JPS6173591A - Controlling method of induction main motor - Google Patents

Controlling method of induction main motor

Info

Publication number
JPS6173591A
JPS6173591A JP59194316A JP19431684A JPS6173591A JP S6173591 A JPS6173591 A JP S6173591A JP 59194316 A JP59194316 A JP 59194316A JP 19431684 A JP19431684 A JP 19431684A JP S6173591 A JPS6173591 A JP S6173591A
Authority
JP
Japan
Prior art keywords
connection
speed
inverter
switched
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59194316A
Other languages
Japanese (ja)
Inventor
Hironobu Hamada
濱田 博信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59194316A priority Critical patent/JPS6173591A/en
Publication of JPS6173591A publication Critical patent/JPS6173591A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve the performance of an electric railcar in a middle and high speed ranges in combination of a variable voltage variable frequency (VVVF) control by composing the widings of stator windings in a switchable constitution of a star-connection and delta-connection. CONSTITUTION:An induction main motor 6 for an inverter electric railcar is composed in a switchable constitution of a star-connection (Y-connection) and a delta-connection (DELTA-connection), a Y DELTA switching instructing circuit 9 is further provided to control an inverter 5 and the circuit 9 by a microcomputer controller 8. When an electric railcar is switched from a low speed toa high speed, the Y-connection is switched to the delta-connection to obtain high torque characteristic in the middle and high speed range by an induction main motor of the same size as the conventional one, thereby improving the performance of the railcar.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は可変電几可変周波数(以下、■V■[ど称する
)制御インバータ駆fI+電気車に使用される誘導主電
動n(以下、IMと称する)の制御方法に関する乙ので
ある。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a variable voltage variable frequency (hereinafter referred to as ■V■) control inverter drive fI+induction main electric motor n (hereinafter referred to as IM) used in electric vehicles. This is related to the control method of

〔発明の技術向背■とその問題点〕[Technical disadvantages of invention and its problems]

第4図は、従来の直流架線VVVF制御インバータ駆動
電気中の一般的な主回路構成例を示したものである。
FIG. 4 shows an example of a general main circuit configuration in a conventional DC overhead wire VVVF control inverter drive circuit.

図において、よ・f百雷FA(+in流架線)1から中
上のパンタグラフ2を通じて直流入力が得られる。
In the figure, DC input is obtained from Yo-f Hyakurai FA (+in current overhead line) 1 through pantograph 2 in the upper middle.

この直流入力をフィルタツノ1クトル3ど一ノイルウコ
ンデンサ4から成る10回路にC平滑することにより直
流定電圧電源が形成される。そして、この直流定電圧電
源の電Ifはインバータ回路5の入力電圧どしてインバ
ータ側へ供給される。インバータ回路5としてはG −
r O簀の電力変換用半導体索子l】目ら成るパルス幅
変調方式(以下、PWMと称する)電圧形インバータが
用いられ、インバータに入力される一定電圧をPWM制
御して並列接続された複数個の誘導主電動機(IM>6
に可変周波数の′1b)上、゛電流を印加ail制御す
ることにより、インバータ電気中を駆fJJするJ、う
にしCいる。この1易白、1〜1(3の固定F巻線の結
線どしては、インバータ出力の三相不平衡、IMM部循
環電流の抑制の点から星形結線が用いられる。
A DC constant voltage power source is formed by smoothing this DC input through 10 circuits each consisting of a filter horn, 3 coils, and 4 capacitors. Then, the electric current If of this DC constant voltage power supply is supplied to the inverter side as an input voltage of the inverter circuit 5. As the inverter circuit 5, G −
A pulse width modulation type (hereinafter referred to as PWM) voltage source inverter is used, and a constant voltage input to the inverter is controlled by PWM, and multiple connected in parallel are used. induction traction motor (IM>6
On the variable frequency '1b), the inverter is driven by controlling the application of current. For the connection of the fixed F windings 1 to 1 (3), a star connection is used from the viewpoint of three-phase unbalance of the inverter output and suppression of IMM part circulating current.

第5図は、−ヒ述した従来の制御方法により(りられる
インバータ電気車の車両性能1)性を示すらのCある。
FIG. 5 shows the vehicle performance of the inverter electric vehicle obtained by the conventional control method described above.

