JPS6174015A - Automatic pressure control system - Google Patents

Automatic pressure control system

Info

Publication number
JPS6174015A
JPS6174015A JP19483084A JP19483084A JPS6174015A JP S6174015 A JPS6174015 A JP S6174015A JP 19483084 A JP19483084 A JP 19483084A JP 19483084 A JP19483084 A JP 19483084A JP S6174015 A JPS6174015 A JP S6174015A
Authority
JP
Japan
Prior art keywords
fluid
capacity
pressure
signal
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19483084A
Other languages
Japanese (ja)
Inventor
Hitoshi Tamate
仁 玉手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAGINOMIYA JOHNSON CONTROL KK
Original Assignee
SAGINOMIYA JOHNSON CONTROL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAGINOMIYA JOHNSON CONTROL KK filed Critical SAGINOMIYA JOHNSON CONTROL KK
Priority to JP19483084A priority Critical patent/JPS6174015A/en
Publication of JPS6174015A publication Critical patent/JPS6174015A/en
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2066Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source

Abstract

PURPOSE:To make a flow/air quantity measuring device unnecessary, and to obtain an automatic pressure control system at a low cost by applying a signal for showing a present fluid carrying capacity of a pump, etc., as a feedback signal to a controller. CONSTITUTION:An automatic pressure control system of an air-conditioning system, etc. sends a fluid to a load through a carrying path 3 by a pump and an air blower 1. This pump 1, etc. are provided with a capacity controller 2 for changing a fluid carrying capacity, and also provided with a demand side capacity controller 4. Also, a controller 6 is provided, and by a pressure signal (a) of a pressure detector 5 provided on a fluid sending-out side of the pump 1, etc., and a capacity signal (manipulated variable feedback signal) (b) for showing a present flow rate carrying capacity from the capacity controller 2, the carrying capacity of the pump 1, etc. is controlled by a control signal (c) so that the pressure signal (a) coincides with the carrying capacity of the capacity signal (b), based on a target value setting in advance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体搬送能力を変更可能な流体搬送装置(例
えば、?ンfあるいは送風機など)により、流体(例え
ば、水あるいは空気など)を、搬送路を介して負荷に送
るシステム(例えば1空調システム)において、前記流
体搬送装置の流体送出側の流体圧力を予め定められた目
標圧力に自動的に制御する自動圧力制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a method for transporting a fluid (for example, water or air) using a fluid conveyance device (for example, a fan or a blower) whose fluid conveyance capacity can be changed. , relates to an automatic pressure control method for automatically controlling the fluid pressure on the fluid delivery side of the fluid transport device to a predetermined target pressure in a system (for example, an air conditioning system) that supplies the fluid to a load via a transport path.

具体的には本発明は、上述の如き空調システムにおいて
、搬送能力を変更可能なポンプあるいは送風機が、需要
側(負荷側)の状態に応じて搬送量を変更する場合、搬
送動力の節減、又は需要側の最適化の、目的で、あるい
は両方の目的で、流体送出圧力を変更する自動圧力制御
方式に関する。
Specifically, in the air conditioning system as described above, when a pump or a blower whose conveyance capacity can be changed changes the conveyance amount depending on the demand side (load side) condition, the present invention can reduce the conveyance power or reduce the conveyance power. The present invention relates to an automatic pressure control scheme for varying fluid delivery pressure for the purpose of demand side optimization, or both.

〔従来の技術〕[Conventional technology]

従来、この種の自動圧力1nす御方式においては。 Conventionally, in this type of automatic pressure control system.

ポンプあるいは送風機の流体送出側に設けられた。Installed on the fluid delivery side of a pump or blower.

