JPS6173933A - Generation method of optically mixed wave - Google Patents
Generation method of optically mixed waveInfo
- Publication number
- JPS6173933A JPS6173933A JP59197410A JP19741084A JPS6173933A JP S6173933 A JPS6173933 A JP S6173933A JP 59197410 A JP59197410 A JP 59197410A JP 19741084 A JP19741084 A JP 19741084A JP S6173933 A JPS6173933 A JP S6173933A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- temperature
- phase matching
- mixed wave
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はレーザ光の位相整合による光混合波発生の、出
力を安定化した光混合波の発生方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for generating an optical mixed wave by phase matching of laser beams in which the output is stabilized.
(従来技術とその問題点)
レーザを利用する産業は、初期の切断、穴あけなどの単
純な加工から、光の波長依存性や高度なレーザの制御性
を駆使した。光化学、半導体プロセスなどへ広がりつつ
ある。これに伴い、光高調波や和周波、パラメトリック
光混合波などの光混合波を光源として用いる場せ、以前
に増して格段に高い出力安定電が光源に要求されてきて
いる。(Prior art and its problems) Industries that use lasers have gone from the initial simple processing such as cutting and drilling to making full use of the wavelength dependence of light and the advanced controllability of lasers. It is spreading to photochemistry, semiconductor processes, etc. Along with this, when optical mixed waves such as optical harmonics, sum frequency waves, and parametric optical mixed waves are used as a light source, the light source is required to have a much higher output and stable current than ever before.
光混合波発生において、温度位相整合は、励起レーザ光
と光混合波の光路が完全に重なり、非線形光学媒質の長
さと共に励起レーザ光から光混合波への変換効率が上が
ること、筒いビームクォリティの光混合波を得ることが
できるなどの利点をもたらし、産業応用上広く使われて
いる。しかしながら温度位相整合では励起レーザ光及び
光混合波の吸収による非線形光学媒質中の自己発熱効果
の補正を行いながら非線形光学媒質の温度を0.1℃以
下の精度に安定化することが一般的に必要である。In optical mixed wave generation, temperature phase matching means that the optical paths of the excitation laser beam and the optical mixed wave completely overlap, and the conversion efficiency from the excitation laser beam to the optical mixed wave increases with the length of the nonlinear optical medium. It offers advantages such as being able to obtain high-quality optical mixed waves, and is widely used in industrial applications. However, in temperature phase matching, it is generally necessary to stabilize the temperature of the nonlinear optical medium to an accuracy of 0.1°C or less while correcting the self-heating effect in the nonlinear optical medium due to absorption of the excitation laser beam and optical mixed wave. is necessary.
従来、これらの効果を補正して常に位相整合条件を満た
すための最も進んだ安定化技術として、第2高調波発生
の場合に位相整合の際に微小な位相整合条件の変調をD
oえ、対応する光高調波の強度変化の位相と撮鳴を誤差
信号として、位相整合条件の制御系lこフィードバック
することにより光高調波出力を安定化させる方法が報告
されている。Conventionally, as the most advanced stabilization technology to compensate for these effects and always satisfy the phase matching condition, D
Furthermore, a method has been reported for stabilizing the optical harmonic output by feeding back the phase of the intensity change of the corresponding optical harmonic and the captured sound as an error signal to a control system for phase matching conditions.
変調を、温度で行った場合が特願昭48−03110に
記載されている。また変調を、非線形光学媒質の電気光
学効果を用いて礪界により行う方法が、1976年アイ
・イー・イー・イー・ジャーナル・オブ・ファンタム・
エレクトロニクス(IEI!13Journal of
Quantum Electronics )誌のQ
E−12巻の148ページに記載されている。第5図は
従来の方法を通用した装置の動作原理をボす図であり、
横軸は温度、縦軸は2?に高調波出力である。A case in which the modulation is performed by temperature is described in Japanese Patent Application No. 48-03110. In addition, a method of performing modulation using the electro-optic effect of a nonlinear optical medium was published in IEJ Journal of Phantoms in 1976.
Electronics (IEI! 13 Journal of
Q of Quantum Electronics) magazine
It is described on page 148 of volume E-12. Figure 5 is a diagram illustrating the operating principle of the device that has passed through the conventional method.
