JPS6177240A - Soft x-ray generation device - Google Patents

Soft x-ray generation device

Info

Publication number
JPS6177240A
JPS6177240A JP59196615A JP19661584A JPS6177240A JP S6177240 A JPS6177240 A JP S6177240A JP 59196615 A JP59196615 A JP 59196615A JP 19661584 A JP19661584 A JP 19661584A JP S6177240 A JPS6177240 A JP S6177240A
Authority
JP
Japan
Prior art keywords
electrode
metal
hole
soft
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59196615A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
渡辺 良男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59196615A priority Critical patent/JPS6177240A/en
Publication of JPS6177240A publication Critical patent/JPS6177240A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas

Abstract

PURPOSE:To enable stable discharge even in case of big current discharge by so constituting as to separately supply a fixed amount of a working material measured in advance on the electrode surface. CONSTITUTION:When a piston 7 is pulled up by an electromagnetic coil 8, one grain of metal grains enters a thin hole 6 from a thin hole 9 of a branch. When the piston 9 goes down, the metal grains are pushed out downward for being pushed between the third electrode 12 and the main electrode 1. The hole diameter of the third electrode 12 is small so that the metal grains do not fall into a container. Main voltage is left being applied between the electrode 1 and the electrode 2 and the voltage for a trigger is applied between the third electrode 12 so that a current flows because both electrodes 12 and 1 are short-circuited by metal grains while the metal grains are melted for partly being evaporated and jetting only from a hole of the electrode 12. Said weakly ionized metal vapor is jetted between said hole and an opposed electrode 2 thus generating main discharge between the electrodes 1 and 2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は真空スパーク方式軟X線発生装置に係り、特に
電離物質に安定に供給する手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a vacuum spark type soft X-ray generator, and particularly to means for stably supplying ionized substances.

〔発明の背景〕[Background of the invention]

高電圧で充電したコンデンサを電源とし、高速大電流放
電により軟X線を発生するプラズマX線源のうち、放電
管内を真空に保っておいて電極物質を電離物質に用いて
真空スパーク方式は、電源に接続する放電スイッチを省
略できるため装置を小形高信頼高効率低価格にできる特
徴を備えている。しかしこの方式の電極物質を電離気体
に用いるため電極の消耗、それにともない電極物質によ
る放電管内の汚染が生ずる問題点がある。
Among plasma X-ray sources that use a capacitor charged at a high voltage as a power source and generate soft X-rays through high-speed, large-current discharge, the vacuum spark method uses an electrode material as an ionized material while keeping the inside of the discharge tube in a vacuum. Since the discharge switch connected to the power source can be omitted, the device can be made compact, highly reliable, highly efficient, and inexpensive. However, since this type of electrode material is used for the ionized gas, there is a problem in that the electrode is worn out and the interior of the discharge tube is contaminated by the electrode material.

電極の消耗に対して液体を電離物質として用いる方法が
特開昭57−191948号公報に示されている。
JP-A-57-191948 discloses a method of using a liquid as an ionizing substance to reduce the consumption of electrodes.

この方法は融点の低い金属を加熱して液状にし、電極中
央にあけた細孔より電極表面に供給することで、液状金
属を電離させ消耗骨は細孔から連続的に補給するもので
ある。
This method heats a metal with a low melting point to make it liquid, and supplies it to the surface of the electrode through a hole in the center of the electrode.The liquid metal is ionized and consumed bone is continuously replenished through the hole.