流体圧力を計測するための圧力検出器と1ポンプあるい
は送風機による搬送量を計」すする流量ちるいは風量計
CII装箇と、前記圧力検出器の出力する圧力信号と前
記流量あるいは風量計測装置の出力する搬送量信号とを
受け、前記ポンプあるいは送風機の搬送化力を制御する
調節器とを備えている。
A pressure detector for measuring fluid pressure, a flow rate or airflow meter CII device for measuring the amount conveyed by a pump or blower, and a pressure signal output from the pressure detector and the flow rate or airflow measurement device. and a regulator that receives a conveyance amount signal output from the pump or the blower and controls the conveying force of the pump or the blower.

該調節器には、制御すべき搬送量とポンプあるいは送風
機の送出圧力の関係が予め設定されている。
The relationship between the amount of conveyance to be controlled and the delivery pressure of the pump or blower is preset in the regulator.

1咳調節器は、前記流量あるいは風量計測装置により計
測された搬送量を基に、設定されている関係から送出圧
力の目標値を決定し、この目標値に計、JIll して
いる送出圧力が一致するようにポンプあるいけ送風機の
搬送能力を制御する。
1. The cough regulator determines the target value of the delivery pressure from the set relationship based on the flow rate or the conveyance amount measured by the air volume measuring device, and sets the delivery pressure that is measured to this target value. Control the conveying capacity of the pump or blower to match.

〔発明が解決しようとする゛問題点〕[Problem that the invention attempts to solve]

このように従来の制御方式においては、流量あるいは風
量計測装置を必要とし、この流量あるいは風量計測装置
の設置の条件整備と工事費を含めた価格が難点となって
いる。
As described above, the conventional control system requires a flow rate or air volume measuring device, and the problem is the price including the installation conditions and construction costs of this flow rate or air volume measuring device.

本発明の目的は、流量あるいは風量計測装置を必要とし
ない安価な自動圧力制御方式を提供することにある。
An object of the present invention is to provide an inexpensive automatic pressure control system that does not require a flow rate or air volume measuring device.

以下金白 C問題点を解決するための手段〕 本発明によれば、流体搬送能力を変更可能な流体搬送装
置を備え、該流体搬送装置により流体を。
Means for Solving the Problems of Kinpaku C] According to the present invention, a fluid transport device whose fluid transport capacity can be changed is provided, and a fluid is transported by the fluid transport device.

搬送路を介して負荷に送るシステムにおいて、前記流体
搬送装置の流体送出側に設けられた。流体圧力を計測す
るための検出器と、該検出器の出力する圧力信号と前記
流体搬送装置からの現在の流体搬送能力を示す流体搬送
能力信号とを受ける調節器とを備え、該調節器には、前
記流体搬送装置の前記流体送出側の流体圧力の流体搬送
能力毎の目標値が予め設定されており、該調節器は2前
記圧力信号の示す圧力が前記流体能力信号の示す鍛圧力
制御方式が得られる。
In the system for sending the fluid to the load via the conveying path, the fluid delivery device is provided on the fluid delivery side of the fluid delivery device. comprising: a detector for measuring fluid pressure; and a regulator receiving a pressure signal output from the detector and a fluid conveying capacity signal indicating a current fluid conveying capacity from the fluid conveying device; A target value of the fluid pressure on the fluid delivery side of the fluid transport device for each fluid transport capacity is set in advance, and the regulator controls the pressure indicated by the pressure signal to control the forging force indicated by the fluid capacity signal. method is obtained.

〔実施例〕〔Example〕

第1図を参照すると1本発明の一実施例による自動圧力
制御方式は、ポンプあるいは送風機1により流体を、搬
送路3を介して負荷(図示せず)に送る空調システムに
適用される。
Referring to FIG. 1, an automatic pressure control system according to one embodiment of the present invention is applied to an air conditioning system in which a pump or blower 1 supplies fluid to a load (not shown) through a conveying path 3.

ボンデ0あるいは送風機1は、IN、体搬送能力を変更
するためのポンプ/送風機容量制御器2を備えている。
The bonder 0 or blower 1 is equipped with a pump/blower capacity controller 2 for changing IN, body transfer capacity.

