JPS6175818A - Production of alumina fiber - Google Patents

Production of alumina fiber

Info

Publication number
JPS6175818A
JPS6175818A JP19690084A JP19690084A JPS6175818A JP S6175818 A JPS6175818 A JP S6175818A JP 19690084 A JP19690084 A JP 19690084A JP 19690084 A JP19690084 A JP 19690084A JP S6175818 A JPS6175818 A JP S6175818A
Authority
JP
Japan
Prior art keywords
fibers
aqueous liquid
alumina
organic
colloidal silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19690084A
Other languages
Japanese (ja)
Inventor
Mikio Kanehara
金原 幹夫
Akira Murase
村瀬 晃
Koji Iwase
岩瀬 浩司
Hiroo Ozawa
小沢 洋雄
Hiroyuki Yagi
八木 弘行
Yasuhide Takao
高尾 保秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Kako KK
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Kako KK
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Kako KK, Nippon Light Metal Co Ltd filed Critical Nikkei Kako KK
Priority to JP19690084A priority Critical patent/JPS6175818A/en
Publication of JPS6175818A publication Critical patent/JPS6175818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:An aqueous liquid composed of basic aluminum chloride, colloidal silica, and an organic binder is combined with a specific organic additive, then extruded into fibers and roasted to produced the titled fibers with high mechanical properties and heat resistance easily at a low cost. CONSTITUTION:At first, an aqueous liquid which is composed of (A) basic aluminum chloride, (B) colloidal silica and (C) an organic binder such as PVA is combined with (D) a compound which is composed of carbon, hydrogen and oxygen atoms, has 2 hydroxyls and is soluble in water with neutral chain, or can form a chain organic compound in the aqueous liquid, preferably ethylene glycol. Then, the resultant aqueous liquid is converted into fibers and the fiber precursor is roasted to give the objective fibers. The weight ratio of components A:B:C:D is preferably (80-98):(20-2):(3-10):(3-10).

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、塩基性塩化アルミニウムを原料とし。[Detailed description of the invention] "Industrial application field" The present invention uses basic aluminum chloride as a raw material.

機械的特性及び耐熱特性が十分に良好な耐火性のアs(
ミナ質繊維を安定的に製造し得るアルミナ質繊維の製造
方法に関するものである。
Fire-resistant AS (
The present invention relates to a method for producing alumina fibers that can stably produce alumina fibers.

「従来の技術」 アルミナ繊維のような無機酸化物繊維は、熱あるいは音
に対する絶縁体、プラスチックス、フィルムなどの充填
材2強化材又は引張り強度及び磨耗強度の補強材あるい
は熱機関から生成する炭化水素質排ガス用の触媒又は触
媒担体、その他耐火性を利用した多くの用途に利用され
ている。
``Prior Art'' Inorganic oxide fibers such as alumina fibers can be used as heat or sound insulation, fillers such as plastics, films, reinforcements or tensile and abrasion strength reinforcements or carbonization produced from heat engines. It is used as a catalyst or catalyst carrier for hydrogen exhaust gas, and in many other applications that take advantage of its fire resistance.

しかして、その製造方法として多くの提案がなされてお
り、たとえば、(1)アルミニウムなどの塩化物その他
の塩の溶液を濃縮し、紡糸して繊維化し、乾燥した後、
加熱して金属酸化物に変換して金属酸化物繊維を得る方
法(特公昭45−9896号)。
Therefore, many proposals have been made as a method for producing the same.
A method of obtaining metal oxide fibers by heating and converting them into metal oxides (Japanese Patent Publication No. 45-9896).

(2)アルミナゾル、シリカゾルのような耐火性無機酸
化物のゾル及び水溶性の繊維形成有機重合体からなる反
応混合物の溶液を蒸発濃縮した後、繊維状に成形し、加
熱焼成することによシ耐火性無機酸化物繊維を製造する
方法(特公昭47−37215号)。
(2) After evaporating and concentrating a solution of a reaction mixture consisting of a sol of a refractory inorganic oxide such as alumina sol or silica sol and a water-soluble fiber-forming organic polymer, it is formed into a fiber shape and heated and fired. A method for producing fire-resistant inorganic oxide fibers (Japanese Patent Publication No. 47-37215).

キナ (3)水溶性金属化合物及び水溶性ポリシロナ→ン・ポ
リオキシアルキレン共重合体を含有してなる水溶液を所
望の形状に成形し、これを乾燥して固体とし、ついでこ
れを加熱することによって金属酸化物及びシリカの均質
混合物からなる固体組成物を製造する方法(特公昭57
−44626号)、(4)塩基性塩化アルミニウム溶液
とコロイド状シリカとの混合液等に乳酸を加え、加熱濃
縮後紡糸し、紡糸繊維を乾燥し熱処理して多結晶質酸化
物繊維を製造する方法(特公昭54−23727号)な
どがある。
Quina (3) by molding an aqueous solution containing a water-soluble metal compound and a water-soluble polysilona-polyoxyalkylene copolymer into a desired shape, drying it to make it solid, and then heating it. Method for producing a solid composition consisting of a homogeneous mixture of metal oxide and silica (Japanese Patent Publication No. 57
-44626), (4) Add lactic acid to a mixed solution of basic aluminum chloride solution and colloidal silica, heat concentrate, then spin, dry and heat-treat the spun fibers to produce polycrystalline oxide fibers. There is a method (Japanese Patent Publication No. 54-23727).

