的には粒径および
樹脂に対する謂れ性によって影響される。
As described above, the molding flow pressure of a kneaded product of ceramic powder and resin is influenced by the characteristics of the ceramic powder, specifically, the particle size and compatibility with the resin.

一般に、セラミック粉末は、塊状のセラミックを粉砕確
によって粉砕して製造され、得られる粉末粒子の粒径は
均一ではない。また、粉砕直後の粒子の表面は非常に活
性で樹脂に対する濡れ性が大きいが、粉砕後時日の経過
にしたがい徐々に活性は低下していく。その結果、セラ
ミック粉末と樹脂との混練物を射出成形して所要の製品
を得る場合に原料として用意されるセラミック粉末の粒
径および樹脂に対する濡れ性は一様ではない。そのため
、射出成形にあたって、型への混練物の流入不足をなく
し、かつ得られる製品の品質を良好に保つためには、用
意されたセラミック粉末と樹脂との混練物の成形流動圧
を所要の程度にする様常時管理することが不可欠となる
Generally, ceramic powder is manufactured by crushing a lump of ceramic using a crusher, and the particle size of the resulting powder particles is not uniform. Furthermore, the surface of the particles immediately after pulverization is very active and highly wettable with resin, but the activity gradually decreases as time passes after pulverization. As a result, when a desired product is obtained by injection molding a kneaded mixture of ceramic powder and resin, the particle size and wettability of the ceramic powder prepared as a raw material with respect to the resin are not uniform. Therefore, during injection molding, in order to eliminate insufficient flow of the kneaded material into the mold and maintain good quality of the obtained product, it is necessary to control the molding flow pressure of the prepared kneaded material of ceramic powder and resin to the required level. It is essential to constantly manage the situation to ensure that it is maintained.

発明が解決しようとする問題点 従来、以上のセラミック粉末と悟脂との混練性の管理は
実際にセラミック粉末と樹脂とを混練してその成形流動
圧を直接測定した結果に基づき行なわれていた。しかし
、そのよ、うな従来の方法では、セラミック粉末混練の
前の時点で得られる混練物の成形流動圧を評価して管理
することはできなかった。
Problems to be Solved by the Invention Conventionally, the above-mentioned control of the kneading properties of ceramic powder and Gozo was carried out based on the results of actually kneading ceramic powder and resin and directly measuring the molding flow pressure. . However, with such conventional methods, it has not been possible to evaluate and control the molding fluid pressure of the kneaded product obtained before the ceramic powder is kneaded.

発明の目的 この発明は以上の従来の事情に鑑みてなされたものであ
って、セラミック粉末とtitzとの混練性を、混練前
に正確に評価し、混練物の成形流動圧り管理を正確に行
なうことができるようにしたセラミック粉末・樹脂混練
性評価方法を提供することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional circumstances, and it is an object of the present invention to accurately evaluate the kneading properties of ceramic powder and titz before kneading, and to accurately control the molding flow compression of the kneaded product. The purpose of the present invention is to provide a method for evaluating the kneading properties of ceramic powder and resin.

問題点を解決するための手段 すなわちこの発明のセラミック粉末・樹脂混練性評価方
法は、セラミック粉末と樹脂とを混練して射出成形によ
り所要の成形品を製造するに先立ち、樹脂と用いるべき
セラミック粉末とを各々所定置針1し、所定の温度に保
った回転粘度計に投入して所定の回転数で混練し、混P
IIR始後回転トルク値の°変動巾が最大値を持続する
時間を測定し、その時間によって射出成形に用いられる
セラミック粉末と樹脂との混練性を評価することを特徴
とするものである。
A means for solving the problem, that is, the ceramic powder/resin kneading property evaluation method of the present invention, is to mix the ceramic powder and the resin to produce a desired molded product by injection molding. Each of them is placed in a specified position, put into a rotational viscometer kept at a specified temperature, and kneaded at a specified rotational speed.
The method is characterized by measuring the time during which the range of rotational torque fluctuation remains at its maximum value after the start of IIR, and evaluating the kneading properties of ceramic powder and resin used in injection molding based on the time.