The horizontal axis is temperature and the vertical axis is 2? is the harmonic output.
図においてP点は、温度が位相整合温度T、と一致する
位相整合状態の動作点であり、八及びB点は位相整合条
件が位相整合状態から少し外れてはいるが、2次高調波
出力が位相整合状態の半分程度の、許容温度範囲の限界
にあると去の動作点である。A、B点において振幅ΔT
の温度変調を加えた場合の温度変調と光高調波出力の時
間変化波形をa、b、cで示す。第6図はaを参照信号
としてす、cの波形を位相検波して得られる位相検波出
力で、微小温度変化に対する高調波出力の変化の関係を
示す。A点で位相整合状態に近づけるためには、温度を
上げる必要があり、B点では逆に下げることが必要であ
る。この情報は、第6図の位相検波出力の符号により知
ることができるので、位相検波出力を誤差信号として位
相整合条件の制御系にフィードバックすることにより光
高調波出力の安定化を計ることができる。、747図は
変調を温度で行なった場合の従来の方法を適用した装置
の実施例である。1iVtの動作を簡単lこ説明する。In the figure, point P is the operating point in the phase matching state where the temperature matches the phase matching temperature T, and points 8 and B are the operating points in the phase matching state where the phase matching condition slightly deviates from the phase matching state, but the second harmonic output The operating point is approximately half of the phase-matched state and at the limit of the allowable temperature range. Amplitude ΔT at points A and B
The time-varying waveforms of temperature modulation and optical harmonic output when temperature modulation is added are shown as a, b, and c. FIG. 6 shows the phase detection output obtained by phase detection of the waveform of c using a as a reference signal, and shows the relationship of changes in harmonic output with respect to minute temperature changes. In order to approach the phase matching state at point A, it is necessary to raise the temperature, and conversely, it is necessary to lower the temperature at point B. This information can be known from the sign of the phase detection output in Figure 6, so the optical harmonic output can be stabilized by feeding back the phase detection output as an error signal to the phase matching condition control system. . , 747 are examples of an apparatus to which a conventional method is applied when modulation is performed by temperature. The operation of 1iVt will be briefly explained.
レーザ光源1は、励起レーザ光を発生し、励起レーザ光
は恒温そう2の内部に設置された非線形光学媒質5によ
り光高調波に変換される。得られた光高調波の一部を第
1のビームスプリッタ6で反射し、光検出器7で受光す
る。一方、恒温そう2の内部は主ヒータ1源11で制御
される主ヒータ3により、位相整合温度付近に保たれて
いる。A laser light source 1 generates excitation laser light, and the excitation laser light is converted into optical harmonics by a nonlinear optical medium 5 installed inside a constant temperature chamber 2. A part of the obtained optical harmonics is reflected by the first beam splitter 6 and received by the photodetector 7. On the other hand, the inside of the constant temperature oven 2 is maintained near the phase matching temperature by the main heater 3 controlled by the main heater 1 source 11.
恒温そう2には、その他に変調器8により、温度変調を
加える変調用ヒータ4が含まれる。環境温度や励起レー
ザ光の出力変動によって起こる位相整合状態からの外れ
に関する情報が、光検出47の出力のうち、変調器8の
変調周波数に同期する成分を位相検波器9で抽出するこ
とにより得られる。位相検波器9の出力を誤差信号とし
て直流増@器10を介して、主ヒータ電源11にフィー
ド/<ツクし、誤差信号の増減に応じて主ヒータ3の加
熱成力を増減する。こうして、非線形光学媒質5の温度
を位相整合温度1こ呆つ。しかしながら、このような従
来方法を適用した装置では位相整合状態からの外れを監
視するために変調を行うことが不可欠なため、得られる
光高調波には、変調器8の変調周波数に一致する出力変
動が含まれ、この出力変動を除去できない欠点がある。The constant temperature chamber 2 also includes a modulation heater 4 that modulates the temperature using a modulator 8. Information regarding deviations from the phase matching state caused by environmental temperature or fluctuations in the output of the excitation laser beam can be obtained by extracting a component synchronized with the modulation frequency of the modulator 8 from the output of the photodetector 47 using the phase detector 9. It will be done. The output of the phase detector 9 is fed as an error signal to the main heater power supply 11 via a DC amplifier 10, and the heating power of the main heater 3 is increased or decreased in accordance with the increase or decrease in the error signal. In this way, the temperature of the nonlinear optical medium 5 is reduced by one phase matching temperature. However, in a device to which such a conventional method is applied, it is essential to perform modulation in order to monitor deviation from the phase matching state, so the obtained optical harmonics include an output that matches the modulation frequency of the modulator 8. There is a drawback that fluctuations are included, and this output fluctuation cannot be removed.