「発明が解決しようとする問題点」 しかしながら、これらの方法において、(1)の方法は
、アルミナ質繊維をこの方法によって製造すると、紡糸
液はシリカ質物質を含まないので、繊維状成形物を高温
に加熱するときアルミナの結晶成長速度が犬きく、良好
な機械的強度を有する高温耐火性の多結晶繊維を得るに
は適しない。(2)の方法では、一応耐火性の繊維は得
られるものの多孔質であって十分な機械的強度を有した
ものが得られない。(3)の方法では、高価な有機ポリ
シロキサンを使用するので製造原価がきわめて高くなる
"Problems to be Solved by the Invention" However, in these methods, method (1) is difficult to produce a fibrous molded product because the spinning solution does not contain a siliceous substance when alumina fibers are produced by this method. The crystal growth rate of alumina is slow when heated to high temperatures, making it unsuitable for obtaining high-temperature refractory polycrystalline fibers with good mechanical strength. In method (2), although fire-resistant fibers can be obtained, they are porous and cannot have sufficient mechanical strength. Method (3) uses expensive organic polysiloxane, resulting in extremely high production costs.

(4)の方法では、塩基性塩化アルミニウム溶液に酸を
添加するので不溶性塩が析出して紡糸が困難な場合が多
く、又、紡糸液中に繊維形成のための結合剤が含まれて
いないので紡糸繊維の形状を保つことが困難であるとい
ったような問題があった。
In method (4), since an acid is added to the basic aluminum chloride solution, insoluble salts are precipitated and spinning is often difficult, and the spinning solution does not contain a binder for fiber formation. Therefore, there was a problem that it was difficult to maintain the shape of the spun fibers.

なお、アルミナ質繊維の機械的強度は、一般に。Note that the mechanical strength of alumina fibers is generally

最終加熱温度が紡糸して得た繊維前駆体中の有機成分等
が実質的に消失する温度(たとえば700°C)とα−
アルミナ等の粗粒結晶が生成する直前の温度(たとえば
1200℃)の範囲であるときもっとも強くなるが、α
−アルミナ等が多量に生成する温度(たとえば1300
℃以上)であるとき弱くなる傾向がある。一方、アルミ
ナ質繊維の耐熱特性は、一般に、最終加熱温度がα−ア
ルミナ等が生成する温度以上のとき良好であるが、α−
アルミナ等が生成しないような低温のときは悪くなる傾
向がある。高温耐熱性のアルミナ質繊維は、十分な機械
的強度と十分な耐熱特性を兼ね備える必要があり、その
ためには上記のような相矛盾する傾向を克服しなければ
ならないといった問題がちった。
α-
It is strongest when the temperature is just before the formation of coarse grain crystals such as alumina (for example, 1200°C), but α
-Temperature at which alumina etc. are produced in large quantities (e.g. 1300
℃ or higher), it tends to be weaker. On the other hand, the heat resistance properties of alumina fibers are generally good when the final heating temperature is higher than the temperature at which α-alumina and the like are produced;
It tends to get worse at low temperatures where alumina etc. do not form. Alumina fibers that are resistant to high temperatures must have both sufficient mechanical strength and sufficient heat resistance, and to achieve this, the above-mentioned contradictory tendencies must be overcome.

