JPS61773A - Apparatus for detecting embedded object - Google Patents

Apparatus for detecting embedded object

Info

Publication number
JPS61773A
JPS61773A JP59119941A JP11994184A JPS61773A JP S61773 A JPS61773 A JP S61773A JP 59119941 A JP59119941 A JP 59119941A JP 11994184 A JP11994184 A JP 11994184A JP S61773 A JPS61773 A JP S61773A
Authority
JP
Japan
Prior art keywords
antenna
embedded object
scanning
reflected
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59119941A
Other languages
Japanese (ja)
Inventor
Yoshihiro Michiguchi
道口 由博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59119941A priority Critical patent/JPS61773A/en
Publication of JPS61773A publication Critical patent/JPS61773A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To achieve the imaging of the position of an embedded object at a high speed with high accuracy by shortening the processing time of a position detector, by operating the curve corresponding to the inclination of the locus curve of the embedded object obtained with the scanning of a radio wave emitter and a reflected wave detector and increasing the memory content to said curve to display the result thereof. CONSTITUTION:The signal from an oscillator 10 is guided to an antenna 12 through a circulator 11 to emit a radio wave. The reflected wave from the embedded object 2 under the ground 1 is detected by the antenna 12 to be inputted to an operator 15 through the circulator 11, an amplifier 13 and a sampling apparatus 14. The output of the scanning position detector 16 of the antenna 12 is inputted to the operator 15. CPU15 calculates the tangential line of the locus curve of the embedded object to calculate the inclination thereof and calculates reflected light paths to calculate the position of the object as the intersecting point of one or more of reflected light paths. By performing this calculation at plural points, the memory content at the position where the object is present is increased. Said memory content is modulated in its intensity and displayed on a display device 17 and the position of the object is discriminated from the image thereof.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、地中や水中等に埋設・設置された物体を、電
磁波によるレーダ一方式で検出する装置に係わり、とく
に、被測定物位置を精度よく映像化するのに好適な埋設
物検知装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a device for detecting an object buried or installed underground or in water using a single radar system using electromagnetic waves. The present invention relates to a buried object detection device suitable for accurately imaging.

〔発明の背景〕[Background of the invention]

従来、例えば土中に埋設されたガス管、水道管の検知装
置として、レーダ装置が知られている(例えば、電子通
信学会論文誌、66巻6号に記載の論文、「地中レーダ
システム」)。これは、パルス状の電磁波を地中に送信
し、埋設物からの反射波を検出して処理し、映像化する
ものである。
Conventionally, radar devices have been known as detection devices for gas pipes and water pipes buried underground, for example (for example, see the paper "Underground Radar System" in Journal of the Institute of Electronics and Communication Engineers, Vol. 66, No. 6). ). This system transmits pulsed electromagnetic waves underground, detects reflected waves from buried objects, processes them, and visualizes them.

映倫化のため、電波の送受信部であるアンテナを地表で
走査し、各走査位置で反射波を検出する。
In order to improve the image quality, the antenna, which transmits and receives radio waves, scans the earth's surface and detects reflected waves at each scanning position.

この時、電波送信から受信までの時間から得られる埋設
物の距離は、下式で示される。
At this time, the distance of the buried object obtained from the time from radio wave transmission to reception is expressed by the following formula.

y 2= (x−xn )2+g2(1)ここで、y;
検出した埋設物深さ、 ′ x;アンテナ走査位置、 (x!l r >’l ) ?埋設物の位置座標。
y2=(x-xn)2+g2(1) where y;
Depth of detected buried object, ′ x; Antenna scanning position, (x!l r >'l )? Location coordinates of buried objects.