発明の詳細な説明 以下にこの発明のセラミック粉末・樹脂混練性評価方法
をざらに具体、的に説明する。
DETAILED DESCRIPTION OF THE INVENTION The method for evaluating the kneading properties of ceramic powder and resin according to the present invention will be explained in detail below.

この発明では、セラミック粉末と樹脂とを混練して射出
成形により所要の成形品を製造するに先立ち、樹脂と用
いるべきセラミック粉末とを各々所定旦計口して、所定
の温度に保った回転粘度計に投入し、所定の回転数で混
練する。
In this invention, prior to kneading ceramic powder and resin and manufacturing a desired molded product by injection molding, the resin and the ceramic powder to be used are weighed at a predetermined time, and the rotational viscosity is maintained at a predetermined temperature. Put it into a meter and knead at the specified rotation speed.

ここで、セラミック粉末と樹脂とを計量する分量を所定
量とし、回転粘度計の温度・回転数を「所定」とするの
は次の理由による。
Here, the reason why the measured amounts of ceramic powder and resin are set as predetermined amounts, and the temperature and rotational speed of the rotational viscometer are set as "predetermined" is as follows.

この発明では前述したように回転粘度計によるセラミッ
ク粉末の混練開始後、回転トルク値の変動巾が最大値を
持続する時間(以下最大変動巾持続時間と記す)を測定
し、その最大変動巾持続時間によって用いられるセラミ
ック粉末と樹脂との混練性を評価する。その評価にあた
っては、後述するように例えば各種の粒径のセラミック
粉末の最大変動巾持続時間と混練物の成形流動圧との相
関を予め調査して資料を作成しておき、その資料を用い
て評価を行なう。したがって、この発明を実施して射出
成形に用いられるセラミック粉末についてその混練性を
評価する際には、買料作成時と同一条件で最大変動巾持
続時聞を測定する必要がある。すなわち、回転粘度計に
投入するセラミック粉末と樹脂との分量、回転粘度計の
温度および回転数は資料作成時に予め定められた数値と
同一である必要がある。しかし、それ等の数値は資料作
成時と同一であれば足り、実施の状況例えば用いられる
回転粘度計の種別に応じて資料作成時に種々設定し得る
ものである。したがってこの発明においては、回転粘度
計に投入するセラミック粉末と樹脂の分量、回転粘度計
の温度および回転数は具体的には特定されず、事前に行
なわれる資料作成時と同一にするという意味において、
セラミック粉末と樹脂の分量については所定の分量、回
転粘度計の温度については所定の温度、その回転数につ
いては所定の回転数とされる。
As described above, in this invention, after the start of kneading of ceramic powder using a rotational viscometer, the time during which the range of variation in the rotational torque value remains at its maximum value (hereinafter referred to as maximum variation range duration) is measured, and the duration of the maximum variation range is measured. The kneading properties of the ceramic powder and resin used are evaluated depending on the time. For this evaluation, as described later, for example, the correlation between the maximum fluctuation width duration of ceramic powders of various particle sizes and the molding fluid pressure of the kneaded product is investigated and data prepared, and the data is used to create the data. Evaluate. Therefore, when implementing the present invention and evaluating the kneadability of ceramic powder used in injection molding, it is necessary to measure the duration of the maximum fluctuation range under the same conditions as when preparing the powder. That is, the amounts of ceramic powder and resin to be introduced into the rotational viscometer, the temperature and rotational speed of the rotational viscometer need to be the same as the values predetermined at the time of preparing the data. However, it is sufficient that these numerical values are the same as those at the time of creating the data, and various settings can be made at the time of creating the data depending on the implementation situation, for example, the type of rotational viscometer used. Therefore, in this invention, the amounts of ceramic powder and resin to be introduced into the rotational viscometer, the temperature and rotation speed of the rotational viscometer are not specifically specified, but are meant to be the same as those used when preparing the materials in advance. ,
The amounts of the ceramic powder and resin are set at predetermined quantities, the temperature of the rotational viscometer is set at a predetermined temperature, and the rotational speed thereof is set at a predetermined number of rotations.