「問題を解決するための手段」 本発明者らは、塩基性塩化アルミニウムとコロイド状シ
リカ及び有機結合剤を用いる方法について研究を重ね、
さきに、これらの混合溶液である水性液状物を調製する
に当シ、少なくとも該水性液状物の構成成分の一部を予
め乾燥し、この乾燥物を水又は構成成分の残部を溶存し
た水溶液に溶解することによシ紡糸用水溶液を調製する
方法を提案した(特願昭58−154937及び特願昭
59−84157)が、さらに、高温耐熱材として機械
的強度がさらに大きく、耐熱特性がさらに優れているア
ルミナ質繊維を安定して低コストで製造する手段を得べ
く9機械的強度の指標としてミキサー崩壊率を、耐熱性
特性の指標として熱間荷重線収縮率を測定することによ
って、その他の物性との関連を検討した結果、アルミナ
質繊維の機械的強度は、該繊維に生成する直径0.01
5〜0.1μmの範囲の微細孔の容状(以下マクロポア
容積という)が小さくなると強くなること、しかして、
これは該繊維中に0.015μm以上の微細孔が多い場
合には、該繊維に外力が加えられたとき亀裂が生成し易
くなるが、0.015μm以下の微細孔はある程度存在
しても外力による亀裂の成長はあまシいちじるしくない
ことを見出した。又、該繊維の最終加熱温度が比較的高
い場合には、α−アルミナ等の粗大結晶が多量に生成し
易く、その結果、結晶粒界にマクロポアが発生し易く、
一般にマクロポア容積が大きくなるということを見出し
た。さらに。
"Means for Solving the Problem" The present inventors have repeatedly researched a method using basic aluminum chloride, colloidal silica, and an organic binder.
First, in order to prepare an aqueous liquid that is a mixed solution of these, at least a part of the constituent components of the aqueous liquid is dried in advance, and this dried product is dissolved in water or an aqueous solution in which the remaining components are dissolved. We have proposed a method of preparing an aqueous solution for spinning by dissolving it (Japanese Patent Applications 154937/1982 and 84157/1989), but we have also proposed a method of preparing an aqueous solution for spinning by dissolving it (Japanese Patent Applications 154937/1984 and 84157/1989), but we also developed a method for preparing an aqueous solution for spinning by dissolving it. In order to obtain a means to stably produce superior alumina fibers at low cost, we measured the mixer disintegration rate as an index of mechanical strength and the hot load linear shrinkage rate as an index of heat resistance properties. As a result of examining the relationship with the physical properties of the alumina fiber, the mechanical strength of the alumina fiber is
As the volume of micropores in the range of 5 to 0.1 μm (hereinafter referred to as macropore volume) becomes smaller, the strength increases.
This is because if there are many micropores of 0.015 μm or more in the fiber, cracks are likely to occur when an external force is applied to the fiber, but even if there are some micropores of 0.015 μm or less, the external force It was found that the growth of cracks caused by this process was not significant. In addition, when the final heating temperature of the fiber is relatively high, a large amount of coarse crystals such as α-alumina are likely to be generated, and as a result, macropores are likely to be generated at the grain boundaries.
It has been found that the macropore volume generally increases. moreover.

最終加熱温度にかかわらずマクロポア容積を小さく保つ
ためには、コロイド状シリカのようなシリカ質物質を紡
糸用原液に添加して、おけば繊維前駆体が高温に加熱さ
れてα−アルミナの結晶が生成し始めたとき同時にムラ
イトの微細結晶がα−アルミナ結晶粒界に生成してα−
アルミナ結晶の成長を抑制するので好ましい効果がある
のであるが。
In order to keep the macropore volume small regardless of the final heating temperature, a siliceous material such as colloidal silica can be added to the spinning stock solution to heat the fiber precursor to high temperatures and form α-alumina crystals. At the same time when the formation begins, fine crystals of mullite are formed at the α-alumina grain boundaries and α-
This has a favorable effect because it suppresses the growth of alumina crystals.

従来のコロイド状シリカを用いる方法では、紡糸用原液
中でのコロイド状シリカの分散が不十分であるために、
α−アルミナ結晶の成長抑制が十分に行なわれず、マク
ロポア容積が大きく、シたがって機械的強度の弱い繊維
しか得られないことを認め、特定の有機化合物を添加す
ることによって。
In the conventional method using colloidal silica, colloidal silica is insufficiently dispersed in the spinning stock solution.
By adding a specific organic compound, it was recognized that the growth of α-alumina crystals was not sufficiently suppressed, the macropore volume was large, and therefore only fibers with weak mechanical strength were obtained.

α−アルミナが多聞二に生成するような高温で加熱して
も得られる繊維中のマクロポア容積をきわめて小さくし
得ることを見出して本発明をなしたものである。すなわ
ち2本発明は、塩基性塩化アルミニウムーコロイド状シ
リカ及び有機結合剤からなる水性液状物を繊維化して得
た繊維前駆体を加熱焼成してアルミナ質繊維を製造する
方法において、上記水性液状物に炭素−水素及び酸素か
ら構成されかつ1分子中に2個の水酸基を有する水溶性
かつ中性の鎖状有機化合物又は上記水性液状物中におい
て該鎖状有機化合物を生成し得る化合物の中の少なくと
も1種の化合物乞含有せしめたアルミナ質繊維の製造方
法である。
The present invention was made based on the discovery that the volume of macropores in the resulting fibers can be made extremely small even when heated at such high temperatures that α-alumina is produced in large numbers. That is, the present invention provides a method for producing alumina fibers by heating and firing a fiber precursor obtained by fiberizing an aqueous liquid material consisting of basic aluminum chloride, colloidal silica, and an organic binder. A water-soluble and neutral chain organic compound composed of carbon-hydrogen and oxygen and having two hydroxyl groups in one molecule, or a compound capable of producing the chain organic compound in the above aqueous liquid. This is a method for producing alumina fiber containing at least one compound.

