JPS6176943A - Water vapor density measuring system in atmospheric air, using dispersion of refractive index - Google Patents

Water vapor density measuring system in atmospheric air, using dispersion of refractive index

Info

Publication number
JPS6176943A
JPS6176943A JP19682484A JP19682484A JPS6176943A JP S6176943 A JPS6176943 A JP S6176943A JP 19682484 A JP19682484 A JP 19682484A JP 19682484 A JP19682484 A JP 19682484A JP S6176943 A JPS6176943 A JP S6176943A
Authority
JP
Japan
Prior art keywords
frequency
water vapor
phase
phi
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19682484A
Other languages
Japanese (ja)
Inventor
Takeshi Manabe
真鍋 武嗣
Yoji Furuhama
古濱 洋治
Toshio Ihara
井原 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RADIO RES LAB
Original Assignee
RADIO RES LAB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RADIO RES LAB filed Critical RADIO RES LAB
Priority to JP19682484A priority Critical patent/JPS6176943A/en
Publication of JPS6176943A publication Critical patent/JPS6176943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a mean value of water vapor density on a propagation path by transmitting simultaneously two electric waves of each different frequency, and measuring the phase difference between the two frequencies. CONSTITUTION:In a transmitting part 1, an output frequency (f) of an oscillator 4 and a frequency (mf) obtained by multiplying 5 the frequency (f) are transmitted, and the frequencies (f), (mf) are influenced by water vapor while they are propagated in the atmospheric air, and generate phase delays of phi1 and phi2, respectively. In a reception detecting part 2, these two frequencies are received, the frequency (f) and an output frequency f-DELTAf are mixed 11, and also the frequency (mf) and a frequency obtained by multiplying 13 the frequency f-DELTAf by (m) are mixed 14, by which they are converted to intermediate frequencies of DELTAf and mDELTAf, respectively. These frequen cies DELTAf, mDELTAf are subjected to phase delays of phi'1 and phi'2 in the detecting part 2, and outputted to intermediate frequency output terminals 12, 15 by phase relations of phi1+phi'1 and phi2+phi'2, respectively. In a phase detecting part 3, a signal proportional to a difference phi2-mphi1+(phi'2-mphi'1) of those which have multiplied a phase phi2+phi'2 of mDELTAf and a phase phi1+phi'1 of DELTAf is outputted to a phase difference output terminal 16.

Description

【発明の詳細な説明】 本発明は、大気中の水蒸気密度の測定に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the measurement of water vapor density in the atmosphere.

大気中の水蒸気密度の測定に関して、直接測定器(いわ
ゆる湿度計)は種々のタイプのものが実用化されている
が、リモートセ/すとして実用化されているのは、従来
、水蒸気放射計だけであつた。
Various types of direct measurement instruments (so-called hygrometers) have been put into practical use for measuring the water vapor density in the atmosphere, but until now only water vapor radiometers have been put into practical use as remote sensors. It was hot.

水蒸気放射計は、大気中の水蒸気分子から放射される電
磁波の雑音温度を測定することにより、上空の水蒸気量
を推定するものである。水蒸気放射計は、複数の周波数
で受信アンテナの仰角を変化させて測定することにより
、視線方向の積分水蒸気量のみならず、水蒸気の高度分
布の測定も可能であり、衛星通信回線における電波の水
蒸気による減衰の推定や、超長基線電波干渉計(VLB
■)の水蒸気による遅延の補正に用いられているところ
が、この水蒸気放射計は、水平方向に近い低仰角の測定
が困難であり、地上通信回線における電波の水蒸気によ
る減衰の推定に必要な水平方向の積分水蒸気量の測定に
用いることができない。
A water vapor radiometer estimates the amount of water vapor in the upper atmosphere by measuring the noise temperature of electromagnetic waves emitted from water vapor molecules in the atmosphere. Water vapor radiometers measure not only the integrated amount of water vapor in the line-of-sight direction but also the height distribution of water vapor by changing the elevation angle of the receiving antenna at multiple frequencies. estimation of attenuation using very long baseline radio interferometer (VLB)
■) However, this water vapor radiometer is difficult to measure at low elevation angles close to the horizontal direction; cannot be used to measure the integral amount of water vapor.