、同図でTはけん引力(K’J・t)、Vは1M電圧(
V ) 、l 1.L I IVNH流(An表わす。
, In the same figure, T is the traction force (K'J・t), and V is the 1M voltage (
V), l1. L I IVNH flow (represents An.

図示の如く、インバータ電気中は必要けん引力で、ある
速度まで加速され(第5図への範囲)、その後、定出力
制t11 (第5)図[3の範囲)で中速域まで加速さ
れ、さらに定Jベリυ制御(第5図Cの範囲)により高
速l或まで加速される。
As shown in the figure, while the inverter is running, it is accelerated to a certain speed (range in Figure 5) with the necessary traction force, and then accelerated to a medium speed range under constant output control t11 (range in Figure 5) [3]. , and is further accelerated to a high speed l by constant J veri υ control (range C in FIG. 5).

このようなVVVF制御において、第6図に示Jように
直流加速域を拡張して、車両性能を向上させようとした
場合(第6図a−>a’  >、IM電電圧一定である
から、IMIN流lを図に破線で示す如く、速度に比例
して増加させなければならない。しかしながらIM電流
Iに対しては、インバータ装置5に使用されるGTO素
子等の許容電流値1jの制約があり(例えば、4500
V−2000A  GTO素子の場合、約750A/個
)この点から、従来の制御では直流加速域を十分に拡張
することが出来ず、即ら第6図のa→b→b′の特性ま
でしか得られず、したがって車両性能を向上させること
が非常に困難であるという問題がある。
In such VVVF control, when trying to improve vehicle performance by expanding the DC acceleration region as shown in Figure 6 (J in Figure 6) (Figure 6 a->a'>, since the IM voltage is constant, , the IMIN current I must be increased in proportion to the speed, as shown by the broken line in the figure.However, the IM current I is limited by the allowable current value 1j of the GTO elements used in the inverter device 5. Yes (for example, 4500
In the case of V-2000A GTO element, it is approximately 750A/piece) From this point, conventional control cannot sufficiently expand the DC acceleration range, that is, it can only reach the characteristics of a → b → b' in Figure 6. Therefore, it is very difficult to improve vehicle performance.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題を解決するために成されたも
ので、その目的(」、中高速域での車両性能に慶れた特
性をvすることができるインバータ電気小川nf、導1
電動機の制御方法を促供りることにある。
The present invention has been made to solve the above problems, and its purpose is to develop an inverter that can improve vehicle performance in medium and high speed ranges.
The purpose is to promote methods of controlling electric motors.

(発明の概要) 上記目的を達成するために本発明では、前述した従来の
インバータ電気1■用111i ”J主電動機の固定子
巻線の結線を星形結線および三角結線の両方に切苔え可
能な構成としておくことにより、vvVF制御と組合せ
て中高速域での車両性能向上を実現りるようにしたこと
を特徴どりる。
(Summary of the Invention) In order to achieve the above object, the present invention has been developed by changing the connection of the stator winding of the conventional inverter electric 111i"J traction motor into both a star connection and a triangular connection. By making this possible, it is possible to improve vehicle performance in medium and high speed ranges in combination with vvVF control.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示J−実施例について詳細に説明
り−る。まず第1図は、本発明を適用するインバータ電
気車の主回路構成1列を示すものであり、見本的には第
4図に示した従来のインバータ電気車の主回路構成と同
様である。ツなわら、第1図が第4図と異なる点は、中
高速域での車両性能向上を目的として、[M6を星形結
線(Y結1)および三角結線(△結線)の両方に接続可
能な構成としたこと43 J:びY→△切換指令回路9
を追加し、インバータ装r5の制御を行なうマイコン制
御部8とインターフェイスしている点である。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. First, FIG. 1 shows one line of the main circuit configuration of an inverter electric vehicle to which the present invention is applied, and is samplewise similar to the main circuit configuration of the conventional inverter electric vehicle shown in FIG. However, the difference between Fig. 1 and Fig. 4 is that [M6 is connected to both the star connection (Y connection 1) and the triangular connection (△ connection) for the purpose of improving vehicle performance in medium and high speed ranges. Possible configuration 43 J:Y→△ switching command circuit 9
is added and interfaced with the microcomputer control section 8 that controls the inverter device r5.