次にこの発明では、以上のように混練する過程で最大変
動巾持続時間を測定する。最大変動巾持続時間の測定は
、第1図に示すように時間変化に伴なうトルク値の変化
を記録したトルクチャートを作成することによって行な
うことができる。
Next, in the present invention, the maximum fluctuation range duration is measured during the kneading process as described above. The maximum fluctuation range duration can be measured by creating a torque chart that records changes in torque values over time, as shown in FIG.

第1図に示すトルクチャートの波形に注目すると、混練
の初期からトルクのフレ幅が比較的大きい領域Aが存在
する。これは、混練の初期においては、混練物中に固形
物、液状物、空気が混在しており、空気相は回転粘度計
のブレード回転に対して抵抗が小さく、液相・同相は抵
抗が大きいため、ブレード回転に対する抵抗の変化が大
きいからである。このようにトルクのフレ幅が大きい領
域Aをファニキュラーと通称する。次に、そのファニキ
ュラーからトルクフレ幅が比較的小さい領域Bに移行す
る。これは、混練物中の固形物(セラミック粉末)のま
わりが液状1(樹It)によって被覆され、ブレード回
転に対する抵抗が小さくなると共に、混練物中から外部
に空気が飛散消失して、ブレード回転に対する抵抗の変
化が小さくなるからである。このようにトルクのフレ幅
が小さい領域Bをキャピラリーと通称する。
When paying attention to the waveform of the torque chart shown in FIG. 1, there is a region A in which the torque fluctuation width is relatively large from the beginning of kneading. This is because at the beginning of kneading, solids, liquids, and air are mixed in the kneaded material, and the air phase has little resistance to the rotation of the rotary viscometer blade, while the liquid phase and in-phase have high resistance. This is because the change in resistance to blade rotation is large. Region A where the torque fluctuation width is large in this way is commonly referred to as a funicular. Next, the torque fluctuation width shifts from the funicular to a region B where the torque fluctuation width is relatively small. This is because the solid material (ceramic powder) in the kneaded material is coated with the liquid 1 (wood), which reduces the resistance to the rotation of the blade, and at the same time, air scatters and disappears from the kneaded material to the outside, causing the blade to rotate. This is because the change in resistance against . Region B where the torque fluctuation width is small in this way is commonly called a capillary.

さて、以上の各領域のうち、フ7ニキュラーには、図上
Cで示すように、回転トルク逍の変動巾が歳大債を持続
する時間帯が存在するっそのような時間帯Cは、種々の
セラミック粉末について一般的に見られるものである。
Now, among the above-mentioned regions, as shown by C in the figure, there is a time period in which the range of fluctuation of the rotational torque remains at the same level. It is commonly found in various ceramic powders.

したがって、その時間帯Cの時間を採ることによってこ
の発明でいう最大変動巾持続時間とすることができる。
Therefore, by taking the time period C, it can be set as the maximum fluctuation range duration according to the present invention.

次にこの発明では、以上のようにして得られる最大変動
巾持続時間によって射出成形に用いられるセラミックη
末とt!1脂との混練性を評価する。
Next, in this invention, the ceramic η used for injection molding is determined by the maximum fluctuation width duration obtained as described above.
End and t! 1. Evaluate kneading properties with 1 fat.

評価にあたっては、例えば次のようにすることができる
For example, the evaluation can be done as follows.