本発明は、ミリ波帯の大気の窓領域(吸収線の間の比較
的吸収の少ない周波数領域)での屈折率の分散(屈折率
の実部のうち、周波数に依存する成分)が大気中の水蒸
気密度にほぼ比例するととに着目し、二つの異なる周波
数の電波を大気中で伝搬させることにより、2周波間の
屈折率の分散の平均値を相対的な受信位相差として求め
、伝搬路上の水蒸気密度を測定することを特徴としてい
る。また、本発明の目的は、送受信アンテナの位置や角
度を任意に変えることで、垂直、水平及び斜め方向の積
分水蒸気量を高精度で測定できることにある。
The present invention is characterized in that the refractive index dispersion (the frequency-dependent component of the real part of the refractive index) in the atmospheric window region (frequency region with relatively little absorption between absorption lines) in the millimeter wave band By propagating radio waves of two different frequencies in the atmosphere, we find the average value of the dispersion of the refractive index between the two frequencies as a relative receiving phase difference, and It is characterized by measuring the water vapor density of Another object of the present invention is to be able to measure the integrated amount of water vapor in vertical, horizontal, and diagonal directions with high precision by arbitrarily changing the position and angle of the transmitting and receiving antenna.

以下、図に従い本発明の詳細な説明する。第1図は本発
明の実施例で、1は送信部、2は受信検出部、3は位相
検出部、4は発振器、5及び13は周波数逓倍器、6及
び7は送信アンテナ、8及び9は受信アンテナ、10は
受信局部発振器、11及び14は混合器、12及び15
は中間周波出力端子、16は位相差出力端子である。送
信部lでは、発振器4の出力周波数f及びその周波数f
を逓倍器5で逓倍して得られる周波数mfを送信する。
Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which 1 is a transmitter, 2 is a reception detector, 3 is a phase detector, 4 is an oscillator, 5 and 13 are frequency multipliers, 6 and 7 are transmitting antennas, 8 and 9 is a receiving antenna, 10 is a receiving local oscillator, 11 and 14 are mixers, 12 and 15
1 is an intermediate frequency output terminal, and 16 is a phase difference output terminal. In the transmitter l, the output frequency f of the oscillator 4 and its frequency f
The frequency mf obtained by multiplying by the multiplier 5 is transmitted.

それらの周波数f及びmfはコヒーレントな位相関係に
あり、大気中を伝搬する間に水蒸気の影響を受け、それ
ぞれφ1.φ2の位相遅延を生ずる。
Those frequencies f and mf have a coherent phase relationship and are influenced by water vapor while propagating through the atmosphere, and are respectively φ1. This causes a phase delay of φ2.

受信検出部2ではそれらの2周波を受信し、混合器11
において、受信周波数fと局部発振器10の出力周波数
「−Δ「(送信周波数fからΔf離調した周波数)とを
混合し、また、混合器14において、受信周波数mfと
f−Δfを逓倍器13によf)m逓倍した周波数とを混
合することにより、それぞれΔf、mΔ「の中間周波数
に変換する。それらの中間周波数Δf 、 mΔfは、
受信検出部内でφ1.φ2の位相遅延を受け、中間周波
出力端子12.15にそれぞれφ1+φ1.φ2+φ6
の位相関係で出力される。位相検出部3では、この二つ
の中間周波数を入力として、mΔ「の位相φ2+φニと
Δfの位相φ1+φ; をm倍したものの差 φ2−…φl十(φ、Hmφ;)・・・・・・・・・・
・・・・・・・・(1)(1)式のφ2−mφlは、送
信周波数f、mfO伝搬遅延の差によって生ずる受信位
相差、φ6−mφl′は、受信位相検出部内で生ずる位
相遅延差である。
The reception detection unit 2 receives these two frequencies, and the mixer 11
In the mixer 14, the receiving frequency f and the output frequency "-Δ" (frequency detuned by Δf from the transmitting frequency f) of the local oscillator 10 are mixed, and in the mixer 14, the receiving frequency mf and f-Δf are mixed in the multiplier 13. f) By mixing the frequency multiplied by m, it is converted into intermediate frequencies of Δf and mΔ', respectively. Those intermediate frequencies Δf and mΔf are
In the reception detection section, φ1. After receiving a phase delay of φ2, φ1+φ1 . φ2+φ6
It is output with a phase relationship of The phase detection section 3 inputs these two intermediate frequencies and calculates the difference between the phase φ2+φ2 of mΔ'' and the phase φ1+φ; of Δf multiplied by m, φ2−...φ10(φ, Hmφ;)...・・・・・・
......(1) In equation (1), φ2-mφl is the reception phase difference caused by the difference between the transmission frequency f and mfO propagation delay, and φ6-mφl' is the phase delay generated within the reception phase detector. It's the difference.

φ6  mφl′は、位相安定性のよい受信検出部を用
いれば一定であると考えられるので、あらかじめ校正し
ておくことによって、受信位相差φ2− mφ1を高精
度で測定することができる。この受信位相(位相遅延)
φ1.φ2は次式で表される。
Since φ6 mφl' is considered to be constant if a reception detection section with good phase stability is used, the reception phase difference φ2-mφ1 can be measured with high precision by calibrating it in advance. This reception phase (phase delay)
φ1. φ2 is expressed by the following formula.