また変調のために照温そうの構造などが複・准となり、
装置が高価になる欠点もあり、その他に励起レーザ光の
出力変動が大きい場合、フィードバックループが誤動作
を起こし、安定動作が不可能となる欠点もある。Also, due to the modulation, the structure of the lighting system becomes double and standard,
There is a disadvantage that the device is expensive, and another disadvantage is that if the output fluctuation of the excitation laser beam is large, the feedback loop may malfunction, making stable operation impossible.
(発明の目的)
本発明の目的は、従来の光混合波の発生法における位相
゛整合状聾からの外れを検出するための変調に伴う光高
調波の変動がなく、かつ単純で安価な装置構成が可能で
、フィードバックループの誤動作の恐れの少ない光混合
波の発生法を提供することにある。(Object of the Invention) An object of the present invention is to provide a simple and inexpensive device that does not cause fluctuations in optical harmonics due to modulation in the conventional optical mixed wave generation method for detecting deviation from phase matching. It is an object of the present invention to provide a method for generating an optical mixed wave that is configurable and has little risk of malfunctioning of a feedback loop.
(発明の構成)
本発明によれば、非線形光学媒質の位相整合条 件
を制御する制御手段を用いて励起レーザ光から、光混合
波を得る光混合波の発生法に2いて、前記非線形光学媒
質内の前記励起レーザ光の光路を、わずかな温度差を設
けた平行な2本の光路とし、前記2本の光路から発生ず
る光混合波のそれぞれモニターした出力を、もつとも位
相整置状態に近い状態で2つの前記出力が等しくなる増
幅度でそれぞれ増幅し、前記増幅後の出力の走を誤差信
号として、前記制御手段に帰還することを特徴とする光
混合波の発生法が得られる。(Structure of the Invention) According to the present invention, there is provided a method for generating an optical mixed wave for obtaining an optical mixed wave from an excitation laser beam using a control means for controlling the phase matching condition of a nonlinear optical medium. The optical path of the excitation laser beam in the medium is made into two parallel optical paths with a slight temperature difference, and the monitored outputs of the optical mixed waves generated from the two optical paths are kept in a phase aligned state. A method for generating an optical mixed wave is obtained, which is characterized in that the two outputs are amplified with amplification degrees that are approximately equal to each other, and the output after the amplification is fed back to the control means as an error signal.
c本発明の作用)
本発明の作用上の特徴は、温度差を持たせた2本の光路
に励起レーザ光を通し、2本の光路での光混合波出力の
違いから位相整合状態からのはずれの方向とその度合い
が検出できるため、従来用いられていた変調器が不要と
なり、この変調に基づく先高4波の変動がなく、−かつ
装置構成が単純で安価であり、また励起レーザ光の変動
による誤動作を避けられることである。c) Operation of the present invention) The operational feature of the present invention is that the excitation laser beam is passed through two optical paths with a temperature difference, and the difference in the optical mixed wave output between the two optical paths allows the phase matching state to be changed. Since the direction and degree of deviation can be detected, there is no need for a conventionally used modulator, there is no fluctuation in the four waves of the leading height due to this modulation, and the device configuration is simple and inexpensive. It is possible to avoid malfunctions due to fluctuations in
(実施例)
次に図面を8照しながら本発明を具体的に説明する。第
1図は、本発明を2次高調波発生に適用したgHの実施
例を示す1gであり、以下の点を除いて機能及びその構
成弗素名称は第7図の従来14iIlと同じである。恒
温そう2と第2の恒温部13の温度は温度制御ユニット
16により位相整合の許容温度範囲に合まれる温度番こ
設定されている。第1の恒t、A部■2は、温度制御ユ
ニット[6により許容温度範囲よりは充分小さな一定温
度差だけ、第2の恒温部13に比べ高い温度に設定され
ている。14は反射鏡、15は励起レーザ光を分離する
第2のビームスプリッタ−119及び21は発生した2
本の光高調波の一部を各々17及び20の第1及び第2
の検出器に導く第3及び第4のビームスプリッタ−11
8は演算ユニ、トである。このとき、もっとも位相整合
に近い状態で第1の検出517の出力は第2の検出D2
01こ比へ弱くなっている場合を以下では想定する。逆
の場合は構成は以下の論旨から容易に類推できるので省
略する。演算ユニット18は第1の検出器17の出力を
増幅する部分と、その増幅された信号と第2の検出器2
0の出力との差を増幅する差動増幅器とから成っている
。差動増幅器の出力を温度制御ユニット16に入力する
。第2図は非線形光学結晶5の位相整合状態からの外れ
の度合いと光高調波出力の一般的な関係を示したもので