最大変動巾持続時間の異なるセラミック粉末について、
実際に混練別によって一定時間混練し、得られる混練物
の成形流動圧を測定し、最大変動巾持続時間と成形流動
圧との相関図を作成し、検fi51とする。実際の操業
時には、用いられるセラミック7分末の最大変動巾持続
時間から前述の挨翅翰を用いて、所定の混練深によって
一定時間混練して傳られる混練物の成形流動圧を推定評
価する。
For ceramic powders with different maximum variation durations,
The mixture is actually kneaded for a certain period of time depending on the kneading process, and the molding fluid pressure of the resulting kneaded product is measured, and a correlation diagram between the maximum fluctuation width duration and the molding fluid pressure is created and used as test fi51. During actual operation, the molding flow pressure of the kneaded product that is kneaded for a certain period of time at a predetermined kneading depth is estimated and evaluated using the above-mentioned kneader from the maximum fluctuation width duration of the ceramic 7-minute powder used.

実施例 以下にこの発明の実施例を示す。Example Examples of this invention are shown below.

塊状の窒化けい素をアルミナボールミルによって沿砕し
、粒度をD50−1.0声に調整し、その粉末を18置
いたくサンプル1)。そのサンプル1について内容al
oo+++lのラボ・ブラストミルで最大変動巾持続時
間を測定した。また、上記粉末を1力月放置した(サン
プル2)。そのサンプル2について、サンプル1に用い
たのと同じラボ・ブラストミルで最大変動巾持続時間を
測定した。
Sample 1): Massive silicon nitride was milled using an alumina ball mill, the particle size was adjusted to D50-1.0, and the powder was placed in 18 pieces. Contents of sample 1
Maximum fluctuation duration was measured with a Lab Blast Mill at oo+++l. Further, the above powder was left for one month (Sample 2). The maximum amplitude duration was measured for Sample 2 in the same lab blast mill used for Sample 1.

さらに、その粉末に微粉末(Dso=0.5戸)を重役
比で10%添加し、■型混合はで乾式混合したくサンプ
ル3)。そのサンプル3について、他のナンブルと同様
にして最大変動巾持続時間を測定した。
Furthermore, 10% of fine powder (Dso = 0.5 units) was added to the powder, and dry mixing was performed using a ■ type mixing method (Sample 3). Regarding Sample 3, the maximum fluctuation range duration was measured in the same manner as the other samples.

以上においてサンプル1は表面活性が高く、樹脂との濡
れ性が大きいサンプルであり、それに対しサンプル2は
表面活性が低く、樹脂との濡れ性が小さいサンプルであ
る。また、サンプル3は他のサンプルとは粒度の異なる
サンプルである。さらに、その他に表面活性および粒度
を種々変えて、サンプル4〜6を用意し、各々について
最大2<b巾を測定した。
In the above, sample 1 has high surface activity and high wettability with resin, whereas sample 2 has low surface activity and low wettability with resin. Further, sample 3 has a different particle size from the other samples. Furthermore, Samples 4 to 6 were prepared with various surface activities and particle sizes, and the maximum width of 2<b was measured for each sample.

以上の各種のサンプルについての最大変動巾持続時間の
測定は、ラボ・ブラストミルを190℃に保持し、回転
ブレードを15 r、p、mで回転させ、先ずワックス
系を42g投入し、さらにセラミック粉末168gを徐
々に投入し、セラミック粉末の全量を投入した後、測定
温度がピークになった時を混練スタート時として行なっ
た。
To measure the maximum fluctuation range duration for the various samples mentioned above, the Labo Blast Mill was held at 190°C, the rotating blade was rotated at 15 r, p, m, and 42 g of the wax system was first added, and then the ceramic After 168 g of powder was gradually added and the entire amount of ceramic powder was added, kneading was started when the measured temperature reached its peak.