以  下  余  白 ただし、f、m(は送信周波数、n(f)、 n(mf
)は大気屈折率のイ均値、Lは伝搬距離、Cは光速であ
る。(2) 、 (3)式から、送信周波数f、mfに
おける大気屈折率の平均値の差(屈折率の分散)n(m
f)−n (f )を求めると次式のようになる。
Below margins However, f, m( are transmission frequencies, n(f), n(mf
) is the mean value of the atmospheric refractive index, L is the propagation distance, and C is the speed of light. From equations (2) and (3), the difference in the average value of the atmospheric refractive index at the transmission frequencies f and mf (refractive index dispersion) n(m
f)-n (f) is calculated as follows.

n (mf)−n(f) = −艷一(φ2−mφ1 
) −−(4)2πf饋 位相差出力端子16で測定される受信位相差φ2−ロ】
φ1と屈折率の分散n(mf)−n(f)とは、(4)
式から明らかなように比例関係にあり、また、ミリ波帯
の大気の窓での屈折率の分散は、大気中の水蒸気密度に
ほぼ比flJする。したがって、2周波間の位相差φ2
−【n−1を測定することにより、伝搬路上の平均的な
水蒸気密度を推定することができる。
n (mf)-n(f) = -艷一(φ2-mφ1
) --(4) 2πf - Reception phase difference φ2-ro measured at the phase difference output terminal 16]
φ1 and refractive index dispersion n(mf)−n(f) are (4)
As is clear from the equation, there is a proportional relationship, and the dispersion of the refractive index at the atmospheric window in the millimeter wave band is approximately proportional to the water vapor density in the atmosphere flJ. Therefore, the phase difference between the two frequencies φ2
By measuring -[n-1, the average water vapor density on the propagation path can be estimated.

ただし、この水蒸気密度を求めるには、位相差出力端子
16の出力信号と水蒸気密度の間の関係を校正する必要
がある。それは、あらかじめ、水蒸気密度の異なった幾
つかの条件の下で標準的な湿度計による水蒸気密度の測
定と端子16の出力信号の測定とを同時に行い、この二
つの測定値の聞の関係を一次関数で近似することで校正
される。
However, in order to obtain this water vapor density, it is necessary to calibrate the relationship between the output signal of the phase difference output terminal 16 and the water vapor density. In this method, the water vapor density is measured using a standard hygrometer and the output signal of the terminal 16 is measured simultaneously under several conditions with different water vapor densities, and the relationship between these two measured values is calculated in a linear manner. It is calibrated by approximating it with a function.

第2図は、810mの伝搬路で、本発明を適用して測定
した245.52 GHz 、  81.84GHzの
2周波間の屈折率の分散と高精度湿度計により直接−1
1定した水蒸気密度(受信点付近)の関係を示したもの
である。屈折率の分散と水蒸気密度がほぼ比例関係にあ
ることが分かる。なお、第2図の実線は、5°C〜35
°Cの5°Cおきの気温について屈折率の分散を理論的
に計算した結果を示したものであり、本発明を適用して
測定した結果とよく一致していることが分かる。
Figure 2 shows the refractive index dispersion between two frequencies of 245.52 GHz and 81.84 GHz measured using the present invention in a propagation path of 810 m, and the direct -1
1 shows the relationship between constant water vapor density (near the receiving point). It can be seen that the dispersion of the refractive index and the water vapor density are approximately proportional to each other. In addition, the solid line in Figure 2 indicates the temperature range from 5°C to 35°C.
This figure shows the results of theoretically calculating the dispersion of the refractive index for temperatures at intervals of 5 degrees Celsius, and it can be seen that the results agree well with the results measured by applying the present invention.

以上のように、本発明を適用すれば、伝搬路上の水蒸気
密度の平均値を精度よく遠隔測定することが可能であり
、地上通信回線の設計や環境の監視等への応用が期待で
きる。
As described above, by applying the present invention, it is possible to accurately remotely measure the average value of water vapor density on a propagation path, and it is expected to be applied to the design of terrestrial communication lines, environmental monitoring, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のブロック図、第2図は本発明
を適用して測定した245.52 GHz、  81゜
84GHzの間の屈折率の分散と水蒸気密度との関係を
示しだ図である。 図において、1・・送信部、2・・・受信検出部、36
11位相検出部、4・・・発振器、5.13・・・周波
数逓倍器、6,7・・・送信アンテナ、8.9・・・受
信アンテナ、10・・−受信局部発振器、11.14・
・・混合器、12゜15・・・中間周波出力端子、16
・・・位相差出力端子である。
Figure 1 is a block diagram of an embodiment of the present invention, and Figure 2 is a diagram showing the relationship between the dispersion of refractive index and water vapor density between 245.52 GHz and 81°84 GHz measured by applying the present invention. It is. In the figure, 1... transmitter, 2... reception detector, 36
11 Phase detector, 4... Oscillator, 5.13... Frequency multiplier, 6, 7... Transmitting antenna, 8.9... Receiving antenna, 10...- Receiving local oscillator, 11.14・
...Mixer, 12゜15...Intermediate frequency output terminal, 16
...This is a phase difference output terminal.

