JPS6175256A - Fungus body density measuring apparatus - Google Patents

Fungus body density measuring apparatus

Info

Publication number
JPS6175256A
JPS6175256A JP59196682A JP19668284A JPS6175256A JP S6175256 A JPS6175256 A JP S6175256A JP 59196682 A JP59196682 A JP 59196682A JP 19668284 A JP19668284 A JP 19668284A JP S6175256 A JPS6175256 A JP S6175256A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
arithmetic unit
intensity
transmission pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59196682A
Other languages
Japanese (ja)
Inventor
Akihiro Tanaka
昭裕 田中
Mikio Yoda
幹雄 依田
Shunji Mori
俊二 森
Kenji Baba
研二 馬場
Shoji Watanabe
昭二 渡辺
Shunsuke Nokita
舜介 野北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59196682A priority Critical patent/JPS6175256A/en
Publication of JPS6175256A publication Critical patent/JPS6175256A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To elevate the response, by a method wherein the intensity of a transmission pulse is changed measuring the intensity of an ultrasonic signal received to obtain a fixed intensity of the received signal so that a mean processing can be done in a short time even at a shorter transmission pulse generation cycle. CONSTITUTION:A signal processing section of this measuring apparatus is made up of an ultrasonic wave transmitting/receiving element 300, an ultrasonic wave trans mission/reception controller 310, a waveform averaging processor 320, a propagation arithmetic unit 330, a temperature arithmetic unit 360, a fungus body arithmetic unit 370 and the like. The intensity of a transmission pulse is adjusted with the controller 310 so that the ultrasonic wave reaches a specified level when it transmitted from the transmitting/receiving element 300, reflected on the outer wall 240 propagating through a culture fluid 110 and received with the transmitting/receiving element 300 and then, the signal is fed to a processor 20 to under-go an averaging processing. Then, the ultrasonic wave propagation time is computed by the signal and based on the temperature obtained from the temperature arithmetic unit 360, the density of fungus is computed with the fungus density arithmetic unit 370. Thus, the response can be elevated in a wide density range.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、培養槽や壌酵槽内部の微生物菌体濃度の計測
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a device for measuring the concentration of microorganisms inside a culture tank or fermenter.

〔発明の背景〕[Background of the invention]

バイオプラント用の菌体濃度計には(1)高濃度まで計
測でへること、(ii)気泡、攪拌の影響を受けないこ
と、及び(i)高速の応答性をもつことなど厳しい機能
が要求される。
Bacterial cell concentration meters for bioplants have strict functions such as (1) being able to measure high concentrations, (ii) being unaffected by air bubbles and agitation, and (i) having high-speed response. required.

従来のバイオプラント用の菌体濃度計には、光(レーザ
ーなど)の透過光や反射波が濃度に対して減衰すること
を利用したものが知られている。
Conventional bacterial cell densitometers for bioplants are known that utilize the fact that transmitted light and reflected waves of light (such as a laser) attenuate relative to concentration.

しかし、光の減衰に着目する限シ、光路上の気泡は誤差
の原因となるし、また、菌体が光路上を満たすほどの高
濃度までは計測困難である。このため、光学式の場合に
は(1)及び(11)の機能が充分には満足されない。
However, when focusing on the attenuation of light, air bubbles on the optical path cause errors, and it is difficult to measure up to a concentration of bacterial cells that is so high that it fills the optical path. Therefore, in the case of an optical type, functions (1) and (11) are not fully satisfied.

一方、特開昭57−50652号公報などでは、超音波
の受信電圧(超音波の減衰)を指標として菌数を測定す
る方法が知られている。しかし、特開昭57−5065
2号公報では、超音波伝播経路に混入する気泡の量が変
化すると、菌数が一定であっても、受信電圧が変化して
菌数を正確に測定できない。また、特開昭57−506
52号公報では、測定装置を直接に培養液に浸漬するの
で、殺菌操作に対しての配慮が必要で、またメンテナン
スが繁雑で、(I)及び(II)が満足できない欠点が
あった。
On the other hand, in Japanese Patent Laid-Open No. 57-50652, a method is known in which the number of bacteria is measured using the received voltage of ultrasonic waves (attenuation of ultrasonic waves) as an indicator. However, JP-A-57-5065
In Publication No. 2, when the amount of air bubbles entering the ultrasonic propagation path changes, even if the number of bacteria is constant, the received voltage changes, making it impossible to accurately measure the number of bacteria. Also, JP-A-57-506
In Publication No. 52, since the measuring device is directly immersed in the culture solution, consideration must be given to the sterilization operation, maintenance is complicated, and (I) and (II) are not satisfied.