ボンデ/送風機容量制御器2としては。As a bonder/blower capacity controller 2.

具体的には、ポンプあるいは送風機1・の回転数の制御
器(インバータ)や、絞り機能をもった制御器等が用い
られる。4は需要側容量制御器である。
Specifically, a controller (inverter) for the rotation speed of the pump or blower 1, a controller with a throttle function, or the like is used. 4 is a demand side capacity controller.

需要側容量制御器・1としては2具体的には、制御「や
VAV(t・ariable air volume)
、x= 7 ト(可変風量ユニ、ト)等が用いられる。
Demand-side capacity controller 1 is 2 specifically, control ``VAV (t・ariable air volume)''.
, x=7 (variable air volume unit, g), etc. are used.

本実施例による制御方式は、ポンプあるいは送風機1の
流体送出側に説けられた。流体圧力を計測するための圧
力検出器5と1.圧力検出器5の出力する圧力信号■と
、ボンデ/送風機容量制御器2からの現在の流体搬送能
力を示すボンデ/送風機容量信号(操作量フィードパ、
り信号)@とを受ける調節器6とを備えている。
The control method according to this embodiment was applied to the fluid delivery side of the pump or blower 1. Pressure detector 5 and 1 for measuring fluid pressure. The pressure signal (■) output from the pressure detector 5 and the bond/blower capacity signal (manipulated amount feeder,
and a regulator 6 for receiving the signal)@.

調節器(うには、ボンデ/送風機1の流体送出側の流体
圧力の流体搬送能力毎の目標値が予め設定されている。
The target value of the fluid pressure on the fluid delivery side of the bonder/blower 1 is set in advance for each fluid conveying capacity.

調節器6は、圧力信号■の示す圧力がポ/ブ/送風磯容
量信号@の示す搬送能力に対応した目標圧力値に一致す
るように、ボンデ/送風機lの搬送能力を制御信号θに
よって制御する。
The regulator 6 controls the conveying capacity of the bonder/blower l using the control signal θ so that the pressure indicated by the pressure signal ■ matches the target pressure value corresponding to the conveying capacity indicated by the port/blow/air blower capacity signal @. do.

次に、調節器6の動作を第2図をも参照して詳細に説明
する。第2図において、送出圧力目標曲線10は、第1
図の(B)点の必要圧力P。を維持するために必要な第
1図の(A)点の圧力(すなわちP。
Next, the operation of the regulator 6 will be explained in detail with reference also to FIG. In FIG. 2, the delivery pressure target curve 10 is
Required pressure P at point (B) in the diagram. The pressure (i.e., P) at point (A) in Figure 1 required to maintain .

に搬送路3の圧力損失を加えた圧力)を示す曲線である
。送風機/ポンf1の各容量における特性曲線11,1
2.13に相当する圧力は2曲線10との交点14.1
5.16で与えられる。この関係は予め特性式として調
節器6にプリセットl−でおく。
This is a curve showing the pressure obtained by adding the pressure loss of the conveyance path 3 to Characteristic curve 11, 1 at each capacity of blower/pon f1
The pressure corresponding to 2.13 is the intersection point 14.1 with the 2 curve 10.
5.16. This relationship is preset l- in the regulator 6 as a characteristic equation.

ここで、ある負荷で7ステム抵抗曲線21のとき、送風
機/ポンプ特性曲線112作動点14の状態で運転して
いる。このときより負荷が変化し。
Here, when the seven-stem resistance curve 21 is at a certain load, the blower/pump characteristic curve 112 is operating at the operating point 14. From this point on, the load changes.