(1)式かられかるように、(Xm + ys )の位
置にある物体が、あたかも(x、y)なる双曲線上の広
い範囲に存在する様に映倫化される。仁のため、物体を
検知する分I4籠は低下し、埋設物体の位置を正確に求
められない問題がある。この問題点解決の二手法に、合
成開口法を用いるものがある(第9回りモートセンシン
グシンポジウム(昭58年12月)で発表の「地中探査
レーダ」)。
As can be seen from equation (1), the object at the position (Xm + ys) is visualized as if it existed in a wide range on the hyperbola (x, y). Because of this, the I4 cage decreases as the object is detected, causing the problem that the position of the buried object cannot be determined accurately. Two methods for solving this problem include the use of the synthetic aperture method (``Ground Exploration Radar'' presented at the 9th Moat Sensing Symposium (December 1982)).

この手法は、多数のアンテナ走査位置での反射波情報を
記憶しておき、(1)式の逆算処理で映像化する。この
方法は、アンテナ走査の広い範囲の情報を逆算演算する
ため、演算時間が大であり、走査しながら埋設物体を検
知するのは不可能である。
In this method, reflected wave information at a large number of antenna scanning positions is stored and visualized by back calculation processing using equation (1). In this method, information from a wide range of antenna scanning is calculated backwards, so the calculation time is large, and it is impossible to detect a buried object while scanning.

〔発明の目的〕[Purpose of the invention]

本発明は、レーダ一方式における位置検知装置の硫理時
間短縮をはかり、これにより、埋設物位置を高精度で、
しかも、高速で映像化する装置の提供を目的としている
The present invention aims to shorten the sintering time of a position detection device in a radar-only system, thereby detecting the location of buried objects with high precision.
Furthermore, the purpose is to provide a device that can visualize images at high speed.

〔発明の概要〕[Summary of the invention]

以下、本発明の詳細な説明する。本発明では、(1)式
で形成される像の傾きに注目したことに特徴・がある。
The present invention will be explained in detail below. The present invention is characterized in that it focuses on the inclination of the image formed by equation (1).

つまり、α)式で示される曲線が光等に対して収束作用
を持つ性質を利用する。概念的に述べると、(1)式で
示される形状を持つ反射鏡に、y軸に平行な光線があた
ると、その光線の大部分が(X+、1.5y+)の位置
に集光されることを用いる。実際には、あるアンテナの
走査位置において、その近傍のデータから、(1)式の
傾きを求め、幾何光学的な演算によって、y軸に平行な
光線が反射する光路を求めるっ腹数点でこの演算をする
と、物体がある所は光線の量が多くなって他の場所と明
確に識弁できる。本発明の演算は、ある場所における光
路の直線演算であるので、計算時間は短かく、また、極
端に言うと2点でのデータからでも埋設物体を識別でき
る長所がある。
In other words, the property of the curve represented by equation α) having a convergence effect on light, etc. is utilized. Conceptually speaking, when a ray parallel to the y-axis hits a reflecting mirror with the shape shown by equation (1), most of the ray is focused at the position (X+, 1.5y+). use things. In reality, at a scanning position of a certain antenna, the slope of equation (1) is found from the data in the vicinity, and the optical path along which the rays parallel to the y-axis are reflected is determined by geometrical optics calculations. When this calculation is performed, the amount of light rays increases where the object is, and it can be clearly distinguished from other places. Since the computation of the present invention is a linear computation of the optical path at a certain location, the computation time is short and, to put it in the extreme, it has the advantage of being able to identify a buried object even from data at two points.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は、本発明の構成を示す図である。■が地表面で
あり、2が埋設物体である。2に対し、発振器10から
の信号をサーキュレータ11を通してアンテナ12に導
びき、電波を放射する。20反射電波を12で検知し、
11から増幅器13に伝送して増幅する。14は、サン
プリング装置であり、IOからのトリが信号を得て、反
射信号である13の出力をサンプリングする。14によ
って低周波に移行した反射信号は、演算機に入力される
。15には、12の走査位置検出器16の出力も入力さ
れ、これらを用いて、物体2の位置演算をし、結果を表
示器17に表示する。この構成図からもわかる様に、本
発明の本質的な部分は、15の演算機の演算内容である
。以下、15の演算内容について説明する。第2図は、
15の演算内容を概念的に説明するものである。X軸が
地表面に対応し、y軸の方向が埋設の深さ方向にあたる
。20が、(1)式に対応しているうこの図かられかる
ように、真の埋設位置21に物体がある場合でも、アン
テナの走査に従って20の曲MKなってしまう。本発明
では、あるアンテナ位置X=Xにおいて、y軸に平行な
M線を20に延ばして反射光路23を求める。これを少
なくとも2本以上求めることによって、それらの交点と
して物体の位置を算出するつ以下、数式を用いて説明す
る。
FIG. 1 is a diagram showing the configuration of the present invention. 2 is the ground surface, and 2 is the buried object. 2, a signal from an oscillator 10 is guided to an antenna 12 through a circulator 11, and radio waves are radiated. 20 reflected radio waves are detected at 12,
11 to an amplifier 13 for amplification. 14 is a sampling device, which receives a signal from the IO and samples the output of 13, which is a reflected signal. The reflected signal shifted to a lower frequency by 14 is input to a computing machine. The outputs of the 12 scanning position detectors 16 are also input to 15, and these are used to calculate the position of the object 2, and the results are displayed on the display 17. As can be seen from this configuration diagram, the essential part of the present invention is the calculation contents of the 15 calculation machines. The contents of the 15 calculations will be explained below. Figure 2 shows
This is a conceptual explanation of the calculation contents of No. 15. The X-axis corresponds to the ground surface, and the y-axis direction corresponds to the burial depth direction. As can be seen from the diagram that 20 corresponds to equation (1), even if there is an object at the true buried position 21, it becomes the song MK of 20 according to the scanning of the antenna. In the present invention, at a certain antenna position X=X, the M line parallel to the y-axis is extended to 20 to obtain the reflected optical path 23. By determining at least two of these lines, the position of the object is calculated as the intersection point of these lines.The following will be explained using mathematical formulas.