一方、溶液の濃度計として、超音波の音速を用いる方法
が知られている(特開昭58−77656号公報など)
。しかし、音速で濃度を求める方法は、懸濁液のような
非水溶液では適用できないとされていた。特に、懸濁液
中に気泡が存在すると、気泡で超音波が散乱するので、
濃度は計測できない。
On the other hand, a method using the sound velocity of ultrasonic waves as a solution concentration meter is known (Japanese Patent Application Laid-open No. 77656/1983, etc.)
. However, the method of determining concentration using the speed of sound was considered inapplicable to non-aqueous solutions such as suspensions. In particular, if there are bubbles in the suspension, the bubbles will scatter the ultrasonic waves.
Concentration cannot be measured.

このように、従来の菌体濃度計では(1)〜(11)の
機能が満足されていなかったので、給気ガス中の酸素濃
度、排気ガス中の酸素濃度並びに炭駿ガス濃度などの物
理化学量を計測して、これらから、微生物の菌体濃度を
演算するという間接的な方法を採っていた。このように
、菌体濃度や菌体!の管理ができるために、菌体の増殖
速度や生産物の収率などの正確な値がわからず、効率的
な生産が困難であった。
In this way, the functions (1) to (11) were not satisfied with conventional bacterial cell concentration meters, so physical measurements such as the oxygen concentration in the supply gas, the oxygen concentration in the exhaust gas, and the charcoal gas concentration were used. An indirect method was used in which chemical quantities were measured and the microbial cell concentration was calculated from these. In this way, bacterial cell concentration and bacterial cells! Therefore, accurate values such as the growth rate of the bacterial cells and the yield of the product were not known, making efficient production difficult.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、培養槽や醗酵槽内部の微生物菌体濃度
を攪拌され、かつ、気泡を含む微生物懸濁液でも、低濃
度から高濃度にわたる広い範囲において、応答速度早く
、オンライン測定する計測装置を提供することにある。
The purpose of the present invention is to measure the microbial cell concentration inside a culture tank or fermentation tank in a wide range from low to high concentrations, even in agitated microbial suspensions containing air bubbles, with a fast response time and on-line measurement. The goal is to provide equipment.

〔発明の概要〕[Summary of the invention]

本発明は、微生物懸濁液中の微生物菌体濃度とこの微生
物懸濁液中を伝播する音波の音速(または所定距離を伝
播する時間)との関連に着目し、微生物菌体濃度を計測
する装置において、攪拌され、かつ、気泡を含む微生物
懸濁液中に超音波を一定のくり返し周期で発生させ、超
音波を気泡の間隙をぬって伝播させて、この伝播波形を
受信し、更に、とらえた波形を複数回平均処理すれば、
菌体濃度の測定が可能なことを見出し、その平均処理を
行なう際、計測装置の応答性を向上させるためには短時
間に複数パルスの平均処理を行なう必要があり、このた
めには、くシ返し周期を短くせねばならないが濃度計a
t範囲が広い場合、たとえば高濃度でも受信信号が得ら
れるように送信パルス強度を設定しておき、低濃度測定
する時にはある時刻Tに発生した超音波送信パルスによ
る超音波受信信号と、時刻Tより以前に発生させた超音
波送信パルスによる超音波受信信号のうち、まだ、完全
に減衰していない信号(以後残響エコーという)とが干
渉し、正確な計測を困難にする問題がある。そこで本装
置は、超音波受信信号の強さを計測し、超音波送信パル
ス強度を変えることにより、はぼ、一定強さの受信信号
が得られるようにし、超音波送信パルス発生周期を短く
しても、残響エコーの干渉を受けることなく、広い濃度
計測範囲にわたって、短時間で平均処理することを可能
にし、計測装置の応答性を向上させることを特徴とする
The present invention measures the microbial cell concentration by focusing on the relationship between the microbial cell concentration in a microbial suspension and the sound speed (or time for propagation of a predetermined distance) of a sound wave propagating in this microbial suspension. In the device, ultrasonic waves are generated in a microbial suspension that is stirred and contains air bubbles at a constant repetition period, the ultrasonic waves are propagated through the gaps between the air bubbles, and the propagation waveform is received, and further, If you average the captured waveforms multiple times,
It was discovered that it was possible to measure the bacterial cell concentration, and when performing the averaging process, it was necessary to average multiple pulses in a short period of time in order to improve the responsiveness of the measuring device. Although the return cycle must be shortened, the concentration meter a
When the t range is wide, for example, the transmitting pulse intensity is set so that a received signal can be obtained even at high concentrations, and when measuring low concentrations, the ultrasonic received signal due to the ultrasonic transmitting pulse generated at a certain time T and the time T Among the ultrasonic reception signals generated by the ultrasonic transmission pulses generated earlier, signals that have not yet been completely attenuated (hereinafter referred to as reverberant echoes) interfere with each other, making accurate measurement difficult. Therefore, this device measures the strength of the ultrasound reception signal and changes the ultrasound transmission pulse strength to obtain a reception signal of a constant strength and shorten the ultrasound transmission pulse generation cycle. However, the present invention is characterized by making it possible to perform averaging processing over a wide concentration measurement range in a short time without receiving interference from reverberant echoes, thereby improving the responsiveness of the measuring device.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例、第2図は第1図の■−■矢視
部の断面図、第3図は本発明の信号処理回路部の実施例
の詳細説明図、第4図、第5図は本発明信号処理回路の
動作説明図である。
FIG. 1 is an embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is a detailed explanatory diagram of an embodiment of the signal processing circuit section of the present invention, and FIG. , FIG. 5 is an explanatory diagram of the operation of the signal processing circuit of the present invention.