需要側の容量制御器4が作動してシステム抵抗曲線が2
2になったとすれば作動点は23に移行する。作動点2
3の圧力は圧力検出器5によって検出され、信号■とし
て調節器6に入力される。一方、容量制御器2の状態(
この場合特性曲線11に相当する信号@)も調節器6に
入力され、プリセットされている特性式によって1点1
4の圧力が演算される。この点1・↓の圧力を目標値と
し。
The demand-side capacity controller 4 operates and the system resistance curve changes to 2.
If it becomes 2, the operating point shifts to 23. Operating point 2
The pressure No. 3 is detected by the pressure detector 5 and inputted to the regulator 6 as a signal ■. On the other hand, the state of the capacity controller 2 (
In this case, the signal @) corresponding to the characteristic curve 11 is also input to the regulator 6, and one point to one point is set according to the preset characteristic equation.
4 pressure is calculated. Set the pressure at this point 1↓ as the target value.

前記実作動点2,3の圧力の差ΔP1を偏差として。The difference ΔP1 between the pressures at the actual operating points 2 and 3 is used as a deviation.

調節器6は1Iill(財)信号61を容量制御器2に
送出し。
The regulator 6 sends a 1Iill signal 61 to the capacity controller 2.

偏差を減少させるための動作を行う。この途中の結果と
して、送風機/ボンデ1が特性曲線13に表わす容量と
なったとき、特性曲線IIの場合に述へたと同様に9点
16の目標圧力値と実作動点2−1の圧力の(bii差
はコP2となり、ΔPlにくらへて減少したがまだ残存
している。さらに制御を継続して偏差がなくなる点、す
なわち目標圧力値と実作動圧力値が合致する点15の状
態で送風機/ポツプ特性曲線12の容量となって安定す
る。
Take action to reduce the deviation. As a result of this process, when the blower/bonde 1 has the capacity shown in the characteristic curve 13, the target pressure value at the 9 points 16 and the pressure at the actual operating point 2-1 are changed in the same way as described in the case of the characteristic curve II. (bii difference becomes koP2, which decreases compared to ∆Pl but still remains.Furthermore, when the control is continued, at the point where the deviation disappears, that is, at point 15, where the target pressure value and the actual operating pressure value match) The capacity becomes stable as shown in the blower/pop characteristic curve 12.

実際の制御作動は負荷の変動に応じて常時連続的に行わ
れる。
Actual control operations are always performed continuously in response to load fluctuations.

この制御動作を明確にするために、第3図に制御プロ、
クダイヤグラムを示し、第4図に制御動作のフローチャ
ートを示す。
In order to clarify this control operation, Fig. 3 shows the control pro,
FIG. 4 shows a flowchart of the control operation.

第3図において、第1図と同じものは同じ参照符号で示
した。第3図において、31は第1図の?ンゾ/送風機
lと搬送路3と需要側容量制御器4とを含む部分(負荷
は含まない)を示す。32〜36が第1図の調節器6に
よる制御を示している。即ち、32はポンf/送風機容
量制御器2の操作量フィードバック信号(第1図のボン
f/送風機容量信号@)を受け、操作量フィードバック
信号値PVIを出力する操作量発信器である。33はフ
ィード・−?7り信号値PVIを受け、 f IJセ。
In FIG. 3, the same parts as in FIG. 1 are designated by the same reference numerals. In Figure 3, 31 is ? in Figure 1? 1 shows a portion including a blower/air blower 1, a conveyance path 3, and a demand-side capacity controller 4 (does not include load). 32 to 36 indicate control by the regulator 6 of FIG. That is, 32 is a manipulated variable transmitter that receives the manipulated variable feedback signal (bon f/blower capacity signal @ in FIG. 1) of the pon f/blower capacity controller 2 and outputs a manipulated variable feedback signal value PVI. 33 is feed -? 7, receives the signal value PVI, and sets f IJ.