本発明において使用する塩基性塩化アルミニウムは、塩
基度50チ以上のものならばよく、とくに塩基度82〜
84%のものが好適である。
The basic aluminum chloride used in the present invention may have a basicity of 50 or more, particularly a basicity of 82 to 82.
84% is preferred.

コロイド状シリカとしては、水中で分散し得るものなら
ばよく、とくに酸性溶液中で安定分散するように処理さ
れたもの(たとえば触媒化成工業社製の商品名カタロイ
ドSN)が好適である◇又、有機結合剤は2通常使用さ
れる非イオン性の水溶性繊維形成有機重合体、たとえば
、ポリビニルアルコール、ポリオキシエチレン、ポリビ
ニルピロリドンなどがあげられる。
The colloidal silica may be one that can be dispersed in water, and in particular, one that has been treated to be stably dispersed in an acidic solution (for example, Cataloid SN manufactured by Catalysts & Chemicals Co., Ltd.) is suitable. Examples of the organic binder include commonly used nonionic water-soluble fiber-forming organic polymers, such as polyvinyl alcohol, polyoxyethylene, and polyvinylpyrrolidone.

さらに、炭素−水素及び酸素から構成されかつ1分子中
に2個の水酸基を有する水溶性かつ中性の鎖状有機化合
物又は水性液状物中において該鎖状有機化合物を生成し
得る化合物(以下有機添化物という)としては、たとえ
ば、エチレングリコール、α−プロピレングリコール、
β−プロピレングリコール、1.3−ブチレングリコー
ル、1.4−フチレンゲリコール、2,3−ブチレング
リコール、1,2−ブチレンオキシド、インブチレンオ
キシドなどがあげられるが2価格を考慮すればα−プロ
ピレングリコール及びエチレングリコールなどが好まし
い。
Furthermore, a water-soluble and neutral chain organic compound composed of carbon-hydrogen and oxygen and having two hydroxyl groups in one molecule, or a compound capable of producing the chain organic compound in an aqueous liquid (hereinafter referred to as organic Examples of additives include ethylene glycol, α-propylene glycol,
Examples include β-propylene glycol, 1,3-butylene glycol, 1,4-phthylene gelicol, 2,3-butylene glycol, 1,2-butylene oxide, and imbutylene oxide, but considering the price, α- Propylene glycol, ethylene glycol and the like are preferred.

すなわち、塩基性塩化アルミニウム、コロイド状シリカ
、ポリビニルアルコール及び各種の有機添加物を用いて
+  AItos : sto、:ポリビニルアルコー
ル:有機添加物=95:5:5:5の割合で配合し、水
を加えて水性液状物を調製し、一定の条件で繊維状に成
形し、加熱して加熱最i温度を1300℃とし、得た各
種アルミナ質繊維のマクロポア容積を求めた結果を第1
表に示す。又、有機添加物を添加しない場合及び本発明
における有機添加物以外の有機化合物を添加して同様に
行なった結果をも併記した。なお、マクロポア容積(r
nlA9)は、  Carlo Erba社製水銀ポロ
シメーター65型を使用し繊維に形成されている直径0
.015〜0.1μmの微細孔の容積を測定し、測定試
料1ゆ当りの該微細孔範囲の容積(mJ)として算出し
た。
That is, basic aluminum chloride, colloidal silica, polyvinyl alcohol, and various organic additives are blended in a ratio of +AItos:sto,:polyvinyl alcohol:organic additive = 95:5:5:5, and water is added. In addition, an aqueous liquid was prepared, formed into a fiber under certain conditions, heated to a maximum heating temperature of 1300°C, and the macropore volumes of the various alumina fibers obtained were determined.
Shown in the table. In addition, the results obtained in the same manner when no organic additive was added and when an organic compound other than the organic additive in the present invention was added are also shown. In addition, the macropore volume (r
nlA9) is a mercury porosimeter model 65 manufactured by Carlo Erba.
.. The volume of micropores of 0.015 to 0.1 μm was measured and calculated as the volume (mJ) of the micropore range per 1 measurement sample.

第   1   表 本発明において使用する有機添加物を用いた場合に得ら
れるいずれのアルミナ質繊維もマクロポア容積はいちじ
るしく小さい。この理由は明確ではないが、水性液状物
中のコロイド状シリカの分散性が有機添加物の作用によ
って改善された結果。
Table 1 All of the alumina fibers obtained when using the organic additives used in the present invention have significantly small macropore volumes. The reason for this is not clear, but it is a result of the dispersibility of colloidal silica in aqueous liquids being improved by the action of organic additives.