これら第1図ないし第3図において、10oは培養槽(
断面図で示す)で、各徨微生物、動植物細胞並びに組織
等の菌体を培養する。培養槽100は通常円筒形で、内
部では培養液110が入れてあり、ここで菌体が培饗さ
れる。
In these figures 1 to 3, 10o is a culture tank (
(shown in a cross-sectional view), culture cells such as individual microorganisms, animal and plant cells, and tissues. The culture tank 100 is usually cylindrical, and contains a culture solution 110 in which the bacterial cells are cultured.

超音波送受信子300は、超音波送受信制御装置310
から電気信号を受けて超音波を発信し、培養液110を
伝播し超音波反射部外壁240で反射し、この経路を逆
に伝播して、超音波送受信子300で伝播超音波を受信
する。超音波受信制御装e310で受信した伝播超音波
が所定のレベルになるように送信パルス強度を調整して
やり、調整後、信号を波形平均化処理装置320へ送)
、ここで波形信号に平均化処理を施こす。次に、伝播時
間演算装置330では波形平均化処理装置320で得た
電気信号から培養液110の超音波伝播時間を演算する
。一方、温度検出器350で得た信号に基づいて、温度
演算装置36θで培養液110の温度を計測する。菌体
濃度演算装置370は、伝播時間演算装置330と温度
演算装置360とから得た各々の電気信号から菌体儂度
を演算する。340はこれらを制御する制御装置である
The ultrasonic transceiver 300 is an ultrasonic transceiver controller 310
The ultrasonic wave is transmitted in response to an electric signal, propagated through the culture medium 110, reflected by the ultrasonic wave reflecting section outer wall 240, propagated in the reverse direction along this path, and the propagated ultrasonic wave is received by the ultrasonic transmitter/receiver 300. The transmission pulse intensity is adjusted so that the propagating ultrasound received by the ultrasound reception control device e310 reaches a predetermined level, and after adjustment, the signal is sent to the waveform averaging processing device 320)
, where the waveform signal is subjected to averaging processing. Next, the propagation time calculation device 330 calculates the ultrasonic propagation time of the culture solution 110 from the electrical signal obtained by the waveform averaging processing device 320. On the other hand, based on the signal obtained by the temperature detector 350, the temperature of the culture solution 110 is measured by the temperature calculation device 36θ. The bacterial cell concentration calculating device 370 calculates the bacterial cell strength from each electrical signal obtained from the propagation time calculating device 330 and the temperature calculating device 360. 340 is a control device that controls these.

120はコンプレッサで、空気などの酸素含有ガスをガ
ス供給管130を介して散気装置140から培養槽10
0内部の培養液110に供給する。
120 is a compressor that supplies oxygen-containing gas such as air to the culture tank 10 from the aeration device 140 via the gas supply pipe 130.
0 to the culture solution 110 inside.

モータ150によって、シャフト160に固定された攪
拌1170A、Bが回転し、気液接触を促進する。回転
スピードは数rpmから数百rpmになる場合もあるう
180は消泡のための消l′f2翼190は排気管であ
る。基質タンク200内部に貯留された基質210が、
基質供給ポンプ220によシ基質供給管230を通じて
培養槽100内に供給される。菌体は、このような系の
中で増殖し、菌体濃度が時間と共に増加する。
The motor 150 rotates agitators 1170A, B fixed to the shaft 160 to promote gas-liquid contact. The rotational speed may range from several rpm to several hundred rpm.The vane 180 is an exhaust pipe for eliminating foam. The substrate 210 stored inside the substrate tank 200 is
The substrate is supplied into the culture tank 100 by a substrate supply pump 220 through a substrate supply pipe 230. Bacterial cells proliferate in such a system, and the bacterial cell concentration increases over time.

また、第2図に示すように、超音波送受信子300と超
音波反射部外壁240の配置は、伝播する超音波が培養
液110内のシャフト160で妨害されないように、中
心よりずらせて設置する。
Furthermore, as shown in FIG. 2, the ultrasonic transmitter/receiver 300 and the outer wall 240 of the ultrasonic reflector are arranged offset from the center so that the propagating ultrasonic waves are not obstructed by the shaft 160 in the culture medium 110. .

これらの特徴をもつ超音波応用菌体濃度測定装置の動作
詳細を以下に述べる。
The details of the operation of the ultrasonic cell concentration measuring device having these characteristics will be described below.