。(Example) Next, the present invention will be specifically described with reference to the drawings. FIG. 1 shows an example of gH 1g in which the present invention is applied to second harmonic generation, and the functions and constituent fluorine names are the same as the conventional 14iIl shown in FIG. 7, except for the following points. The temperatures of the constant temperature chamber 2 and the second constant temperature section 13 are set by a temperature control unit 16 to a temperature that matches the allowable temperature range for phase matching. The first constant temperature section A2 is set to a temperature higher than the second constant temperature section 13 by a constant temperature difference that is sufficiently smaller than the allowable temperature range by the temperature control unit [6. 14 is a reflecting mirror, 15 is a second beam splitter that separates the excitation laser beam, and 119 and 21 are generated 2 beam splitters.
Some of the optical harmonics of the book are 17 and 20 first and second, respectively.
third and fourth beam splitters 11 leading to the detector of
8 is the operation unit. At this time, in the state closest to phase matching, the output of the first detection 517 is the second detection D2.
In the following, we will assume a case where the ratio is weakened to 0.01. In the opposite case, the structure will be omitted because it can be easily inferred from the following argument. The arithmetic unit 18 includes a part that amplifies the output of the first detector 17 and a part that amplifies the output of the first detector 17 and the amplified signal and the second detector 2.
It consists of a differential amplifier that amplifies the difference between the output and the zero output. The output of the differential amplifier is input to the temperature control unit 16. FIG. 2 shows the general relationship between the degree of deviation from the phase matching state of the nonlinear optical crystal 5 and the optical harmonic output.
T、 、 T、は第1図に示す第1の実施例において2
つの光路の温度が共に位相整合温度より低いが、位相整
合の許容温度範囲温度にある時の動作点を示している。T, , T, is 2 in the first embodiment shown in FIG.
The operating point is shown when the temperatures of the two optical paths are both lower than the phase matching temperature but within the allowable temperature range for phase matching.
第3図は恒温そう2の温度と演算ユニット18の出力と
の関係を示しており、P′点は第2図のごとく2つの光
路の温度がそれぞれT、、T。FIG. 3 shows the relationship between the temperature of the thermostatic chamber 2 and the output of the arithmetic unit 18. At point P', the temperatures of the two optical paths are T, , T, respectively, as shown in FIG.
lこなっているときの動作点を示している。演算ユニ、
ト18の差動増幅器の出力は、2つの光路での位相整合
条件が最も満たされたときゼロとなるよう調整されてい
るので差動増幅器の出力から恒温そう2の温度の位相整
合温度からの誤差量が符号を含めてわかる7この差動増
幅器の出力を用いて第1図に示したフィードバックルー
ズにより2つの光路の位相整合条件を常に一定lこ保つ
ことができる。演算ユニット18内の第1の検出器17
の出力を増幅する部分の増幅度は、最も位相整合状態l
こ近い状態での第2の検出器20の出力に対する第1の
検出器17の出力との比として、あらかじめ設定するこ
とができる。This shows the operating point when the motor is running. Arithmetic Uni,
The output of the differential amplifier in step 18 is adjusted to be zero when the phase matching conditions in the two optical paths are most satisfied, so the output of the differential amplifier is adjusted to be constant from the phase matching temperature of step 2. Using the output of this differential amplifier, in which the amount of error can be determined including its sign, the phase matching condition of the two optical paths can always be kept constant by the feedback loop shown in FIG. First detector 17 in calculation unit 18
The amplification degree of the part that amplifies the output of
It can be set in advance as a ratio of the output of the first detector 17 to the output of the second detector 20 in a similar state.