トされている特性式により演算を行う特性式演算部であ
る。34は特性式演算部33よりの出力信号と圧力検出
器5よりの制御量フィードパ、り信号PV2 (第1図
の圧力信号■)との圧力差を出力する偏差出力部である
。35は偏差出力部34の偏差を受け、該偏差を減少さ
せて該偏差がなくなるように制御する制御演算部である
。36は制御演算部35の出力信号MVを受け、制御信
号MV’(第1図の○)を出力する制御信号出力処理部
である。
This is a characteristic expression calculation unit that performs calculations using the characteristic expressions that have been set. 34 is a deviation output section which outputs the pressure difference between the output signal from the characteristic equation calculation section 33 and the control amount feed signal PV2 (pressure signal ■ in FIG. 1) from the pressure detector 5. Reference numeral 35 denotes a control calculation section which receives the deviation of the deviation output section 34 and performs control to reduce the deviation so that the deviation disappears. 36 is a control signal output processing section which receives the output signal MV of the control calculation section 35 and outputs a control signal MV' (circle in FIG. 1).

第4図において、ステ、グSlで操作量フィードパ、り
信号値pvtが入力される。ステ、プS2では特性式・
ぞリターンがセットされ、ステ。
In FIG. 4, the manipulated variable feed signal value pvt is input at step S1. In step S2, the characteristic formula
Now that the return is set, it's time to move on.

ブS3では特性式による演算R−f(PVI)が実行さ
れる。ステ、デS4では圧力針側値PV2が入力される
。ステ、デS5では制御演算・ぞリターンがセットされ
、ステ、fs6ではRを目標値。
In block S3, calculation R-f (PVI) based on the characteristic equation is executed. In step S4, the pressure needle side value PV2 is input. Control calculation/return is set in step and de S5, and R is the target value in step and fs6.

PV2を制(財)量フ・−ドパ、り値とする制御演算を
行う。ステ、プS7では制御システム安定化のための信
号処理が行われ、ステラfS8でボンf/送風機容量制
御器2へ制御信号を出力する。
A control calculation is performed using PV2 as a control value. In step S7, signal processing for stabilizing the control system is performed, and a control signal is output to the blower/blower capacity controller 2 in step S8.

第5図を参照すると、第1図の実施例を空調膜f+ii
iの冷水/温水系に適用した例が示されている。
Referring to FIG. 5, the embodiment of FIG.
An example of application to a cold water/hot water system is shown.

第5図において、50は熱源ンステム、51はポンプ、
52はポンプ51の回転数制御器であるインバータであ
る。5 =1は需要側容量制御器である2方i1t制御
弁である。55はサプライヘアグー57にも・ける圧力
とリターンへ、グー58における圧力との差を出力する
差圧発信器、56は調節器。
In FIG. 5, 50 is a heat source system, 51 is a pump,
52 is an inverter that is a rotation speed controller for the pump 51. 5=1 is a 2-way ilt control valve which is a demand side capacity controller. 55 is a differential pressure transmitter that outputs the difference between the pressure in the supply hair goo 57 and the pressure in the return goo 58; 56 is a regulator.

57はサプライへ、グー、58はリターンへ、グーであ
る。59は空調機、60は負荷側システムである。■は
差圧信号、@は回転数フィードパ。
57 is goo to supply, 58 is goo to return. 59 is an air conditioner, and 60 is a load side system. ■ is the differential pressure signal, @ is the rotation speed feeder.

り信号、のは回転数制御信号である。The signal is the rotation speed control signal.

第6図を参照すると、第1図の実施例を可変風量空調機
設備における送風静圧制御システムに適用した例が示さ
れている。第6図において、61は送風機、62は送風
機61の回転数制御器であるインバータである。63は
風導、64は需要側容量制御器であるVAVユニ、ト(
可変風量ユニ。
Referring to FIG. 6, there is shown an example in which the embodiment of FIG. 1 is applied to an air blowing static pressure control system in variable air volume air conditioner equipment. In FIG. 6, 61 is a blower, and 62 is an inverter that is a rotation speed controller for the blower 61. In FIG. 63 is a wind guide, 64 is a demand side capacity controller, VAV unit (
Variable air volume uni.