α−アルミナの結晶成長が抑制されたためと推定される
。本発明に使用する以外の有機化合物を添加した場合に
はいずれも良い結果が得られなかった。これは、エチル
アルコールのよ゛うな1価プルコール類は、一般に沸点
が低く、繊維前駆体を加熱したとき急激に気化するので
繊維前駆体中のマクロポア容積が増加するものと思われ
る。又、グリセリンのような3価以上のアルコール類で
は。
This is presumed to be because crystal growth of α-alumina was suppressed. No good results were obtained when organic compounds other than those used in the present invention were added. This is thought to be because monovalent pulcols such as ethyl alcohol generally have a low boiling point and rapidly vaporize when the fiber precursor is heated, increasing the macropore volume in the fiber precursor. Also, with trihydric or higher alcohols such as glycerin.

それ自体が水性液状物中での分散が悪く、コロイド状シ
リカの分散性を改善しないものと思われる。
It is believed that it itself has poor dispersion in aqueous liquids and does not improve the dispersibility of colloidal silica.

さらに、2個の水酸基を有するが同時にカルホキフル基
を有する酒石酸のような有機化合物では。
Furthermore, in organic compounds such as tartaric acid, which has two hydroxyl groups, but at the same time a carphokyfur group.

水性液状物中の成分の溶存安定性を劣化させてアルミナ
質ゲル等の不溶性塩類を析出させる結果。
This results in the deterioration of the dissolved stability of components in aqueous liquids and the precipitation of insoluble salts such as alumina gel.

繊維状に成形するのが困難になったものである。It is difficult to form it into a fibrous form.

本発明における各原料の添加配合割合は2重量比で、 
 A1.0コニ S 10s :結合剤:有機添加物;
80〜98:20〜2:3〜10:3〜10の割合で配
合することが好ましく、有機添加物は、少なくとも1種
類の化合物を添加するものであって、適宜数種類の化合
物を選定し組合わせて添加することができる。この場合
、添加量は組合せたものを前記範囲で添加すればよく2
組合せの各化合物の割合は、任意の割合で支障がない。
The addition and blending ratio of each raw material in the present invention is 2 weight ratio,
A1.0 Coni S 10s: Binder: Organic additive;
It is preferable to mix the organic additive in a ratio of 80 to 98:20 to 2:3 to 10:3 to 10, and the organic additive is one in which at least one type of compound is added, and several types of compounds are appropriately selected and combined. They can be added together. In this case, it is sufficient to add the combined amount within the above range.
The proportions of each compound in the combination may be arbitrary.

ただし、水性液状物で前記鎖状有機化合物を生成する有
機化合物を使用する場合には、生成する鎖状有機化合物
量が前記配合割合量になるように添加するものである。
However, when using an organic compound that produces the chain organic compound in an aqueous liquid, it is added so that the amount of the chain organic compound produced is equal to the blending ratio.

このようにして得た水性液状物を繊維状に成形し繊維前
駆体を得る方法は、既知の方法、たとえば、吹き出し法
、押し出し法、遠心方法等適宜の方法を用いることがで
きる。
A known method such as a blowing method, an extrusion method, a centrifugation method, etc. can be used to obtain a fiber precursor by forming the aqueous liquid material thus obtained into a fiber shape.

ここに得た繊維前駆体をアルミナ質繊維にするための加
熱の雰囲気は、酸化性雰囲気であればよく2通常は空気
が用いられる。加熱の最終温度は。
The heating atmosphere for converting the obtained fiber precursor into alumina fibers may be an oxidizing atmosphere (2) and usually air is used. What is the final temperature of heating?

必要とされる繊維の物性によって異なるが、耐熱特性を
重視するならば1200℃以上が好ましく。
Although it varies depending on the required physical properties of the fiber, if heat resistance is important, the temperature is preferably 1200°C or higher.

その温度に0.5〜1時間程度保持することが好ましい
It is preferable to maintain the temperature at that temperature for about 0.5 to 1 hour.

このようにして、  Altos so 〜98%t 
Slow 2 Q〜2チの組成範囲のアルミナ質繊維を
得ることができる。
In this way, Altos so ~98%t
Alumina fibers having a composition range of Slow 2 Q to 2 Q can be obtained.

「発明の効果」 本発明は、塩基性塩化アルミニウムーコロイド状シリカ
−有機結合剤からなる水性液状物に特定、の有機添加物
を添加して紡糸し加熱焼成するようにしたので、A1.
0.80〜98%)SiQt20〜2チの組成範囲のア
ルミナ質繊維を製造するためにもっとも有効でありy 
Al*Qs −S joy系でSiO鵞含有量が2%以
下又は20チを超える繊維、あるいはAlmost 5
iftのうえに他の金属酸化物を含有する繊維の製造に
利用し得、容易にかつ安価に機械的特性及び耐熱性特性
が優れているアルミナ質繊維を製造し得るものであって
優れた効果が認められる。
"Effects of the Invention" In the present invention, specific organic additives are added to an aqueous liquid material consisting of basic aluminum chloride, colloidal silica, and an organic binder, which is then spun and heated and fired.
0.80~98%) SiQt is the most effective for producing alumina fibers with a composition range of 20~2Q.
Al*Qs-S joy-based fibers with a SiO content of 2% or less or more than 20%, or Almost 5
It can be used in the production of fibers containing other metal oxides in addition to ift, and can easily and inexpensively produce alumina fibers with excellent mechanical properties and heat resistance properties, and has excellent effects. is recognized.