本発明の装置によれば、従来の方法を適用した装置でみ
られた変調に伴う光高調波の変動がなくなり、位相整合
条件の高安定化を計ることができる、非線形光学媒質5
内に設ける温度勾配は、位相整合可能な温度の半陳幅よ
りも小さな値で十分であるので、非線形光学媒質5に加
わる歪みは光高調波発生の効率低下にはほとんど影響し
ない。According to the device of the present invention, fluctuations in optical harmonics due to modulation observed in devices applying conventional methods are eliminated, and the nonlinear optical medium 5 can highly stabilize phase matching conditions.
Since it is sufficient for the temperature gradient provided within the nonlinear optical medium 5 to have a value smaller than the half-width of the temperature at which phase matching is possible, the strain applied to the nonlinear optical medium 5 has almost no effect on the reduction in the efficiency of optical harmonic generation.
非線形光学媒質5の熱伝導率は、金属などに比べ、通常
小さく温度勾配を設けることは容易であるので恒温そう
2の構造は簡単であり、装置を安価に作れることも本発
明の利点である。演算ユニ、ト18までの回路の対称性
を利用して、光の検出器の配置を対称性よく配置すれば
、検出器のドリフトや外来雑音の影響も少なく抑えるこ
とが可能となり、一層高安定な光高調波出力を本発明に
より得ることができる。第4図は本発明を適用したfl
c2の実施例を示す図である。図において、22は差動
増@器、nは折り返し説であり、他の部分の名称及び機
能は第1図の第1の実施例と同じである。The thermal conductivity of the nonlinear optical medium 5 is usually smaller than that of metals, etc., and it is easy to create a temperature gradient, so the structure of the constant temperature chamber 2 is simple, and another advantage of the present invention is that the device can be manufactured at low cost. . By taking advantage of the symmetry of the circuits from the calculation unit to G18 and arranging the light detectors in a symmetrical manner, it is possible to suppress the effects of detector drift and external noise, resulting in even higher stability. A high optical harmonic output can be obtained by the present invention. Figure 4 shows a fl to which the present invention is applied.
It is a figure which shows the Example of c2. In the figure, 22 is a differential amplifier, n is a folding mechanism, and the names and functions of other parts are the same as in the first embodiment shown in FIG.
この場合、第2の検出器20には、第1と第2の光路で
発生した両方の光高調波が入力する。差動増幅器22は
第1の光路で発生した光高調波成分を除去するために用
いられる。なお、増@器24は第1の光路で発生した光
高調波が、折り返し鏡や、第2の光路での減衰される効
果を補正するために用いられる。この構成では得られる
光高調波は1本のビームで得られることや第1図の構成
に比べ、光学部品の点数が減り装置の調整が容易となる
利点がある。In this case, both optical harmonics generated in the first and second optical paths are input to the second detector 20. The differential amplifier 22 is used to remove optical harmonic components generated in the first optical path. Note that the intensifier 24 is used to correct the effect that the optical harmonics generated in the first optical path are attenuated by the folding mirror and the second optical path. This configuration has the advantage that the optical harmonics obtained can be obtained with a single beam, and that the number of optical parts is reduced compared to the configuration shown in FIG. 1, making it easier to adjust the apparatus.
第1図及び第4図に示した本発明を適用した第1、第2
の実施例の他に本発明の効果を生かし、さらに高い安定
度を潜る構成として第1図及び第4図において第1及び
第2の検出器17及び20と演算ユニッ)18の間に積
分回路を置くことができる。1 and 2 to which the present invention is applied as shown in FIGS. 1 and 4.
In addition to the embodiment described above, an integration circuit is provided between the first and second detectors 17 and 20 and the calculation unit 18 in FIGS. 1 and 4 as a configuration that takes advantage of the effects of the present invention and achieves even higher stability. can be placed.
積分回路の付加により検出系の高周波雑音を低減でき、
一層高い出力安定化を計ることができる。By adding an integrating circuit, high frequency noise in the detection system can be reduced.
Even higher output stabilization can be achieved.