アンテナ位置をXとする。22と23の交点24の座標
を、(X、Y)とすると、XおよびYの値が検出できる
。つまシ、Xは、16の出力として、また、Yは、電波
放出から反射波検出までの時間と、地中の電波伝播速度
の関係から求めることができる。第3図を参考にする。
Let the antenna position be X. If the coordinates of the intersection 24 of 22 and 23 are (X, Y), the values of X and Y can be detected. 16, and Y can be determined from the relationship between the time from radio wave emission to reflected wave detection and the underground radio wave propagation speed. Refer to Figure 3.

まず、20と22の交点24における接線25の傾きを
求める。このため、x = X−ΔX、x==X+JX
fのyのイ直を求める。これを、各々、y+a、Y+b
とすると、25の傾きは、(a−b)/2ΔXで近似で
きる。
First, the slope of the tangent 25 at the intersection 24 of 20 and 22 is determined. Therefore, x = X - ΔX, x = = X + JX
Find the i-direction of y of f. These are y+a and Y+b, respectively.
Then, the slope of 25 can be approximated by (ab)/2ΔX.

これより、第3図におけるθは tanθ=(b−a)/2ΔX(2) で関連づけられる。よって、23の方程式を求めると、
傾きがtan (* / 2−2θ)でめり、(X。
From this, θ in FIG. 3 is related by tanθ=(ba)/2ΔX(2). Therefore, finding equation 23, we get
The slope is tan (*/2-2θ) and (X.

Y)を通る条件から求まる。これは、 y = x / tan 2θ十K(3)の形であるか
ら、x=X、y=Yとして、y = ((x −X )
 Aan2θ+Y ) X 2/3       (4
)である。また、よく知られているように、tan 2
θ= 2 tan 2θ/ (1−tan2θ)(5)
である。これらよシ、するアンテナ位置Xにおける直線
23の方程式が決定される。よって、(X。
It is determined from the condition that passes Y). This is in the form y = x / tan 2θ0K (3), so if x = X and y = Y, y = ((x - X )
Aan2θ+Y ) X 2/3 (4
). Also, as is well known, tan 2
θ= 2 tan 2θ/ (1-tan2θ) (5)
It is. Based on these, the equation of the straight line 23 at the antenna position X is determined. Therefore, (X.