、次に2本発明の実施例を述べる。Next, two embodiments of the present invention will be described.

実施例 1 塩基度83.3%の塩基性塩化アルミニウム、コロイド
状シリカ(触媒化成工業社製、商品名カタロイドSN)
、  ポリビニルアルコール及びエチレングリコールを
95:5:5:5の割合で配合して水性液状物を調製し
た。なお、ポリビニルアルコールは10%の水溶液とし
たものを使用した。
Example 1 Basic aluminum chloride with basicity of 83.3%, colloidal silica (manufactured by Catalysts Kasei Kogyo Co., Ltd., trade name Cataloid SN)
An aqueous liquid was prepared by blending polyvinyl alcohol and ethylene glycol in a ratio of 95:5:5:5. The polyvinyl alcohol used was a 10% aqueous solution.

これを粘度調整し遠心力紡糸法によって、直径約3μm
の繊維状前駆体を形成し、  1300℃で1時間保持
してアルミナ質繊維を製造した。
The viscosity of this was adjusted and the centrifugal spinning method was used to create a diameter of approximately 3 μm.
A fibrous precursor was formed and held at 1300° C. for 1 hour to produce alumina fibers.

得られた繊維【ついて、試料0.5gを水5ooコに分
散させた後、ミキサー(松下電器社製MX−120S)
に入れ30秒間運転した後、固−液分離し、固形分を乾
燥し、40メツシの標準ふるいで分級し、ふるい通過分
を秤量し、原試料重量に対する40メツシ通過分重量の
百分率をもってミキ ゛サー崩壊率を求め、耐熱性円筒
形容器に試料を0.1g/iの充填密度になるように充
填し、試料上に13.7g/CI/Lの圧力になるよう
な荷重をのせ。
After dispersing 0.5 g of the obtained fiber in 5 ml of water, a mixer (MX-120S manufactured by Matsushita Electric Co., Ltd.)
After running for 30 seconds, solid-liquid separation was carried out, the solid content was dried, and classified using a 40-mesh standard sieve, and the amount passing through the sieve was weighed, and the weight of the 40-mesh passing through the sieve was calculated as a percentage of the weight of the original sample. The sample was filled into a heat-resistant cylindrical container at a packing density of 0.1 g/i, and a load was placed on the sample to give a pressure of 13.7 g/CI/L.

200℃/hrの昇温速度で加熱し、1400℃及び1
600’Cで2時間保持し9次式によって収縮率を算出
して熱間荷重線収縮率を求め、  Carlo Erb
a水銀ポロシメーター65型で細孔分布を測定し。
Heated at a temperature increase rate of 200°C/hr to 1400°C and 1
Hold at 600'C for 2 hours and calculate the shrinkage rate using the 9th order formula to obtain the hot load linear shrinkage rate, Carlo Erb
a Measure the pore distribution with a mercury porosimeter model 65.

測定試料1ゆ当りの該微細孔範囲の容積(TrLl)と
して算出してマクロポア容積(直径0.015〜0.1
μmの微細孔の容積m//に9)を求めた。結果を第2
表に示す。第2表にみられるように2本発明の方法によ
れば、マクロポア容積が小さく、シたがってミキサー崩
壊率も小さく、かつ、熱間荷重線収縮率も小さいきわめ
て優れたアルミナ質繊維が製造し得ることがわかる。
The macropore volume (diameter 0.015 to 0.1
The volume m//9) of micropores of μm was determined. Second result
Shown in the table. As shown in Table 2, according to the method of the present invention, extremely excellent alumina fibers with small macropore volume, low mixer collapse rate, and low linear shrinkage under hot load can be produced. I know what I'm getting.

実施例 2〜4 有機添加物として、β−プロピレングリコールを用いて
実施例1と同様にして繊維前駆体を得。
Examples 2 to 4 Fiber precursors were obtained in the same manner as in Example 1 using β-propylene glycol as an organic additive.

実施例1と同様にして、それぞれ、1250’C(実施
例2)、1275℃(実施例3)、1300’C(実施
例4)に1時間加熱焼成してアルミナ質繊維を製造した
。得られたそれぞれの繊維について実施例1と同様な諸
試験を同様に行なった。結果を第2表に示す。
In the same manner as in Example 1, alumina fibers were produced by heating and firing at 1250° C. (Example 2), 1275° C. (Example 3), and 1300° C. (Example 4) for 1 hour, respectively. The same tests as in Example 1 were conducted on each of the obtained fibers. The results are shown in Table 2.