この方法は放電電流が十分小さい場合に適するが、数十
kAに達するパルス状大電流放電には以下の理由により
適さない。(1)大電流放電では細長い導電路にある液
体金属はジュール損失で電極表面部以外でも容易に沸騰
する。特に、液体金属と給電線との接触部のように抵抗
が大になる部分では深刻になる。(2)液体金属が気化
した部分ではアーク放電が発生するために圧力が著しく
増加し、放電路の液体金属はすべて放電路および液体金
属溜に飛散する。(3)大電流を流すためにはすみやか
にプラズマを形成しなければならない。そのためには金
属が直に蒸発するよう電極先端を十分少せる。表面張力
の大きい液状金属で尖った先端を実現するには、電極間
に高電圧を加えるかあるいは尖った心棒の表面を液状金
属で濡らすかである。前者の方法は主放電を誘発する危
険性があり、後者の方法は大電流放電に必要な量の液体
金属を供給できない問題がある。
Although this method is suitable when the discharge current is sufficiently small, it is not suitable for pulsed large current discharge reaching several tens of kA for the following reasons. (1) In a large current discharge, liquid metal in a long and narrow conductive path easily boils at areas other than the electrode surface due to Joule loss. This problem is particularly serious in areas where the resistance is high, such as the contact area between the liquid metal and the power supply line. (2) In the area where the liquid metal has vaporized, arc discharge occurs, so the pressure increases significantly, and all the liquid metal in the discharge path is scattered into the discharge path and the liquid metal reservoir. (3) In order to flow a large current, plasma must be formed quickly. To do this, the tip of the electrode should be small enough so that the metal evaporates directly. To achieve a sharp tip using a liquid metal with high surface tension, either apply a high voltage between the electrodes or wet the surface of the sharp mandrel with the liquid metal. The former method has the risk of inducing a main discharge, and the latter method has the problem of not being able to supply the amount of liquid metal required for large current discharge.

〔発明の目的〕[Purpose of the invention]

本発明の1的は融点の比較的低い金属を電離物質とする
真空スパーク方式で、パルス状大電流放電動作のとき電
離金属を安定に電極表面に供給し得る軟X線発生装置を
提供する二とにある。
One object of the present invention is to provide a soft X-ray generator that uses a vacuum spark method using a metal with a relatively low melting point as an ionized substance and can stably supply ionized metal to the electrode surface during a pulsed large current discharge operation. It's there.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明においては、1回の放電
に必要にして十分な量に測られた金属粒を電極表面に分
離して供給する手段を付加して軟X線発生装置を構成し
たことを特徴としている。
In order to achieve the above object, in the present invention, a soft X-ray generator is constructed by adding a means for separately supplying metal particles measured in an amount necessary and sufficient for one discharge to the electrode surface. It is characterized by

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。外側
ケースをかねる第1の電極1と第2の電極2とが対向し
ておかれる。電極1と電極2との間には絶縁物3があり
、これらにより放電容器を形成する。容器内は排気孔4
または5により真空に排気される。電極1の中心には細
孔6があり、中にピストン7が設置しである。ピストン
7は電磁コイル8によリート下に移動する。細孔6の中
央部に他の細孔9が分岐しており、この細孔9は金属溜
10につながっている。金属溜10の中の動作金属は、
1回の放電に必要にして十分な量ごとに粒状になってい
る。
An embodiment of the present invention will be described below with reference to FIG. A first electrode 1 and a second electrode 2, which also serve as an outer case, are opposed to each other. There is an insulator 3 between the electrodes 1 and 2, which together form a discharge vessel. Exhaust hole 4 inside the container
Or it is evacuated by 5. There is a pore 6 in the center of the electrode 1, in which a piston 7 is installed. The piston 7 is moved downward by the electromagnetic coil 8. Another pore 9 branches off from the center of the pore 6, and this pore 9 is connected to a metal reservoir 10. The working metal in the metal reservoir 10 is
It is made into granules in the amount necessary and sufficient for one discharge.

電極1の先端には絶縁物11を介して第3電極12が近
接して設置しである。絶縁物11、第3電極12の中央
部にも電極1の細孔6と位置をあわせて穴がおいている
。但し、第3電極12の穴は細孔6の直径より狭くしで
ある。第2電極の中央部も空洞13になっており、中心
部にベリリウム板をはめたX線取りだし窓14が設置し
である。
A third electrode 12 is installed close to the tip of the electrode 1 with an insulator 11 in between. A hole is also provided in the center of the insulator 11 and the third electrode 12 in alignment with the pore 6 of the electrode 1. However, the hole of the third electrode 12 is narrower than the diameter of the pore 6. The center of the second electrode also has a cavity 13, and an X-ray extraction window 14 fitted with a beryllium plate is installed in the center.