第1図及び第4図に示した実施例においては、出射ビー
ムの光路上には励起レーザ光の一部が重なりているが一
励起レーザ光が不要な場合、出射ビームの光路上にプリ
ズムもしくはフィルタを置いて、光高調波のみを分離し
て用いることができる。In the embodiments shown in FIGS. 1 and 4, a part of the excitation laser beam overlaps the optical path of the output beam, but if the excitation laser beam is not needed, a prism or a By installing a filter, only the optical harmonics can be separated and used.
上記の本発明を適用した実施例においては、光高調波発
生について述べたが、言うまでもなく、他のパラメ)
IJブック混合や和周波発生などの位相整合可能な他の
光混合波発生にも本発明を適用することができる。In the above embodiments to which the present invention is applied, optical harmonic generation has been described, but it goes without saying that other parameters)
The present invention can also be applied to other phase-matchable optical mixed wave generation such as IJ book mixing and sum frequency generation.
(発明の効果)
本発明によれば、従来法で避けることのできなかった位
相整合条件に変調を加える変調器と得られる光混合波の
変調に伴う出力変動を除去でき、励起レーザ光の変動に
よる誤動作を避けることができるので、従来に比べ一層
高い安定度と高い信頼性を持つ光混合波発生装置が得ら
れる。また変調器が不要なため装置構成を単純で安価に
できる効果もある。(Effects of the Invention) According to the present invention, it is possible to eliminate output fluctuations caused by modulation of a modulator that modulates the phase matching condition and the resulting optical mixed wave, which could not be avoided with conventional methods, and fluctuations in pump laser light. Since it is possible to avoid malfunctions caused by this, an optical mixed wave generator having higher stability and reliability than the conventional one can be obtained. Furthermore, since no modulator is required, the device configuration can be made simple and inexpensive.
第5図及び第6図は従来法の動作原理を説明すた装置の
構成図、第1図及びX4図はそれぞれ本発明を適用した
第1及び第2の実施例を示す図である。第2図及び第5
図は非線形媒質の温度と光高調波出力の関係を示し、a
、b、cは非線形媒質に温度変調を加えた時の時間変化
波形を示している。$6図は非線形媒質の温度と位相検
波出力の関係を示している。第3図は恒温そうの温度と
演算ユニ、ット出力の関係を示している。
図において、1はレーザ光源、2は恒温そう。
3は主ヒータ、4は変調用ヒータ、5は非線形光学媒質
、6は第1のビームスピリ、ター、7は光検出器、8は
変調器、9は位相検波器、10は直流増幅!、 ttは
主ヒータ電源、12は第1の恒温部、13は1a2の恒
を黒部、 14は反射鏡、15は第2のビームスプリッ
タ−116は温度匍」御ユニット、17は第1の検出器
、18は演算ユニット、19は第3のビームスプリッタ
−120は第2の検出器、21は第4のビームスピリヴ
ター、22は差励増119ia、23は折り返し鏡、2
4は増幅器である。
l : レーザ)亡逓
2:桓温逝う
Ia: 涜罵立ニット
20:fj42−液云器
ギ 4 口
22:差動3111幅器
23 : jarり返L/*
24:壇sz5 and 6 are block diagrams of an apparatus for explaining the operating principle of the conventional method, and FIGS. 1 and 4 are diagrams showing the first and second embodiments to which the present invention is applied, respectively. Figures 2 and 5
The figure shows the relationship between the temperature of the nonlinear medium and the optical harmonic output, a
, b, and c show time-varying waveforms when temperature modulation is applied to the nonlinear medium. Figure $6 shows the relationship between the temperature of the nonlinear medium and the phase detection output. Figure 3 shows the relationship between the temperature of the constant temperature oven and the output of the arithmetic unit. In the figure, 1 is a laser light source, and 2 is a constant temperature device. 3 is a main heater, 4 is a modulation heater, 5 is a nonlinear optical medium, 6 is a first beam beam filter, 7 is a photodetector, 8 is a modulator, 9 is a phase detector, and 10 is a DC amplification! , tt is the main heater power supply, 12 is the first constant temperature section, 13 is the constant temperature part of 1a2, 14 is the reflector, 15 is the second beam splitter, 116 is the temperature control unit, 17 is the first detection unit. 18 is an arithmetic unit, 19 is a third beam splitter, 120 is a second detector, 21 is a fourth beam stimulator, 22 is a differential excitation amplifier 119ia, 23 is a folding mirror, 2
4 is an amplifier. l: Laser) death 2: Kanon dies Ia: blasphemy knit 20: fj42-liquid product 4 mouth 22: differential 3111 width device 23: jar return L/* 24: platform sz
Claims (1)
いて励起レーザ光から、光混合波を得る光混合波の発生
法において、前記非線形光学媒質内の前記励起レーザ光
の光路をわずかな温度差を設けた平行な2本の光路とし
、前記2本の光路から発生する光混合波をそれぞれモニ
ターした出力を、最も位相整合状態に近い状態で2つの