次に、本発明の制御方法について述べる。すなわち第2
図に示す車両性能特性曲線において、前述した従来のイ
ンバータ電気車υ制御方法では、[Mの固定子巻線はY
結線のままぐあり、IM相電圧Vの制御パターンはa点
から一点鎖線で示すように速度に対しC一定電圧のまま
である。したがってIM相電流ザなわら、インバータ出
力電流lは、b、b’ に示すような定電流特性となる
Next, the control method of the present invention will be described. That is, the second
In the vehicle performance characteristic curve shown in the figure, in the conventional inverter electric vehicle υ control method described above, [M stator winding is
As long as the wiring remains the same, the control pattern of the IM phase voltage V remains at a constant voltage C with respect to the speed, as shown by the dashed line from point a. Therefore, in addition to the IM phase current, the inverter output current l has constant current characteristics as shown by b and b'.

これに対し、本発明の制御方法では、第2図に示すよう
に、速度AQにてIMの固定子巻線をY結線からへ結線
に切換えることにより、切換え後の(M相電圧■は、切
換え前の0倍すなわちa点からa′へ上昇し、逆にIM
相電流Iは切換え萌の1.、y*:a+g、づ41わら
9点からC点へ減少する。
In contrast, in the control method of the present invention, as shown in FIG. 2, by switching the IM stator winding from Y connection to Y connection at speed AQ, the (M phase voltage It increases from 0 times the value before switching, that is, from point a to a', and conversely, IM
The phase current I is 1. , y*:a+g, decreases from 41 points to point C.

速IC1A点の選び方は、V/r(1’L、t tH3
Q J、’+l R数)を一定にする制御の最終(主眼
)速度Δ′の0倍以上の速)見に選定すれば、1M鉄心
の飽和度を従来と同程度に出来るので制御上も都合がよ
い。
How to select the speed IC1A point is V/r(1'L, t tH3
If the final (principal) speed Δ' of the control to keep the Q J,'+l convenient.

また、速度A点に達したことを検出するには、1Mの速
度またはインバータの周波数(例えばその指令賄)を検
出する。また、[Mをつ)過飽和の状態で使用すること
が可能であれば速度A点は、A′点のJ’−3低以下に
選んでも差し支えない。
Furthermore, in order to detect that the speed has reached point A, the speed of 1M or the frequency of the inverter (for example, its command value) is detected. Further, if it is possible to use the motor in a supersaturated state ([M]), the speed A point may be selected to be J'-3 lower than the A' point.

このように構成した1M合のn用二ジノ果につ、N訂し
く述べる。従来の方法では第3図に示すようにインバー
タ装買5のGTO素子等の許マコ電流[、の制約のため
車両性能の向」二すなわら、直流加速域が速度A′点か
らA点までしか拡玉出来ないのにス・1して、本発明を
用いれば8点ZkC拡張でき、(〕ん引力特性Tにおい
て、従来a−+Cと定電力制御を行なっていたものが、
a−+a’ →Cと、定トルク制御から一気に定すべり
制御を行うことができる。すなわら、第3図に斜線で示
した分だけ車両性能が向上りる。この点をさらに訂しく
説明する。
The results of a 1M combination for use in the N system constructed in this way will be described in detail. In the conventional method, as shown in Fig. 3, the maximum current of the GTO elements of the inverter 5 is limited, which affects vehicle performance. Although the ball can only be enlarged up to
From a-+a' to C, constant-slip control can be performed from constant-torque control all at once. In other words, the vehicle performance is improved by the amount indicated by diagonal lines in FIG. This point will be explained in more detail.

Y結線のままでりん引力特性1゛を8点からa′点へ拡
張しようどしても、IMt流1が増加し、制御素子の許
容を流f、に相゛11Vる点dまで、すなわち、けん引
力特性T上の[)点までしか拡張できない。そこで、9
点(速度へ点)にてTMの固定子巻線結線をY結線から
△結線に切換えると、IM相電圧VはS侶になるが、I
M相雷流■は1/J3(18となりd′点まで下がる。
Even if we try to extend the drag force characteristic 1 from point 8 to point a' while maintaining the Y connection, the IMt flow 1 will increase and the control element tolerance will be reduced to point d, which is 11 V compared to the flow f, that is. , can be extended only up to the point [) on the traction force characteristic T. Therefore, 9
When the TM stator winding connection is switched from Y connection to △ connection at the point (point to speed), the IM phase voltage V changes to S, but the I
The M-phase lightning current ■ becomes 1/J3 (18) and falls to point d'.