y)に対応するメモリにこの直線が乗っている時、(x
、y)のメモリ内容を増加させる操作をXが異なる複数
点で行なうことKよって、物体が存在する位置のメモリ
内容が増大する。17は、このメモリ内容を強度変調し
て表示するものであって、17の映像で物体位置を識別
できる。
When this straight line is on the memory corresponding to (y), (x
, y) is performed at multiple points where X is different, thereby increasing the memory content at the position where the object exists. Reference numeral 17 displays the contents of this memory after intensity modulation, and the object position can be identified from the image 17.

第4図は、15の演算内容をフローチャートで示したも
のである。1501でアンテナ位置Xを求め、さらに、
この位置において、電波放出から反射波検出までの時間
と、あらかじめ求めた地中の電波の速度からYを求める
( 1502)。このX。
FIG. 4 is a flowchart showing the contents of 15 calculations. In 1501, find the antenna position X, and further,
At this position, Y is determined from the time from radio wave emission to reflected wave detection and the velocity of underground radio waves determined in advance (1502). This X.

Yと、ΔXから(2)式によってtanθを演算する(
1503)。この段階で、(4)式が決定されているか
ら、Xを指定することにより、1504でyを求めるっ
この求めた(x、y)に対応するメモリの内容を増加さ
せ(1505)、これを、あらかじめ設定したXの範囲
について行なう(1506)。この動作を終了まで続け
る(1507)。
Calculate tanθ from Y and ΔX using equation (2) (
1503). At this stage, equation (4) has been determined, so by specifying is performed for a preset range of X (1506). This operation continues until the end (1507).

以上のような演算の結果、埋設物体が存在する位置のメ
モリ内容は急速に増加し、これによって物体の埋設位置
の識別が可能となる。
As a result of the above calculations, the memory contents at the location where the buried object is present rapidly increase, thereby making it possible to identify the buried location of the object.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、アンテナ走査位
置が小ないデータからでも埋設物体の映像化が可能であ
る。つまり、従来のように、全データを採取してから画
像を再生するのではない。
As described above, according to the present invention, it is possible to visualize a buried object even from data with a small antenna scanning position. In other words, the image is not reproduced after all data is collected, as is the case in the past.

このため、アンテナを走査しながら埋設物体を映像化で
き、実用上、大きな優利性がある9
Therefore, it is possible to visualize buried objects while scanning the antenna, which has a great practical advantage9.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的な構成図、第2図、第3図は本
発明の本質的な部分である?JitJT、機の演算内容
説明図、第4図はその処理のフローチャート図である。 l・・・地表面、2・・・埋設物体、10・・・発振器
、11・・・サーキュレータ、12・・・アンテナ、1
3・・・増幅器、14・・・ザンプリ/グ装置、15・
・・演算機、16・・・アンテナ走査位置検出器、17
・・・表示器、20・・・アンテナ走査時に得られる埋
設物体の軌跡、21・・・埋設位置、22・・・アンテ
ナ位lfXのy軸に平行な直線、23・・・反射光路、
24・・・20と22の交点、25・・・24における
接綴、26・・・24に第 11 メ 2 図 ? −ル 拓 3 ロ
Figure 1 is a basic configuration diagram of the present invention, and Figures 2 and 3 are essential parts of the present invention. FIG. 4, which is an explanatory diagram of the calculation contents of the JitJT machine, is a flowchart of the processing. l... Ground surface, 2... Buried object, 10... Oscillator, 11... Circulator, 12... Antenna, 1
3...Amplifier, 14...Zampli/gu device, 15.
...Arithmetic machine, 16...Antenna scanning position detector, 17
...Display device, 20... Trajectory of buried object obtained during antenna scanning, 21... Buried position, 22... Straight line parallel to the y-axis of antenna position lfX, 23... Reflected optical path,
24...the intersection of 20 and 22, the ligature at 25...24, the 11th me 2 at 26...24? -Rutaku 3 b