さらに、以上の各サンプルを大型ニー夕で各100分間
混練し、得られた混練物の成形流動圧を測定した。その
成形流動圧と最大変動巾持続詩間の関係を第2図に示す
。図に示すように成形流動圧と最大変動巾持続詩間とは
、極めて良好な相関を示す。
Furthermore, each of the above samples was kneaded for 100 minutes in a large kneader, and the molding flow pressure of the resulting kneaded product was measured. The relationship between the molding fluid pressure and the maximum fluctuation width duration is shown in Figure 2. As shown in the figure, there is an extremely good correlation between the molding flow pressure and the maximum fluctuation width duration.

第2図から、例えば混練物の射出成形にあたっての最適
成形流動圧が200〜300kll/c/であるときに
は、最大変動巾持続時間が10〜30分のセラミック粉
末を用いれば良いことがわかる。
From FIG. 2, it can be seen that, for example, when the optimum molding flow pressure for injection molding of a kneaded material is 200 to 300 kll/c/, it is sufficient to use a ceramic powder with a maximum fluctuation range duration of 10 to 30 minutes.

したがって、実際の操業時には、用いるべきセラミック
粉末の最大変動巾持続時間を調べ、その最大変動巾持続
時間が10〜30分の間に入るか否かによって使用に供
するか否かを評賀できる。
Therefore, during actual operation, the maximum fluctuation range duration of the ceramic powder to be used can be checked, and whether or not it can be used can be judged based on whether the maximum fluctuation range duration is between 10 and 30 minutes.

発明の効果 以上のようにこの発明のセラミック粉末・樹脂混練性評
価方法では、セラミック粉末と樹脂とを回転粘度計で混
練する際の、最大変動巾持続時間を測定し、その最大変
動巾持続時間によって、射出成形に用いられるセラミッ
ク粉末と樹脂との混練性を事前に評価するようにしたこ
(二よって、製造メーカー、製造ロフト、グレード等の
異なるセラミック原料粉末の混練性を使用前に正確に評
価できる。その結果、セラミック原料育末の決定、樹脂
量の決定、混錬条件の決定を精度良く行なうことができ
、最適な混練物を得ることができる。
Effects of the Invention As described above, in the ceramic powder/resin kneading property evaluation method of the present invention, the maximum fluctuation width duration when ceramic powder and resin are kneaded using a rotational viscometer is measured, and the maximum fluctuation width duration is calculated. Therefore, the kneading properties of ceramic powder and resin used for injection molding were evaluated in advance (2). As a result, it is possible to accurately determine the end of the ceramic raw material, the amount of resin, and the kneading conditions, and an optimal kneaded product can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、セラミック粉末と樹脂とを回転粘度計で混練
する際の、時間経過に伴なうトルク値の変化を示す図、
第2図はこの発明の一実施例の説明図で、種々のセラミ
ック9末について最大変力中持続時間と成形流動圧との
関係を調べ、その関係を示した検う竹を示す図である。 出顔人  トヨタ自!IJ車株式会社 代理人  弁理士 豊 E8  武 久(ぽか1名)
FIG. 1 is a diagram showing changes in torque value over time when ceramic powder and resin are kneaded using a rotational viscometer;
Fig. 2 is an explanatory diagram of one embodiment of the present invention, and is a diagram showing a test piece showing the relationship between the maximum strain duration and molding flow pressure for various ceramic powders. . Appearance: Toyota Motor Corporation! IJ Car Co., Ltd. Agent Patent Attorney Yutaka E8 Hisashi Take (Poka 1 person)

Claims (1)