実施例 5 有機添加物としてβ−プロピレングリコールを用いてH
AltQl a 5lot:結合剤:有機添加物=90
:10 ニア :3の割合に配合し、実施例1と同様に
して最終加熱温度1250℃に1時間保持してアルミナ
質繊維を製造した。
Example 5 H using β-propylene glycol as an organic additive
AltQl a 5lot: Binder: Organic additive = 90
Alumina fibers were prepared in the same manner as in Example 1 by maintaining the final heating temperature of 1250° C. for 1 hour.

得られた繊維について、実施例1と同様にして諸試験を
行なった。結果を第2表に示す。
Various tests were conducted on the obtained fibers in the same manner as in Example 1. The results are shown in Table 2.

実施例 6 有機添加物をβ−プロピレングリコールとした以外は、
実施例1と同様にしてアルミナ質繊維を製造し、実施例
1と同様にして諸試験を行なった。
Example 6 Except for using β-propylene glycol as the organic additive,
Alumina fibers were produced in the same manner as in Example 1, and various tests were conducted in the same manner as in Example 1.

結果を第2表に示す。The results are shown in Table 2.

実施例 7 有機添加物を2,3−ブチレングリコールとした以外は
、実施例1と同様にしてアルミナ質繊維を製造し、実施
例1と同様にして諸試験を行なった。
Example 7 Alumina fibers were produced in the same manner as in Example 1, except that 2,3-butylene glycol was used as the organic additive, and various tests were conducted in the same manner as in Example 1.

実施例 8 有機添加物をインブチレンオキシドとして各原料の配合
割合を95:5:5ニアとした以外は。
Example 8 Except that the organic additive was imbutylene oxide and the blending ratio of each raw material was 95:5:5.

実施例1と同様にしてアルミナ質繊維を製造し。Alumina fibers were produced in the same manner as in Example 1.

実施例1と同様にして諸試験を行なった。結果を第2表
に示す。
Various tests were conducted in the same manner as in Example 1. The results are shown in Table 2.

実施例 9 有機添加物として、エチレングリコールとβ−プロピレ
ングリコールとを3:2の割合で混合したものを用いた
以外は、実施例1と同様にしてアルミナ質繊維を製造し
、実施例1と同様にして諸試験を行なった。結果を第2
表に示す。
Example 9 Alumina fibers were produced in the same manner as in Example 1, except that a mixture of ethylene glycol and β-propylene glycol at a ratio of 3:2 was used as the organic additive. Various tests were conducted in the same manner. Second result
Shown in the table.

実施例 10 有機添加物として、エチレングリコールとインブチレン
オキシドとを4=1の割合で混合したものを用い各原料
の配合割合を95:5:5:5とした以外は、実施例1
と同様にしてアルミナ質繊維を製造し、実施例1と同様
にして諸試験を行なった。結果を第2表に示す。
Example 10 Example 1 except that a mixture of ethylene glycol and inbutylene oxide in a ratio of 4=1 was used as the organic additive, and the blending ratio of each raw material was 95:5:5:5.
Alumina fibers were produced in the same manner as in Example 1, and various tests were conducted in the same manner as in Example 1. The results are shown in Table 2.

実施例 11 有機添加物として、エチレングリコールとβ−プロピレ
ングリコール及び2,3−ブチレングリコールとを3:
1:1の割合で混合したものとした以外は、実施例1と
同様にしてアルミナ質繊維を製造し、実施例1と同様に
して諸試験を行なった。結果を第2表に示す。
Example 11 As organic additives, ethylene glycol, β-propylene glycol, and 2,3-butylene glycol were mixed in 3:
Alumina fibers were produced in the same manner as in Example 1, except that they were mixed at a ratio of 1:1, and various tests were conducted in the same manner as in Example 1. The results are shown in Table 2.

比較例 1〜2 有機添加物を使用せず各原料の配合割合を95:5:5
とし、実施例1と同様にして最終加熱温度を1300°
C(比較例L L  1275℃(比較例2)として実
施例1と同様にしてアルミナ質繊維を製造した。得られ
た繊維について実施例1と同様にして諸試験を行なった
。結果を第2表に示す。
Comparative Examples 1-2 No organic additives were used and the mixing ratio of each raw material was 95:5:5
The final heating temperature was set to 1300° in the same manner as in Example 1.
C (Comparative Example L) Alumina fibers were produced at 1275°C (Comparative Example 2) in the same manner as in Example 1. Various tests were conducted on the obtained fibers in the same manner as in Example 1. Shown in the table.

比較例 3 有機添加物を使用せず各原料の配合割合を9゜:10ニ
アとし、最終加熱温度を1250℃とした以外は、実施
例1と同様にしてアルミナ質繊維を製造し、実施例1と
同様にして諸試験を行なった。
Comparative Example 3 Alumina fibers were produced in the same manner as in Example 1, except that no organic additives were used, the mixing ratio of each raw material was 9°:10nia, and the final heating temperature was 1250°C. Various tests were conducted in the same manner as in 1.