第3図において、くり返し周期設定器342の設定値F
に沿って制御回路341が強度可変パルス送信器311
にパルス送信指令を出す。この指令によって強度可変パ
ルス送信器311より発した送信パルスは超音波送受信
子300に印加される。超音波送受信子300で発生し
た超音波は、培養液110を伝播し、超音波反射板24
0で反射し、再び、超音波送受信子300に戻り、ここ
で電気信号に変換され、アンプ312に送られ増巾され
る。
In FIG. 3, the setting value F of the repetition period setting device 342 is
The control circuit 341 connects the variable intensity pulse transmitter 311 along
Issue a pulse transmission command to In response to this command, a transmission pulse emitted from the variable intensity pulse transmitter 311 is applied to the ultrasonic transceiver 300. The ultrasonic waves generated by the ultrasonic transmitter/receiver 300 propagate through the culture medium 110 and reach the ultrasonic reflector 24.
0 and returns to the ultrasonic transceiver 300, where it is converted into an electrical signal and sent to the amplifier 312 where it is amplified.

ここで、くり返し周期の設定について述べる。Here, the setting of the repetition period will be described.

本発明では、培養液110の散気状態(ガス供給量)や
攪拌状態(攪拌回転数)による超音波受信波形の乱れに
対処するため受信波形を複数回(N回とする)平均化処
理を行なっている。そのため、伝播時間を演算する情報
としての受信波形を得るのに要する時間T、は、第4図
(a)に示すように、N:平均化処理回数 F:送信パルスくり返し周波数 となる。つまり、計測装置の応答性を早めるには平均化
処理回数Nを減らし、送信パルス〈シ返し周波数Fを増
加すれば良いことがわかる。しかし、平均化処理回数N
は十回以上が望ましく、むやみに減らすことはできない
。そこで、送信パルスくり返し周波数の増加がクローズ
アップされる。
In the present invention, in order to deal with disturbances in the received ultrasonic waveform due to the aeration state (gas supply amount) and stirring state (stirring rotation speed) of the culture solution 110, the received waveform is averaged multiple times (N times). I am doing it. Therefore, the time T required to obtain the received waveform as information for calculating the propagation time is as shown in FIG. 4(a), where N: the number of averaging processes F: the transmission pulse repetition frequency. In other words, it can be seen that in order to speed up the responsiveness of the measuring device, it is sufficient to reduce the number of times N of averaging processing and increase the transmission pulse (return frequency F). However, the number of averaging processes N
It is desirable to do this 10 times or more, and it cannot be reduced unnecessarily. Therefore, the increase in the transmission pulse repetition frequency will be highlighted.

一方、超音波が培養it o o中を伝播する時間T2
は、第2図に示すように超音波送受信子300、超音波
反射板240との距離を61超音波の水中の伝播速度を
Vとすると、 t T、=□   ・・・・・・・・・・・・・・・(2)
■ となる。
On the other hand, the time T2 during which the ultrasound waves propagate through the culture
As shown in FIG. 2, if the distance between the ultrasonic transmitter/receiver 300 and the ultrasonic reflector 240 is 61, and the propagation velocity of ultrasonic waves in water is V, then t T, = □ .・・・・・・・・・(2)
■ It becomes.

このようにして、送信パルスくり返し周波数Fは 1/T、以下の周波数で、なるべく高く設定することが
望ましいことがわかる。
In this way, it can be seen that it is desirable to set the transmission pulse repetition frequency F as high as possible at a frequency of 1/T or less.

さて、アンプ312で増巾された受信信号は、ゲート3
13に送られる。ゲート313はゲート制御回路314
で第4図中)に示すように制御され、受信信号のうち超
音波反射板24.0から反射してきた信号(第4図(C
))のみを通過させる。
Now, the received signal amplified by the amplifier 312 is sent to the gate 3
Sent to 13th. The gate 313 is a gate control circuit 314
The signal reflected from the ultrasonic reflector 24.0 among the received signals (Fig. 4 (C)) is controlled as shown in Fig. 4).
)) only pass through.

ゲート313を通過した反射信号分は、まず、反射信号
強度判別回路315で判別される。
The reflected signal that has passed through the gate 313 is first judged by a reflected signal strength judgment circuit 315.

ここで、本発明のポイントとなる反射信号強度判別回路
315、及びそれと連動して動作する強度可変パルス送
信器の動作を詳述する。
Here, the operation of the reflected signal strength determination circuit 315, which is the key point of the present invention, and the variable strength pulse transmitter that operates in conjunction with the circuit 315 will be described in detail.

先に、計測装置の応答性を早くするには、送信パルスく
り返し周波数Fを(3)式に示すように、t/’rt 
 t’r、  :伝播時間)以下の周波数で、なるべく
高く設定する必要がある。しかし、この場合、計測装置
を低濃度から高濃度、例えば、Og / t〜200g
/lの広い濃度範囲にわたって連続計測可能にするには
次のような問題が発生する。
First, in order to speed up the response of the measuring device, the transmission pulse repetition frequency F is set to t/'rt as shown in equation (3).
It is necessary to set the frequency as high as possible at a frequency equal to or lower than t'r, (propagation time). However, in this case, the measuring device can be adjusted from low to high concentrations, e.g. Og/t~200g
In order to enable continuous measurement over a wide concentration range of /l, the following problems occur.