動作は次の通りである。電磁コイル8によりピストン7
が上に引きあげられると、分岐の細孔9から金属粒が一
粒、細孔6に入る。ピストン7が下に降りると金属粒は
下方へ押し出され、第3電極12と主電極1との間に押
し込まれる。このとき、第3電極12の穴径は小さいの
で金属粒が容器内には落下しない。電極1と電極2との
間に主電圧を加えておく。第3電極12と電極1との間
にトリガ用の電圧を加える。すると、両電極12゜1間
は金属粒で短絡されているので電流が流れ、金属粒は溶
は一部蒸発する。この時、蒸気は上方にはピストン7で
ふさがれているため、電極12の穴からのみ噴きだす。
The operation is as follows. Piston 7 by electromagnetic coil 8
When the metal particle is pulled upward, one metal particle enters the pore 6 from the pore 9 of the branch. When the piston 7 descends, the metal particles are pushed downward and pushed between the third electrode 12 and the main electrode 1. At this time, since the hole diameter of the third electrode 12 is small, metal particles do not fall into the container. A main voltage is applied between electrode 1 and electrode 2. A trigger voltage is applied between the third electrode 12 and the electrode 1. Then, since the two electrodes 12.degree. 1 are short-circuited by the metal grains, a current flows, and some of the melt in the metal grains evaporates. At this time, since the upper part of the steam is blocked by the piston 7, the steam is ejected only from the hole in the electrode 12.

この弱電離された金属蒸気は対向電極2との間に噴き出
て、よって電極1と電極2との間に主放電が生ずる。
This weakly ionized metal vapor is ejected between the counter electrode 2 and a main discharge between the electrodes 1 and 2.

ケース1と電極2とを分ける絶縁物3は、中央部にある
電極2を包むようにしである。中央電極2は外ケース1
に対して保温される構造になっているので、電極損失に
より中央電極2によってその外を包む絶縁物30表面は
外ケース1より高温に保たれる。電極間に噴き出て四方
に飛散した電離物質は内壁に付着するが、温度差により
外ケース1に凝集し、絶縁物3の表面への付着が妨げら
れる。外ケース1に凝集した金属が液状を保っていれば
流動して、排気孔4または排気孔5から排出される。
An insulator 3 separating the case 1 and the electrode 2 is designed to wrap around the electrode 2 in the center. The center electrode 2 is the outer case 1
Since the structure is such that heat is maintained against the central electrode 2, the surface of the insulator 30, which is surrounded by the central electrode 2, is kept at a higher temperature than the outer case 1 due to electrode loss. The ionized substances ejected between the electrodes and scattered in all directions adhere to the inner wall, but due to the temperature difference, they condense on the outer case 1 and are prevented from adhering to the surface of the insulator 3. If the metal aggregated on the outer case 1 remains liquid, it will flow and be discharged from the exhaust hole 4 or the exhaust hole 5.

以上の説明で、電離物質を金属粒としたが、要は一定量
の金属であればよく、例えば針金状にした物を一定長さ
に切断して供給してもよい。また、放電開始に補助電極
を用いる代りに、電極1の先端にある金属粒にレーザー
光を照射して蒸発噴出させでもよい。
In the above explanation, metal particles are used as the ionized substance, but the point is that it is sufficient to have a certain amount of metal, and for example, a wire-shaped object may be cut into a certain length and supplied. Furthermore, instead of using an auxiliary electrode to start the discharge, the metal grains at the tip of the electrode 1 may be irradiated with laser light to cause them to evaporate and eject.

さらに、外ケース1と絶縁物3との表面温度の保持が自
己発熱のみで行なうのが難しければ、適当にヒーターを
組込むなり、水冷管を通して冷却すればよい。
Furthermore, if it is difficult to maintain the surface temperature of the outer case 1 and the insulator 3 only by self-heating, a suitable heater may be incorporated or cooling may be performed through a water cooling pipe.

異なる実施例を第2図に示す。図示した部分は低融点金
属を供給する手段とその電極部で、他は第1図と同じで
ある。外側ケースをかねる主電極1に絶縁物11を介し
て、低融点金属を供給する機構が接続しである。供給機
構は中心に空洞6を持つ金属筒12と、空洞6内を上下
するピストン7と、ピストン7を駆動する電磁コイル8
、空洞6の中間部にあいたノズル9とからなる。低融点
金属で造られた針金16はローラ15により駆動されて
ノズル9を通って空洞6に押し込まれる。
A different embodiment is shown in FIG. The illustrated parts are a means for supplying a low melting point metal and its electrode part, and the other parts are the same as in FIG. 1. A mechanism for supplying a low melting point metal is connected to the main electrode 1, which also serves as an outer case, via an insulator 11. The supply mechanism includes a metal cylinder 12 with a cavity 6 in the center, a piston 7 that moves up and down inside the cavity 6, and an electromagnetic coil 8 that drives the piston 7.
, and a nozzle 9 opened in the middle of the cavity 6. A wire 16 made of a low melting point metal is forced into the cavity 6 through the nozzle 9, driven by the roller 15.