ト)である。65は圧力発信器、66は調節器である。). 65 is a pressure transmitter, and 66 is a regulator.

67は空調機、68はルームサーモスタ。67 is an air conditioner, and 68 is a room thermostat.

トである。■は圧力信号、@は回転数フィード・シ7り
信号、Oは回転数制御信号である。
It is. ■ is a pressure signal, @ is a rotational speed feed signal, and O is a rotational speed control signal.

〔発明の効果〕〔Effect of the invention〕

以上説明したように9本発明によれば、ポンプあるいは
送風機などの流体搬送装置からの現在の流体搬送能力を
示す流体搬送能力信号をフィードパ、り信号として受け
る調節器を備えることによって、従来必要であった流量
あるいは風量計測装置が不要になる。従って、流量ある
いは風量計測装置の設置工事および計装配線工事が不要
となる。
As explained above, according to the present invention, by providing a regulator that receives a fluid conveyance capacity signal indicating the current fluid conveyance capacity from a fluid conveyance device such as a pump or a blower as a feed signal, it is possible to The existing flow rate or air volume measuring device becomes unnecessary. Therefore, installation work for a flow rate or air volume measuring device and instrumentation wiring work are unnecessary.

特に、既存設備に対して、改善工事を行う場合に。Especially when performing improvement work on existing equipment.

II′L来必要であっ/こ保已、塗装などの補修工事が
必要ない。
No repair work such as painting is required since II'L.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示(−だプロ、り図。 第2図は第1図の動作を説明するための風量/水量−圧
力特性を示した図、第3図は第2図の制御を説明するた
めのプロ、り図、第、1図は第2図の:!ill zl
動咋のフローチャートを示した図、第5図は第1図の実
Mj例を空調設備の冷水/温水系に適用+−7こ例を・
示したプロ、り図、第6図は7pJ1図の実1鉋例を可
変風量空調機設備における送風静圧制御システムに適用
1−だ例を示したプロ、り図である。 1 ボン−7°/送風機、2・・月?ノブ/送風機容量
制仰ニジ:→、、ウ  搬送路、1 需要側容量制御器
、51モカ検出器、6・・調節器。 第1図 6 調節器 第2図 屓−量/氷量□ 10−−−−−−−一送出圧力(差ri)目標曲縁第3
図 第4図
Figure 1 shows an embodiment of the present invention. Figure 2 is a diagram showing air volume/water volume-pressure characteristics to explain the operation of Figure 1. A professional diagram to explain the control in Figure 2, Figure 1 is a diagram of Figure 2:!ill zl
Figure 5 is a diagram showing a flowchart of the operation, applying the actual Mj example in Figure 1 to the cold water/hot water system of air conditioning equipment.
The illustrated diagram, Figure 6, is a diagram showing an example of applying the actual example of Figure 7J1 to an air blow static pressure control system in variable air volume air conditioner equipment. 1 Bon -7°/Blower, 2...Moon? Knob/Blower capacity control: →,, C Conveyance path, 1 Demand side capacity controller, 51 Moka detector, 6...Adjuster. Fig. 1 6 Adjuster Fig. 2 - Volume/Ice quantity □ 10 ---------Delivery pressure (difference ri) Target curved edge 3
Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、流体搬送能力を変更可能な流体搬送装置を備え、該
流体搬送装置により流体を、搬送路を介して負荷に送る
システムにおいて、前記流体搬送装置の流体送出側に設
けられた、流体圧力を計測するための検出器と、該検出
器の出力する圧力信号と前記流体搬送装置からの現在の
流体搬送能力を示す流体搬送能力信号とを受ける調節器
とを備え、該調節器には、前記流体搬送装置の前記流体
送出側の流体圧力の流体搬送能力毎の目標値が予め設定
されており、該調節器は、前記圧力信号の示す圧力が前
記流体能力信号の示す搬送能力に対応した目標圧力値に
一致するように、前記流体搬送装置の流体搬送能力を制
御することを特徴とする自動圧力制御方式。
1. In a system that includes a fluid transfer device whose fluid transfer capacity can be changed and sends fluid to a load via a transfer path, the fluid pressure provided on the fluid delivery side of the fluid transfer device is adjusted. a detector for measuring; and a regulator that receives a pressure signal output from the detector and a fluid conveyance capacity signal indicating the current fluid conveyance capacity from the fluid conveyance device; A target value of the fluid pressure on the fluid delivery side of the fluid transport device for each fluid transport capacity is set in advance, and the regulator adjusts the pressure indicated by the pressure signal to a target value corresponding to the transport capacity indicated by the fluid capacity signal. An automatic pressure control method, characterized in that the fluid transport capacity of the fluid transport device is controlled to match a pressure value.
JP19483084A 1984-09-19 1984-09-19 Automatic pressure control system Expired - Lifetime JPS6174015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19483084A JPS6174015A (en) 1984-09-19 1984-09-19 Automatic pressure control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19483084A JPS6174015A (en) 1984-09-19 1984-09-19 Automatic pressure control system