前記出力が等しくなる増幅度でそれぞれ増幅し、前記増
幅後の出力の差を誤差信号として、前記制御手段に帰還
することを特徴とする光混合波の発生法。In an optical mixed wave generation method for obtaining an optical mixed wave from an excitation laser beam using a control means that controls phase matching conditions of a nonlinear optical medium, the optical path of the excitation laser beam in the nonlinear optical medium is changed by changing the optical path of the excitation laser beam with a slight temperature difference. Two parallel optical paths are provided, and the outputs of the optical mixed waves generated from the two optical paths are each amplified with an amplification degree that makes the two outputs equal in a state closest to the phase matching state. . A method for generating an optical mixed wave, characterized in that the difference between the amplified outputs is fed back to the control means as an error signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59197410A JPS6173933A (en) | 1984-09-20 | 1984-09-20 | Generation method of optically mixed wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59197410A JPS6173933A (en) | 1984-09-20 | 1984-09-20 | Generation method of optically mixed wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6173933A true JPS6173933A (en) | 1986-04-16 |
Family
ID=16374047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59197410A Pending JPS6173933A (en) | 1984-09-20 | 1984-09-20 | Generation method of optically mixed wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6173933A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009198606A (en) * | 2008-02-19 | 2009-09-03 | Panasonic Corp | Wavelength converting apparatus |
-
1984
- 1984-09-20 JP JP59197410A patent/JPS6173933A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009198606A (en) * | 2008-02-19 | 2009-09-03 | Panasonic Corp | Wavelength converting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111129947B (en) | Laser frequency stabilizing device and method and semiconductor laser assembly adopting same | |
US4745606A (en) | Dual-wavelength laser apparatus | |
CN101473499A (en) | Method and apparatus for controlling carrier envelope phase | |
US5748313A (en) | Signal-to-noise ratio of second harmonic interferometers | |
JPH01276786A (en) | Method and apparatus for automatic frequency control of semiconductor laser | |
JP3950570B2 (en) | Frequency stabilized light source | |
JPS6173933A (en) | Generation method of optically mixed wave | |
JP2012513617A (en) | Laser system with frequency servo | |
JPS6173932A (en) | Optical mixing wave generating device | |
JPS6123120A (en) | Light mixed wave generating device | |
JPH02244782A (en) | Frequency stabilized semiconductor laser driver | |
JP3500582B2 (en) | Optical frequency reference light source generator | |
Lee et al. | Long-term carrier-envelope-phase stabilization of a femtosecond laser by the direct locking method | |
US6667996B2 (en) | Apparatus and method for stabilizing the frequency of a laser | |
CN114268373B (en) | Optical frequency comb generation device and method based on double-sideband phase difference stabilization | |
JP2864814B2 (en) | Semiconductor laser device | |
JP2962568B2 (en) | Frequency stabilized laser light source | |
SU690460A2 (en) | Dc stabilizing arrangement | |
JPH05275788A (en) | Frequency-stabilized semiconductor laser | |
JPH0534739A (en) | Stabilization system of optical squeezer | |
CN116073226A (en) | Laser bias frequency stabilization device and method based on four-wave mixing ultra-narrow spectrum | |
JPH06338652A (en) | Stabilization of wavelength of laser and semiconductor laser module for wavelength stabilization | |
JPS6344783A (en) | Frequency stabilizer of laser light source | |
JPS62162381A (en) | Highly stabilized semiconductor laser light source | |
JP2852768B2 (en) | Apparatus for controlling frequency of light beam in ring resonant gyroscope |