いま、ピストン7が上方に引きあげられると、ピストン
7の下端はノズル9の穴より上になるようにしであるか
ら、針金16の先端は空洞6内に押し出される。次に、
ピストン7を下方に駆動すると、針金16の先端で空洞
6内に在る部分はビストン7により切断され、ピストン
7とともに下方へ移動する。空洞6の中心と同心に主電
極Jの中央に穴5があけてあり、この穴径は空洞6の直
径より小さくしであるため、切断された金属粒17は放
電容器内には落下せず、絶縁物11で形成された空間内
に納まる。
Now, when the piston 7 is pulled upward, the lower end of the piston 7 is placed above the hole of the nozzle 9, so the tip of the wire 16 is pushed out into the cavity 6. next,
When the piston 7 is driven downward, the tip of the wire 16 located within the cavity 6 is cut by the piston 7 and moves downward together with the piston 7. A hole 5 is made in the center of the main electrode J concentrically with the center of the cavity 6, and since this hole diameter is smaller than the diameter of the cavity 6, the cut metal particles 17 do not fall into the discharge vessel. , fit within the space formed by the insulator 11.

トリガ用の電流を金属筒12と主電極1との間に流すと
、金属粒4は融け、かつ気化し、穴5より主電極間に噴
出する。このとき、主電極間に十分な電圧が加わってい
れば主放電が生じる。1回は主放電毎に主電極間に供給
する金属粒4の量は、針金2の直径、空洞6の直径、ピ
ストン7の往復回数により決まる。
When a trigger current is passed between the metal cylinder 12 and the main electrode 1, the metal particles 4 are melted and vaporized, and are ejected from the hole 5 between the main electrodes. At this time, if a sufficient voltage is applied between the main electrodes, a main discharge will occur. The amount of metal particles 4 to be supplied between the main electrodes at each main discharge is determined by the diameter of the wire 2, the diameter of the cavity 6, and the number of reciprocations of the piston 7.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電極表面には予め
計測された一定量の動作物質が分離して供給され、動作
物質が気化しても放電電極間に全量噴出する構造になっ
ているため、大電流放電でも安定した放電ができる。
As explained above, according to the present invention, a predetermined amount of the operating substance is separately supplied to the electrode surface, and even if the operating substance is vaporized, the structure is such that the entire amount is ejected between the discharge electrodes. Therefore, stable discharge is possible even with large current discharge.

また、中央電極を絶縁物で包むようにしであるため、電
離物質の付着を防止でき絶縁劣化を防止できる。
Furthermore, since the center electrode is wrapped with an insulator, adhesion of ionized substances can be prevented and insulation deterioration can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による軟X線発生装置の放電管の構造を
示す縦断面図、第2図は低融点金属を供給する他の機構
を示す縦断面図である。 1.2.12・・・電極、3,11・・・絶縁物、4,
5・・・排気孔、6,9.・・・細孔、7・・・ピスト
ン、8・・・電磁コイル、10・・・金属溜、13.1
4・・・穴、(忰) 壕1ニ イ2固
FIG. 1 is a longitudinal sectional view showing the structure of a discharge tube of a soft X-ray generator according to the present invention, and FIG. 2 is a longitudinal sectional view showing another mechanism for supplying a low melting point metal. 1.2.12... Electrode, 3, 11... Insulator, 4,
5...exhaust hole, 6,9. ... Pore, 7... Piston, 8... Electromagnetic coil, 10... Metal reservoir, 13.1
4...hole, (忰) trench 1 ni 2 hard

Claims (1)