Publications (1)

Publication Number Publication Date
JPS6174015A true JPS6174015A (en) 1986-04-16

Family

ID=16330965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19483084A Expired - Lifetime JPS6174015A (en) 1984-09-19 1984-09-19 Automatic pressure control system

Country Status (1)

Country Link
JP (1) JPS6174015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269872B1 (en) 1998-10-14 2001-08-07 Visteon Global Technologies, Inc. System and method for regulating coolant flow rate to a heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032449A (en) * 1973-07-28 1975-03-29
JPS5654287B2 (en) * 1974-12-19 1981-12-24
JPS5746089A (en) * 1980-09-02 1982-03-16 Mitsubishi Electric Corp Compressor operating controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032449A (en) * 1973-07-28 1975-03-29
JPS5654287B2 (en) * 1974-12-19 1981-12-24
JPS5746089A (en) * 1980-09-02 1982-03-16 Mitsubishi Electric Corp Compressor operating controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269872B1 (en) 1998-10-14 2001-08-07 Visteon Global Technologies, Inc. System and method for regulating coolant flow rate to a heat exchanger

Similar Documents

Publication Publication Date Title
US4838483A (en) Vav valve control with transducer tolerance compensation
KR890005073B1 (en) Mixture control apparatus and method
US5139197A (en) Air conditioning system
US3834617A (en) Pid controller for heating, ventilating and air conditioning systems
US9874880B2 (en) Device and method for controlling opening of a valve in an HVAC system
US4732318A (en) Velocity controlled forced air temperature control system
US4821526A (en) Air conditioning apparatus
CA1224859A (en) Integrated control of output and surge for a dynamic compressor control system
US10690423B2 (en) Method for a heat transfer system and heat transfer system
US20140083673A1 (en) Device and method for controlling opening of a valve in an hvac system
US6430985B1 (en) Multiple point calibrated HVAC flow rate controller
US5138845A (en) Method and apparatus for controlling the flow of process fluids
US5318106A (en) Method and apparatus for controlling the flow of process fluids
US5261481A (en) Method of determining setback for HVAC system
US4705066A (en) Space static pressure control
JPS6174015A (en) Automatic pressure control system
US4489882A (en) Variable time constant anticipation thermostat
US11047582B2 (en) Method and devices for controlling a fluid transportation network
JP2819476B2 (en) Air-conditioner delivery pressure control method
US4830274A (en) Pressure independent VAV valve with pressure dependent backup
US8191387B2 (en) System and method for controlling temperature in a forehearth
US11713718B2 (en) Dual valve fluid metering system
CA1175531A (en) Monitoring of fluid flow
JP2005180848A (en) Heat supply system
JP2607795B2 (en) Method and apparatus for adjusting processing conditions of continuous furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term