菌体濃度が高くなると、そこを伝播する超音波の減衰が
大きくなるため、攪拌や気泡の影響も考慮して超音波送
受信子300に少なくとも第一回目の反射信号が得られ
るだけ十分大きな送信パルスP、 を印加する必要があ
る。その時得られた受信信号を第5図(a)とする。次
にJ徐々に濃度が低くなるにつれて、超音波の減衰は減
少し反射信号は徐々に増加し伝播時間T、は大きくなる
。この時、広い濃度計測範囲に対応するため、高濃度C
1時に対応できるように設定した送信パルス強さP、で
は、第5図(b)に示すように、低濃度C1(< C+
 )時に反射信号が一回目、二回目、三回目・・ ・と
いうように残響として残る。(−回目、二回目・・・と
いうのは、超音波送受信子300から発生した超音波が
第2図に示す伝播距離tを、2t、4t(2tX2)、
6/、(2tX3)・・・と減衰しながら多重回伝播す
ることによシ受信される信号である。以後残響信号と呼
ぶ。このため、伝播時間計測に必要な一回目の反射信号
と残響信号とが干渉しあい、計測が困難、あるいは、不
可能となる事態が発生する。
As the bacterial cell concentration increases, the attenuation of the ultrasonic waves propagating there increases, so the transmission pulse is large enough to obtain at least the first reflected signal at the ultrasonic transmitter/receiver 300, taking into account the effects of agitation and bubbles. It is necessary to apply P, . The received signal obtained at that time is shown in FIG. 5(a). Next, as the concentration of J gradually decreases, the attenuation of the ultrasonic wave decreases, the reflected signal gradually increases, and the propagation time T becomes longer. At this time, in order to correspond to a wide concentration measurement range, high concentration C
With the transmission pulse strength P set to correspond to 1 o'clock, as shown in FIG. 5(b), the low concentration C1 (< C+
) Sometimes the reflected signal remains as a reverberation for the first time, second time, third time, etc. (-time, second time... means that the ultrasonic wave generated from the ultrasonic transceiver 300 travels the propagation distance t shown in FIG. 2 by 2t, 4t (2tX2),
This is a signal that is received by propagating multiple times while attenuating as 6/, (2tX3)... Hereinafter, this will be referred to as a reverberant signal. Therefore, a situation occurs in which the first reflected signal and the reverberation signal necessary for measuring the propagation time interfere with each other, making measurement difficult or impossible.

この事態2避けるため、第5図(c)に示すように、送
信パルスくり返し周波数を小さく(Vを大きく)するこ
とにより、低濃度C8でも残響信号が十分減衰する時間
を確保し、−回目の反射信号と残響信号の干渉を避ける
方法も考えられるが、この方法では計測装置の商運応答
性が損なわれる。また、逆に低濃度C7時に合わせて送
信パルスP、を設定した時には、高濃度C6時に一回目
反射信号が検出されなくなってしまう。
In order to avoid this situation 2, as shown in Figure 5(c), by decreasing the transmission pulse repetition frequency (increasing V), we can secure enough time for the reverberant signal to decay even at a low concentration of C8, and Although a method of avoiding interference between reflected signals and reverberant signals may be considered, this method impairs the commercial responsiveness of the measuring device. On the other hand, if the transmission pulse P is set to coincide with the low concentration C7, the first reflected signal will not be detected at the high concentration C6.

この問題を解決し、広い濃度計測範囲で高速な応答性を
もった計測装置を実現するため、本発明では、次に述べ
る手段を採用した。
In order to solve this problem and realize a measuring device with high-speed response over a wide concentration measurement range, the present invention employs the following means.

予め、ある伝播距離tにおいて、−回目反射信号のみ受
信され、二回目以後の反射信号がほぼ0となる時の一回
目反射信号しベルL、  (第5図(d))を設定し、
第3図中316の反射信号強度判別レベル設定器に設定
しておく。この反射信号レベルL、と、ゲー)313t
−通過した反射信号とを反射信号強度判別回路315で
比較し、ゲート313通過反射信号>L、ならば、送信
パルス強度増加指令を制御回路341を介して、強度可
変パルス送信器311に送シ、送信パルス強度を増加さ
せる。また、ゲート313通過反射信号<L、ならば、
送信パルス強度減少指令を制御回路341を介して、強
度可変パルス送信器311に送り、送信パルス強度を増
加させる。こうして、ゲート313通過反射信号と反射
信号強度判別レベルLl  とがほぼ等しくなったら、
つまり、二回目以後の反射信号が表われなくなったら波
形平均化処理装置320に起動をかける。
In advance, at a certain propagation distance t, only the -th reflected signal is received and the second and subsequent reflected signals are approximately 0, and the first reflected signal is set as L, (Fig. 5(d)),
This is set in the reflected signal strength discrimination level setter 316 in FIG. This reflected signal level L is 313t
- Compare the reflected signal that has passed through the reflected signal intensity determination circuit 315, and if the reflected signal that has passed through the gate 313 is >L, send a transmission pulse intensity increase command to the variable intensity pulse transmitter 311 via the control circuit 341. , increase the transmit pulse strength. Also, if the reflected signal passing through the gate 313 is <L, then
A transmission pulse intensity reduction command is sent to the variable intensity pulse transmitter 311 via the control circuit 341 to increase the transmission pulse intensity. In this way, when the reflected signal passing through the gate 313 and the reflected signal strength discrimination level Ll become almost equal,
That is, when the second and subsequent reflected signals no longer appear, the waveform averaging processing device 320 is activated.