したがって制御素子の許容電流l、に対し、充分余裕が
でき、d′点からe点まで[M相電流Iを増加させるこ
とができる。
Therefore, there is a sufficient margin for the allowable current l of the control element, and it is possible to increase the M-phase current I from point d' to point e.

以上は、インバータ電気車のけん引力特性Tすなわちカ
行時について説明したが、本発明は、電力回生時あるい
は、発電ブレーキ時等のいわゆる電気ブレーキ時につい
ても適用できるのは言うもでもなく、特に電力回生ブレ
ーキ時には、フルブレーキ初速の向上といった効果が期
待できる。
The above description has been made regarding the traction force characteristic T of the inverter electric vehicle, that is, when the vehicle is in motion, but it goes without saying that the present invention is also applicable to so-called electric braking, such as during power regeneration or during dynamic braking, and in particular, When using electric regenerative braking, you can expect effects such as an improvement in the initial full braking speed.

また、直流架線から電力の供給を受ける場合について説
明したが、交流架線からの電力をいったん直流に変換し
jこ後インバータ回路に供給りる場合にも本発明を適用
できる。
Moreover, although the case where electric power is supplied from a DC overhead line has been described, the present invention can also be applied to a case where electric power from an AC overhead line is once converted into DC and then supplied to an inverter circuit.

〔発明の2II宋) 以上説明したように本発明の誘導主電動機の制御方法に
よれば、以下のような種々の効果を+y+持Cきるbの
Cある。
[2III Song Dynasty of the Invention] As explained above, according to the induction traction motor control method of the present invention, various effects as described below can be achieved.

(a)  従来と同一11沫の誘尋主電#J鏝にて、中
高速域でのトルク特性を高り61f保し、車両性能を向
上することができる。換言すれば1本発明のii制御方
法でI’Iられるのと同一のトルク特性を従来の制御方
法で実現しようとすると、誘導主電動機の外形1法およ
び重5′!をJfLJ加さVる必要がある(必要トルク
特性に6よるが、重G!で約20%増程度が考えられる
)が、本発明で・は−ぞの必(社)がない。
(a) With the same 11-stroke main power #J as before, the torque characteristics in the medium and high speed range can be maintained at 61 f, improving vehicle performance. In other words, if one attempts to achieve the same torque characteristics as I'I with the ii control method of the present invention using the conventional control method, the induction traction motor's external shape and weight 5'! It is necessary to add JfLJ to V (it depends on the required torque characteristics, but it is thought that the heavy G! will increase by about 20%), but with the present invention, this is not necessary.

(b)  逆に同一車両性能を維持するためには、中高
速域での電流が少なくで済むのひ、結果的に誘導主電動
機のRMS (自乗平均)電流が少なくなり、したがっ
て誘導主電動機の熱イ白設計が楽になる、ずなわら、同
一熱設計とすれば、誘導主電動機J機の小形軽量化が計
れる。2 (C)  従来の主回路部品をそのまま使用することが
できる。すなわら、ハード関係で追加するのは基本的に
は、Y→Δ1.IJ I%指令回路およびその制御指令
のための制御部、例えばマイコン制御部のみである。
(b) Conversely, in order to maintain the same vehicle performance, less current is required in the medium and high speed range, which results in a decrease in the RMS (root mean square) current of the induction traction motor. Not only does the thermal design become easier, but if the same thermal design is used, the induction traction motor J machine can be made smaller and lighter. 2 (C) Conventional main circuit components can be used as is. In other words, the hardware-related additions are basically Y→Δ1. There is only an IJ I% command circuit and a control section for its control commands, such as a microcomputer control section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実Ili!1例を示す回路図、第2
図はY−へ変換による電流の変化を示1°図、第3図は
本発明による制御パターンの一例を示す図、 第4図は従来のインバータ電気車の主回路構成図、 第5図はインバータ電気中の車両性能曲線および従来の
電圧、電流のff1111611パターンを示す図、第
6図は従来のインバータ電気車制御り法を説明するため
の図である。 1・・・直流架線、2・・・パンクグラフ、3・・・フ
ィルタリ7り1−ル、4・・・フィルタコンデンサ、5
・・・インバータ装胃、6・・・誘導主電動1幾、7・
・・接地、8.・・・マイコン制御品、9・・・Y−→
△切換旧令回路。 出願人代理人  猪  股    ン1)第6図 i!、度Ckm/h)−一− 第1図 速度(km/h) 速度(人m/h)   □
Figure 1 is one of the fruits of the present invention! Circuit diagram showing one example, second
The figure shows a 1° diagram showing the change in current due to conversion to Y-, Figure 3 shows an example of the control pattern according to the present invention, Figure 4 shows the main circuit configuration of a conventional inverter electric car, and Figure 5 shows FIG. 6 is a diagram showing a vehicle performance curve during inverter electricity and a conventional ff1111611 pattern of voltage and current, and is a diagram for explaining a conventional inverter electric vehicle control method. DESCRIPTION OF SYMBOLS 1... DC overhead wire, 2... Punk graph, 3... Filter reel, 4... Filter capacitor, 5
... Inverter installed, 6... Induction main electric motor 1, 7.
...Earth, 8. ...Microcomputer controlled product, 9...Y-→
△Switching old order circuit. Applicant's representative Inomata 1) Figure 6 i! , degree Ckm/h) -1- Figure 1 Speed (km/h) Speed (person m/h) □