Claims (1)

【特許請求の範囲】[Claims] 1、複数位置の各々で電波を放射し、埋設物体からの反
射波を処理して埋設物を映像化する装置において、電波
放射器および反射波検出器の走査にともなつて得られる
埋設物体の軌跡曲線の傾きに応じた直線を演算し、この
直線に対応するメモリ内容を増加させ、その結果を表示
させることを特徴とする埋設物検出装置。
1. In a device that emits radio waves at each of multiple positions and processes the reflected waves from the buried object to visualize the buried object, the image of the buried object obtained by scanning the radio wave emitter and the reflected wave detector. A buried object detection device that calculates a straight line according to the slope of a trajectory curve, increases memory contents corresponding to this straight line, and displays the result.
JP59119941A 1984-06-13 1984-06-13 Apparatus for detecting embedded object Pending JPS61773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119941A JPS61773A (en) 1984-06-13 1984-06-13 Apparatus for detecting embedded object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119941A JPS61773A (en) 1984-06-13 1984-06-13 Apparatus for detecting embedded object

Publications (1)

Publication Number Publication Date
JPS61773A true JPS61773A (en) 1986-01-06

Family

ID=14773959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119941A Pending JPS61773A (en) 1984-06-13 1984-06-13 Apparatus for detecting embedded object

Country Status (1)

Country Link
JP (1) JPS61773A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425078A (en) * 1987-07-21 1989-01-27 Nippon Kokan Kk Apparatus for searching embedded body
JPH03124746U (en) * 1990-03-28 1991-12-17
US5528276A (en) * 1993-03-18 1996-06-18 Fuji Photo Film Co., Ltd. Method and device for equalizing resistance of heating element of thermal head of thermal printer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425078A (en) * 1987-07-21 1989-01-27 Nippon Kokan Kk Apparatus for searching embedded body
JPH03124746U (en) * 1990-03-28 1991-12-17
US5528276A (en) * 1993-03-18 1996-06-18 Fuji Photo Film Co., Ltd. Method and device for equalizing resistance of heating element of thermal head of thermal printer

Similar Documents

Publication Publication Date Title
KR900002200B1 (en) Apparatus and method for detecting object in medium material
AU687218B2 (en) System and method for tracking objects using a detection system
US6573855B1 (en) Three-dimensional questing method, three-dimensional voxel data displaying method, and device therefor
US7852091B2 (en) Microwave determination of location and speed of an object inside a pipe
EP0053034B1 (en) Method of determining stress distribution in a solid body
CN117092710B (en) Underground line detection system for construction engineering investigation
AU2014298574B2 (en) Device for assisting in the detection of objects placed on the ground from images of the ground taken by a wave reflection imaging device
JPS61773A (en) Apparatus for detecting embedded object
WO2021016561A1 (en) Scheimpflug correlation lidar
JP2014126970A (en) Vehicle periphery monitoring device and vehicle periphery monitoring method
JP2001159678A (en) Object judgment method by radar and radar device
CN207601853U (en) Radiation image corrects system
JP2816609B2 (en) Sound source search device for moving sound sources
US6690617B2 (en) Application of sonic signals to detect buried, underground utilities
JPH0424471Y2 (en)
JP3562998B2 (en) Real-time exploration method and device
JP2000171232A (en) Ultrasonic wave measuring instrument
JPS5818111A (en) Method and apparatus for measuring plate thickness by means of ultrasonic wave
KR20180066731A (en) A radar device using a linear frequency modulated waveform generator
JP2000081487A (en) Surveying method and device
JPH0239286A (en) Object recognizing system
JPH01187483A (en) Buried body survey device
JP2000145368A (en) Detector for buried status in underground jacking method
RU2144209C1 (en) Data processing method for detection of radiation source
RU2025744C1 (en) Method to identify homogeneous surface on the base of characteristics of reflected light detection signal