Claims (1)

【特許請求の範囲】[Claims] 大気中の水蒸気密度の測定において、ミリ波帯の二つの
異なつた周波数の電波を同時に送信し、伝搬路上の水蒸
気分子の屈折率の相違により生ずる2周波間の位相遅延
の差を受信側で測定することにより、その受信位相遅延
の差から伝搬路上の平均的な水蒸気密度を測定すること
を特徴とする屈折率分散を用いた大気中の水蒸気密度測
定方式
In measuring the water vapor density in the atmosphere, radio waves of two different frequencies in the millimeter wave band are simultaneously transmitted, and the difference in phase delay between the two frequencies caused by the difference in the refractive index of water vapor molecules on the propagation path is measured on the receiving side. A method for measuring atmospheric water vapor density using refractive index dispersion, which measures the average water vapor density on the propagation path from the difference in reception phase delay.
JP19682484A 1984-09-21 1984-09-21 Water vapor density measuring system in atmospheric air, using dispersion of refractive index Pending JPS6176943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19682484A JPS6176943A (en) 1984-09-21 1984-09-21 Water vapor density measuring system in atmospheric air, using dispersion of refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19682484A JPS6176943A (en) 1984-09-21 1984-09-21 Water vapor density measuring system in atmospheric air, using dispersion of refractive index

Publications (1)

Publication Number Publication Date
JPS6176943A true JPS6176943A (en) 1986-04-19

Family

ID=16364271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19682484A Pending JPS6176943A (en) 1984-09-21 1984-09-21 Water vapor density measuring system in atmospheric air, using dispersion of refractive index

Country Status (1)

Country Link
JP (1) JPS6176943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166232A1 (en) * 2019-02-12 2020-08-20 古野電気株式会社 Water vapor observation instrument and water vapor observation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102146A (en) * 1982-12-03 1984-06-13 Nippon Steel Corp Moisture measuring apparatus using microwave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102146A (en) * 1982-12-03 1984-06-13 Nippon Steel Corp Moisture measuring apparatus using microwave

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166232A1 (en) * 2019-02-12 2020-08-20 古野電気株式会社 Water vapor observation instrument and water vapor observation method
JPWO2020166232A1 (en) * 2019-02-12 2021-12-16 古野電気株式会社 Water vapor observation meter and water vapor observation method

Similar Documents

Publication Publication Date Title
CN110780124B (en) High-temperature environment terahertz material dielectric property measuring device and method
Ayhan et al. Millimeter-wave radar sensor for snow height measurements
US5221927A (en) Lidar-acoustic sounding of the atmosphere
CN102565764A (en) Near-field delay calibration method for channels of broadband thinned array radar
Yasuda et al. Horizontal atmospheric delay measurement using wireless two-way interferometry (Wi-Wi)
Barowski et al. Millimeter wave material characterization using FMCW-transceivers
US7031862B2 (en) Apparatus and analysis method for determination of moisture in materials
JPS6176943A (en) Water vapor density measuring system in atmospheric air, using dispersion of refractive index
JP2003075369A (en) Method and instrument for measuring dielectric constant
Hosseini et al. Terahertz channel characterization using a silicon-based picosecond pulse source
Fourmann et al. Wireless sensors for the incident pressure measurement in air blast
Reinhardt et al. Size determination in particle streams using a multistatic dual frequency millimeter wave radar
Berg et al. Millimeter wave radiometer with adjustable internal calibration load for high resolution measurements of stratospheric constituents
Barowski et al. Ellipsometry based on millimeter wave radar measurements
Salim et al. Calibration of wideband autocorrelation radiometer with a comb filter for RFI mitigation
US3511568A (en) Electro-optical distance measuring device
Vilovic et al. A non-destructive approach for extracting the complex dielectric constant of the walls in building
Thacker et al. Ground-based sensing of water vapor in the stratosphere and mesosphere
Shirokov et al. Experimental investigation of amplitude and phase progression fluctuation on microwave line-of-sight link
Zeng et al. Intercalibration of FY-3C MWRI brightness temperature against GMI measurements based on ocean microwave radiative transfer model
Raisanen Challenges of terahertz
Judaschke et al. Comparison of waveguide and free-space power measurement in the millimeter-wave range
Murk et al. Characterization of various quasi-optical components for the submillimeter limbsounder SMILES
Ravussin Remote acoustic electronic sounding (RACES)
Moss et al. The absolute determination of near millimetre wave power in free space