結果を第2表に示す。The results are shown in Table 2.

Claims (1)

【特許請求の範囲】[Claims] 1)塩基性塩化アルミニウム・コロイド状シリカ及び有
機結合剤からなる水性液状物を繊維化して得た繊維前駆
体を加熱焼成してアルミナ質繊維を製造する方法におい
て、上記水性液状物に炭素−水素及び酸素から構成され
かつ1分子中に2個の水酸基を有する水溶性かつ中性の
鎖状有機化合物又は上記水性液状物中において該鎖状有
機化合物を生成し得る化合物の中から少なくとも1種の
化合物を含有せしめることを特徴とするアルミナ質繊維
の製造方法。
1) In a method for producing alumina fibers by heating and firing a fiber precursor obtained by fiberizing an aqueous liquid material consisting of basic aluminum chloride, colloidal silica, and an organic binder, carbon-hydrogen is added to the aqueous liquid material. and at least one type of water-soluble and neutral chain organic compound composed of oxygen and having two hydroxyl groups in one molecule, or a compound capable of producing the chain organic compound in the aqueous liquid. A method for producing alumina fiber, characterized by containing a compound.
JP19690084A 1984-09-21 1984-09-21 Production of alumina fiber Pending JPS6175818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19690084A JPS6175818A (en) 1984-09-21 1984-09-21 Production of alumina fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19690084A JPS6175818A (en) 1984-09-21 1984-09-21 Production of alumina fiber

Publications (1)

Publication Number Publication Date
JPS6175818A true JPS6175818A (en) 1986-04-18

Family

ID=16365510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19690084A Pending JPS6175818A (en) 1984-09-21 1984-09-21 Production of alumina fiber

Country Status (1)

Country Link
JP (1) JPS6175818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009541A1 (en) * 1990-12-03 1992-06-11 Manville Corporation Method of producing mullite materials
WO2014069589A1 (en) 2012-10-31 2014-05-08 電気化学工業株式会社 Alumina-based fibrous mass, process for producing same, and use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009541A1 (en) * 1990-12-03 1992-06-11 Manville Corporation Method of producing mullite materials
WO2014069589A1 (en) 2012-10-31 2014-05-08 電気化学工業株式会社 Alumina-based fibrous mass, process for producing same, and use
US9827553B2 (en) 2012-10-31 2017-11-28 Denka Company Limited Alumina-based fibrous mass, process for producing same, and use
EP2915909B1 (en) * 2012-10-31 2020-10-14 Denka Company Limited Process for producing an alumina-based fibrous mass

Similar Documents

Publication Publication Date Title
SU585818A3 (en) Method of obtaining inorganic articles of thin cross section
CA1099871A (en) Process for producing polycrystalline oxide fibers
US3117944A (en) Coagula of colloidal fibrous boehmite and acrylamide polymers and processes for making same
US5872070A (en) Pyrolysis of ceramic precursors to nanoporous ceramics
Liu et al. Fabrication of high‐strength continuous zirconia fibers and their formation mechanism study
EP0261889A2 (en) Ceramic articles containing silicon carbide
JPH03137073A (en) Ceramic formed from partially stabilized zirconium and method of its manufacture
EP0375158A2 (en) Improved zirconium oxide fibers and process for their preparation
JPS6175818A (en) Production of alumina fiber
KR20090082201A (en) Polycrystalline corundum fibers and method for the production thereof
CN110903619B (en) Preparation method of modified PLA cooling material
Ren et al. Preparation and characterization of organic-inorganic hybrid ZrOC/PF aerogel used as high-temperature insulator
JPS62206021A (en) Production of alumina based filament
CN102464848A (en) Composite material of polyacrylonitrile-based copolymer and carbon nanotubes, carbon fiber and preparation method of carbon fiber
JPH062841B2 (en) Porous permeable polyethylene film
Zhou et al. Effect of the polyacrylonitrile mass fraction on the structure of coaxial polyacrylonitrile/mesophase pitch composite fibers
JPS6335827A (en) Production of spinning solution for alumina fiber
CN113737310A (en) Graphene polyimide composite fiber and preparation method thereof
KR940004693B1 (en) Method of preparing polyester fiber having an excellent dipersibility of particles and antibacterial ability
Fandzloch et al. Synthesis and Characterization of Sol–Gel‐Derived SiO2–CaO Particles: Size Impact on Glass (Bio) Properties
JP4260067B2 (en) Method for producing alumina fiber
Postnova et al. The Formation of Macropores in a Bimodal Silica Synthesized on P123 Block Copolymer as a Template
TWI702199B (en) Preparation method of low dielectric α-cordierite ceramic fiber
JPS6071715A (en) Preparation of spinning dope for alumina fiber
US2791000A (en) Polymeric dispersions and method of use thereof