この方法を採用することにより、広い濃度範囲にわたっ
て、送信パルスくり返し周波数Fを低くすることなく計
測装置の応答性を損なうことなく菌体濃度測定が可能と
なる。
By adopting this method, it becomes possible to measure the bacterial cell concentration over a wide concentration range without lowering the transmission pulse repetition frequency F and without impairing the responsiveness of the measuring device.

さて、ゲート313から送られた反射信号は、理回数)
。これを第4図(d)に示す。割算器321の出力を、
A/Dコンバータ322でアナログ−デジタル変換する
ことにより、デジタル信号に変換して反射信号波形を1
/F時間分だけメモリ324に記憶する。これを第4図
(d)に示すように、ム1とする。次に扁2の反射信号
についても同様な操作を施こし、メモリ324に記憶す
る際、先に記憶した&1の反射波形をバッファ325に
読み出しておき、このバッファ325の出力とA/Dコ
ンバータ322の出力とを加算器323で加算したもの
をメモリ324に記憶する。以下同様な動作をN回くり
返すことにより、メモリ324には反射信号波形をN回
平均化処理したデータが1/F時間分記憶される。第4
図(e)。これら一連の動作は、制御回路341の指令
に基づいて行なわれる。
Now, the reflected signal sent from gate 313 is the logical number)
. This is shown in FIG. 4(d). The output of the divider 321 is
The A/D converter 322 performs analog-to-digital conversion to convert the reflected signal waveform into a digital signal.
/F time is stored in the memory 324. This is designated as mu 1 as shown in FIG. 4(d). Next, the same operation is performed on the reflected signal of the flat panel 2, and when storing it in the memory 324, the previously stored reflected waveform of &1 is read out to the buffer 325, and the output of this buffer 325 and the A/D converter 322 are The adder 323 adds the outputs of the . By repeating the same operation N times, data obtained by averaging the reflected signal waveform N times is stored in the memory 324 for 1/F time. Fourth
Figure (e). These series of operations are performed based on commands from the control circuit 341.

さて、このメモリ324を参照することにより、伝播時
間計測ゲート信号発生器331は、伝播時間計測ゲート
信号(第4図(f))を発生する。この信号によりゲー
ト332を制御してクロック発生器334よシ発生する
クロック(第4図は))を伝播時間15分のみカウンタ
333へ入力する(第4図(h))。このクロックをカ
ウンタ333でカウントすることにより、伝播時間T、
に応じたクロック数Mが得られる(第4図(i))。
Now, by referring to this memory 324, the propagation time measurement gate signal generator 331 generates a propagation time measurement gate signal (FIG. 4(f)). This signal controls the gate 332 to input the clock generated by the clock generator 334 (FIG. 4) to the counter 333 for a propagation time of 15 minutes (FIG. 4(h)). By counting this clock with the counter 333, the propagation time T,
The number of clocks M is obtained according to (FIG. 4(i)).

このように、攪拌され、かつ、気泡を含む微生物懸濁液
でも、平均化処理を行なうことにより安定に、かつ、上
述の手段を用いることにより、高速に伝播時間を計測す
る方法を述べた。
As described above, a method has been described in which the propagation time can be measured stably by averaging even in a stirred microbial suspension containing bubbles, and at high speed by using the above-mentioned means.

次に、温度の計測方法を説明する。Next, a method for measuring temperature will be explained.

温度検出器350は、サーミスタなどの測温抵抗体など
が適用できる。温度検出器350で生じた電気信号を温
度演算装置360に送り、ここで温度が演算される。
The temperature detector 350 can be a resistance temperature sensor such as a thermistor. The electrical signal generated by the temperature detector 350 is sent to the temperature calculation device 360, where the temperature is calculated.

さて、伝播時間と温度の二つの情報を求める方法を述べ
る。ここではこれら二つの情報を基に、−菌体濃度を求
める方法を簡単に述べる。一般に菌体濃度Cwは、 Cw=f(Tt、θ)  ・・・・・・・・・(4)と
して、伝播時間Ttと温度θの関数として表わされる。
Now, we will explain how to obtain two pieces of information: propagation time and temperature. Here, we will briefly describe a method for determining the bacterial cell concentration based on these two pieces of information. Generally, the bacterial cell concentration Cw is expressed as a function of propagation time Tt and temperature θ as follows: Cw=f(Tt, θ) (4).