【特許請求の範囲】[Claims] セラミック粉末と樹脂とを混練して射出成形により所要
の成形品を製造するに先立ち、樹脂と用いるべきセラミ
ック粉末とを各々所定量計量して、所定の温度に保った
回転粘度計に投入して所定の回転数で混練し、混練開始
後回転トルク値の変動巾が最大値を持続する時間を測定
し、その時間によって射出成形に用いられるセラミック
粉末と樹脂との混練性を評価することを特徴とするセラ
ミック粉末・樹脂混練性評価方法。
Before kneading ceramic powder and resin to produce a desired molded product by injection molding, the resin and the ceramic powder to be used are each weighed in predetermined amounts and placed into a rotational viscometer kept at a predetermined temperature. The method is characterized by kneading at a predetermined rotational speed, measuring the time during which the fluctuation range of the rotational torque value remains at its maximum value after the start of kneading, and evaluating the kneading properties of ceramic powder and resin used for injection molding based on that time. Ceramic powder/resin kneading performance evaluation method.
JP20028084A 1984-09-25 1984-09-25 Evaluating method of kneading property of ceramic powder and resin Pending JPS6177740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20028084A JPS6177740A (en) 1984-09-25 1984-09-25 Evaluating method of kneading property of ceramic powder and resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20028084A JPS6177740A (en) 1984-09-25 1984-09-25 Evaluating method of kneading property of ceramic powder and resin

Publications (1)

Publication Number Publication Date
JPS6177740A true JPS6177740A (en) 1986-04-21

Family

ID=16421687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20028084A Pending JPS6177740A (en) 1984-09-25 1984-09-25 Evaluating method of kneading property of ceramic powder and resin

Country Status (1)

Country Link
JP (1) JPS6177740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175481A1 (en) * 2019-02-28 2020-09-03 地方独立行政法人神奈川県立産業技術総合研究所 Fluid sample internal structure observation device and internal structure analysis system, fluid sample internal structure observation method and internal structure analysis method, and method for manufacturing ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175481A1 (en) * 2019-02-28 2020-09-03 地方独立行政法人神奈川県立産業技術総合研究所 Fluid sample internal structure observation device and internal structure analysis system, fluid sample internal structure observation method and internal structure analysis method, and method for manufacturing ceramic

Similar Documents

Publication Publication Date Title
KR101740096B1 (en) Mixer, method of mixing raw material for powder metallurgy, binder for injection moulding composition
EP1328238B1 (en) Device for determining the end of the processing time for hardening dental masses
CN108409330A (en) A kind of method that 3D moldings prepare compact silicon carbide ceramic
Nakajima et al. Rheology of PVC plastisol: particle size distribution and viscoelastic properties
In et al. Fourier transform mechanical spectroscopy of the sol-gel transition in zirconium alkoxide ceramic gels
US4145143A (en) Method of controlling the properties of a mixture
JPS6177740A (en) Evaluating method of kneading property of ceramic powder and resin
JPS61100411A (en) Method of evaluating ceramic powder-resin kneading property
US6241376B1 (en) Process for the preparation of a magnetic dispersion for magnetic recording media and magnetic recording media produced therewith
JPS6179138A (en) Evaluating method of kneadability of ceramic powder and resin
Reddy et al. Loading of solids in a liquid medium: Determination of CBVC by torque rheometry
CN109283096A (en) A kind of detection method of Iron Ore Powder index of cementation
JPS60179631A (en) Method for evaluating viscosity of kneaded material of ceramic powder and resin
Vermilyea et al. The rheologic properties of endodontic sealers
Tscheuschner et al. Instrumental texture studies on chocolate III. Processing conditioned factors influencing the texture
Wildman et al. Breakdown of agglomerates in ideal pastes during extrusion
JPS613031A (en) Method for measuring flowability of highly viscous substance
JP4102262B2 (en) Method for evaluating the fluidity of irregular refractories in a mixer
CN112268764A (en) Segregation-free uniform distribution method for powdery sample
US3246998A (en) Impression material
CN108776083A (en) A kind of magnetorheological fluid redispersibility quantitative measuring method
CN115091619B (en) Ultra-high performance concrete stirring system determining device and method
Collins et al. Relationship between torque and capillary rheometer thermal stability measurements for PVC compounds
JPH07285125A (en) Method for controlling and monitoring kneader, and device for controlling the kneader
JP2743569B2 (en) Method of estimating concrete slump value