【特許請求の範囲】 1、真空に排出された容器内に一対の電極が設置してあ
り、この間に高速大電流放電を行なうことにより軟X線
を発生する装置において、放電ごとに一方の電極表面に
一定量の低融点金属が分離して供給されることを特徴と
する軟X線発生装置。 2、上記低融点金属が、ガリウム、ルビジウムまたはナ
トリウム、あるいはこれを含む化合物であることを特徴
とする第1項記載の軟X線発生装置。 3、上記電極の表面に供給された低融点金属を気化させ
ることにより主放電を形成することを特徴とする第1項
記載の軟X線発生装置。 4、上記電極が同軸構造を持ち、中心電極と外側円筒電
極との間を絶縁物で分離する構造にあつて、上記中心電
極を上記絶縁物で包む構造からなることを特徴とする第
1項記載の軟X線発生装置。
[Claims] 1. In a device that generates soft X-rays by performing high-speed, large-current discharge during which a pair of electrodes are installed in a vacuum-exhausted container, one electrode is A soft X-ray generator characterized in that a certain amount of low melting point metal is separately supplied to the surface. 2. The soft X-ray generator according to item 1, wherein the low melting point metal is gallium, rubidium, sodium, or a compound containing these. 3. The soft X-ray generator according to item 1, wherein the main discharge is formed by vaporizing the low melting point metal supplied to the surface of the electrode. 4. Item 1, wherein the electrode has a coaxial structure, and the center electrode and the outer cylindrical electrode are separated by an insulator, and the center electrode is wrapped in the insulator. The soft X-ray generator described above.
JP59196615A 1984-09-21 1984-09-21 Soft x-ray generation device Pending JPS6177240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196615A JPS6177240A (en) 1984-09-21 1984-09-21 Soft x-ray generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196615A JPS6177240A (en) 1984-09-21 1984-09-21 Soft x-ray generation device

Publications (1)

Publication Number Publication Date
JPS6177240A true JPS6177240A (en) 1986-04-19

Family

ID=16360699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196615A Pending JPS6177240A (en) 1984-09-21 1984-09-21 Soft x-ray generation device

Country Status (1)

Country Link
JP (1) JPS6177240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501491A (en) * 2000-06-09 2004-01-15 サイマー, インコーポレイテッド Plasma focused light source with active gas and buffer gas control
JP2008193014A (en) * 2007-02-08 2008-08-21 Komatsu Ltd Apparatus and system for supplying target material for lpp-type euv light source apparatus
WO2023088595A1 (en) * 2021-11-22 2023-05-25 Asml Netherlands B.V. A liquid target material supplying apparatus, fuel emitter, radiation source, lithographic apparatus, and liquid target material supplying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501491A (en) * 2000-06-09 2004-01-15 サイマー, インコーポレイテッド Plasma focused light source with active gas and buffer gas control
JP2008193014A (en) * 2007-02-08 2008-08-21 Komatsu Ltd Apparatus and system for supplying target material for lpp-type euv light source apparatus
WO2023088595A1 (en) * 2021-11-22 2023-05-25 Asml Netherlands B.V. A liquid target material supplying apparatus, fuel emitter, radiation source, lithographic apparatus, and liquid target material supplying method

Similar Documents

Publication Publication Date Title
Swanson et al. Electron emission from a liquid metal
US2694763A (en) Electric arc welding
US4318029A (en) Liquid metal ion source
US3024965A (en) Apparatus for vacuum deposition of metals
Boyle et al. Arcing at electrical contacts on closure. Part VI. The anode mechanism of extremely short arcs
US2856532A (en) Pulsed ion source
US5496459A (en) Apparatus for the treating of metal surfaces
CA2695902C (en) Cathode assembly and method for pulsed plasma generation
JPS6177240A (en) Soft x-ray generation device
KR100272473B1 (en) Electric-arc plasma steam torch
KR20150020606A (en) Device for generating plasma and directing an electron beam towards a target
US2690515A (en) Method and apparatus for producing ions
US2682611A (en) Ion source
JPH04315754A (en) Ion beam generator
EP0104973A1 (en) Apparatus for ionizing a material by high-temperature heating
RU170782U1 (en) VACUUM DISCHARGE
JPS5842149A (en) Cesium ion source
JP4488273B2 (en) Target assembly for thin film formation, vapor deposition source, thin film forming apparatus, and thin film forming method
US20190373711A1 (en) System for generating a plasma jet of metal ions
JP4086964B2 (en) Coaxial vacuum arc deposition source and deposition apparatus having auxiliary anode electrode
JPS58135557A (en) Ion beam generating method and its device
US2595716A (en) Gaseous discharge device
RU2075132C1 (en) Source of intense ion beams
JP2004139913A (en) Ion beam generating device, ion beam generating method, ion processing device, and ion processing method
JPH07153403A (en) Liquid metal ion source and ion current stabilizing method