また、(4)式の関数fは、対象とする微生物で異なる
ので、微生物に応じた関数を関数メモ!J 380に記
憶させておく。そこで、伝播時間と温度の情報を基に、
関数メモリ380から関数を呼び出して、菌体濃度演算
装置370で菌体濃度を求める。
Also, the function f in equation (4) differs depending on the target microorganism, so memo the function depending on the microorganism! Store it in J380. Therefore, based on the information on propagation time and temperature,
A function is called from the function memory 380, and the bacterial cell concentration is determined by the bacterial cell concentration calculating device 370.

本実施例では、伝播時間を測定するのに送信パルス発生
時点から一回目反射信号までの時間を計測したが、−回
目から二回目反射信号まで、あるいは、送信パルス発生
時点から三回目反射信号までなど、その組み合わせは任
意であることは明白である。同様に、反射信号強度判別
レベル設定器316の設定レベルを二回目以後の反射信
号が表われないレベルとしたが、本発明は特にこれに限
定するものではない。
In this example, the propagation time was measured from the time when the transmitted pulse was generated to the first reflected signal, but from the -th time to the second reflected signal, or from the time when the transmitted pulse was generated to the third reflected signal. It is obvious that the combination is arbitrary. Similarly, although the set level of the reflected signal strength discrimination level setter 316 was set to a level at which the second and subsequent reflected signals do not appear, the present invention is not particularly limited to this.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、攪拌されかつ気泡を含む微生物懸濁液
の菌体濃度を超音波を応用して計測する際、不可避であ
る波形の平均化処理を行なうこと(よる計測応答性の劣
化を最小限にとどめ、広い濃度計測範囲にわたって高速
な応答性をもった菌体濃度測定装置を実現することがで
きる。
According to the present invention, when measuring the bacterial cell concentration of an agitated microbial suspension containing air bubbles by applying ultrasound, waveform averaging processing is unavoidable (to reduce the deterioration of measurement response). It is possible to realize a microbial cell concentration measuring device that is kept to a minimum and has high-speed responsiveness over a wide concentration measurement range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例の系統図、第3図は
信号処理部の詳細説明図、第4図、第5図は動作説明図
でちる。 100・・・培養槽、110・・・培養液、120・・
・コンプレッサ、130・・・ガス供給管、140・・
・散気装置、150・・・モータ、160・・・シャフ
ト、170A、 B・・・攪拌列、180・・・消泡具
、190・・・排気管、200・・・基質タンク、21
0・・・基質、220・・・基質供給ボ/プ、230・
・・基質供給管、240・・・超音波反射板、300・
・・超音波送受信子、310・・・超音波送受信制御装
置、311・・・強度可変パルス送信器、312・・・
アンプ、313・・・ゲート、314・・・ゲート制御
回路、315・・・反射信号強度判別回路、316・・
・反射信号強度判別レベル設定器、320・・・波形平
均化処理装置、321・・・割算!、322・・・A/
Dコンバータ、323・・・たし算器、324・・・メ
モリ、325・・・バッファ、330・・・伝播時間演
算装置、331・・・伝播時間計測ゲート信号発生器、
332・・・ゲート、333・・・カウンタ、334・
・・クロック発生器、340・・・制御装置、341・
・・制御回路、342・・・くシ返し周期設定器、35
0・・・温度検出器、360・・・温度演算装置、37
0・・・菌体濃度演算装置、380・・・関数メモリ。
1 and 2 are system diagrams of an embodiment of the present invention, FIG. 3 is a detailed explanatory diagram of a signal processing section, and FIGS. 4 and 5 are operational diagrams. 100...Culture tank, 110...Culture solution, 120...
・Compressor, 130... Gas supply pipe, 140...
- Aeration device, 150... Motor, 160... Shaft, 170A, B... Stirring train, 180... Defoamer, 190... Exhaust pipe, 200... Substrate tank, 21
0... Substrate, 220... Substrate supply port, 230...
・・Substrate supply pipe, 240 ・・Ultrasonic reflector, 300・
...Ultrasonic transmitter/receiver, 310... Ultrasonic transmitter/receiver control device, 311... Variable intensity pulse transmitter, 312...
Amplifier, 313...Gate, 314...Gate control circuit, 315...Reflected signal strength determination circuit, 316...
・Reflected signal strength discrimination level setter, 320... Waveform averaging processing device, 321... Division! , 322...A/
D converter, 323... Adder, 324... Memory, 325... Buffer, 330... Propagation time calculation device, 331... Propagation time measurement gate signal generator,
332... Gate, 333... Counter, 334...
・・Clock generator, 340 ・・Control device, 341・
... Control circuit, 342 ... Repeat cycle setting device, 35
0...Temperature detector, 360...Temperature calculation device, 37
0... Bacterial cell concentration calculation device, 380... Function memory.

Claims (1)

【特許請求の範囲】 1、微生物懸濁液を含む攪拌槽において、 温度検出用センサーと、温度演算装置と、超音波送受信
子と、超音波受信装置と、超音波受信信号強度計測装置
と、超音波送信パルス強度可変装置と、超音波反射部と
、受信波形平均処理装置と、伝播時間演算装置と、菌体
濃度演算装置とから成り、撹拌や気泡の影響を受けるこ
となく前記微生物懸濁液の濃度を高速に測定することを
特徴とする菌体濃度測定装置。 2、前記超音波送受信子を送信用、受信用と独立に複数
個設けたことを特徴とする特許請求の範囲第1項記載の
菌体濃度測定装置。
[Claims] 1. In a stirring tank containing a microbial suspension, a temperature detection sensor, a temperature calculation device, an ultrasonic transmitter/receiver, an ultrasonic receiver, an ultrasonic received signal strength measuring device, It consists of an ultrasonic transmission pulse intensity variable device, an ultrasonic reflection unit, a received waveform average processing device, a propagation time calculation device, and a microbial cell concentration calculation device, and the microorganism suspension is performed without being affected by stirring or air bubbles. A bacterial cell concentration measuring device that measures the concentration of a liquid at high speed. 2. The microbial cell concentration measuring device according to claim 1, characterized in that a plurality of the ultrasonic transmitter/receivers are provided independently for transmission and reception.
JP59196682A 1984-09-21 1984-09-21 Fungus body density measuring apparatus Pending JPS6175256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196682A JPS6175256A (en) 1984-09-21 1984-09-21 Fungus body density measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196682A JPS6175256A (en) 1984-09-21 1984-09-21 Fungus body density measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6175256A true JPS6175256A (en) 1986-04-17

Family

ID=16361839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196682A Pending JPS6175256A (en) 1984-09-21 1984-09-21 Fungus body density measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6175256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286701A (en) * 2001-03-22 2002-10-03 Kyoto Electron Mfg Co Ltd Measuring value correcting method in ultrasonic sound speed measurement and ultrasonic measuring device
JP2004271348A (en) * 2003-03-10 2004-09-30 Univ Nihon Instrument for measuring concentration of fine particles
JP2008014930A (en) * 2006-06-07 2008-01-24 Pfu Ltd Device and method for measuring solid component concentration, and solid component concentration adjusting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286701A (en) * 2001-03-22 2002-10-03 Kyoto Electron Mfg Co Ltd Measuring value correcting method in ultrasonic sound speed measurement and ultrasonic measuring device
JP2004271348A (en) * 2003-03-10 2004-09-30 Univ Nihon Instrument for measuring concentration of fine particles
JP2008014930A (en) * 2006-06-07 2008-01-24 Pfu Ltd Device and method for measuring solid component concentration, and solid component concentration adjusting device

Similar Documents

Publication Publication Date Title
US4959228A (en) Measurement of specific gravity during fermentation
US4868797A (en) Time-shared AGC for ultra-sound liquid level meter
JP2006506607A5 (en)
CN109579950B (en) Mistake proofing ripples detection device of gaseous ultrasonic flowmeter
US4567749A (en) Process and apparatus for determining the interfacial area in a two-phase mixture incorporating a gaseous phase flowing in the form of bubbles
CN109029602B (en) Ultrasonic-based flow measurement method and flowmeter
CN116087908B (en) Radar high-precision level meter measuring method based on cooperative operation
JPH11218436A (en) Ultrasonic liquid level measuring device
CN108398690B (en) Submarine backscattering intensity measuring method
JPS63103962A (en) Method and device for measuring volume retention rate of dispersed phase in liquid/liquid dispersed system by ultrasonic wave
JPS6175256A (en) Fungus body density measuring apparatus
CN111351551B (en) Accurate temperature compensation ultrasonic liquid level detection method and system
CN116086556A (en) Self-adaptive ultrasonic flow measurement method and device
GB2167185A (en) Acoustically detecting and/or identifying a liquid
CN115077661A (en) Multi-path ultrasonic transmission liquid level measuring method and device
RU2241242C1 (en) Echo sounder
RU2003101179A (en) METHOD FOR AUTOMATIC SUPPORT OF A MANEUVERING GOAL IN THE ACTIVE LOCATION OF A HYDROACOUSTIC OR RADAR COMPLEX
JPH06186124A (en) Method and apparatus for calibrating ultrasonic- wave-type leaking-position measurement
JPS6174573A (en) Apparatus for measuring cell concentration
JPS61239883A (en) Apparatus for determination of concentration of microbial cell
Hagelberg et al. A small pressurized vessel for measuring the acoustic properties of materials
JPH0599908A (en) Gain controlling apparatus for ultrasonic flaw detector
JPH08271322A (en) Ultrasonic liquid level measuring method
JPH0278952A (en) Method for measuring bacteria concentration
JP2801997B2 (en) Tidal current measurement method