Claims (1)

【特許請求の範囲】 1、架線より電力を供給され、インバータをパルス幅変
調制御して得られる可変周波数の電圧に変換して誘導主
電動機へ供給することにより鉄道用電気車を駆動する方
法において、誘導主電動機の固定子巻線を星形結線およ
び三角結線の双方に接続可能に構成しておき、インバー
タの出力電圧と出力周波数の比が一定に保たれる速度領
域の上限速度よりも高い速度に達したとき、L記固定子
巻線を星形結線から三角結線に切換えることを特徴とす
る、誘導主電動機の制御方法。 2、上記上限速度から、上記も結線の切換を行なう速度
までの速度領域では、速度の上昇に伴つて、インバータ
の出力電流を上昇させ、上記結線の切換に伴つてインバ
ータの出力電流をストップ状に減少させ、また上記結線
の切換を行なう速度からそれより高いある速度までの速
度領域でも速度の上昇に伴つてインバータの出力電流を
上昇させることによりこれらの速度領域で定トルク特性
を得るようにしたことを特徴とする特許請求の範囲第1
項記載の方法。 3、上記速度の上昇に伴つてインバータの出力電流を上
昇させる速度領域では、上記インバータの出力電圧が一
定に保たれることを特徴とする特許請求の範囲第2項記
載の方法。
[Claims] 1. A method for driving an electric railway car by receiving power from an overhead wire, converting it into a variable frequency voltage obtained by pulse width modulation control of an inverter, and supplying the voltage to an induction traction motor. , the stator winding of the induction traction motor is configured so that it can be connected to both star and triangular connections, and the ratio of the inverter's output voltage and output frequency is higher than the upper limit speed of the speed range where it is kept constant. A method for controlling an induction traction motor, characterized in that when the speed is reached, the L stator winding is switched from a star connection to a triangular connection. 2. In the speed range from the above upper limit speed to the speed at which the connection is switched above, the inverter output current is increased as the speed increases, and the inverter output current is stopped as the connection is switched. In addition, even in the speed range from the speed at which the connection is switched to a certain higher speed, constant torque characteristics are obtained in these speed ranges by increasing the output current of the inverter as the speed increases. Claim 1 characterized in that
The method described in section. 3. The method according to claim 2, wherein the output voltage of the inverter is kept constant in a speed range in which the output current of the inverter increases as the speed increases.
JP59194316A 1984-09-17 1984-09-17 Controlling method of induction main motor Pending JPS6173591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59194316A JPS6173591A (en) 1984-09-17 1984-09-17 Controlling method of induction main motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59194316A JPS6173591A (en) 1984-09-17 1984-09-17 Controlling method of induction main motor

Publications (1)

Publication Number Publication Date
JPS6173591A true JPS6173591A (en) 1986-04-15

Family

ID=16322571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59194316A Pending JPS6173591A (en) 1984-09-17 1984-09-17 Controlling method of induction main motor

Country Status (1)

Country Link
JP (1) JPS6173591A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206195A (en) * 1987-02-23 1988-08-25 Fuji Electric Co Ltd Inverter power source drive motor
JPS6439288A (en) * 1987-07-31 1989-02-09 Yaskawa Denki Seisakusho Kk Producing method of motor winding selection command
US6894455B2 (en) 2003-04-30 2005-05-17 Remy Inc. Performance improvement of integrated starter alternator by changing stator winding connection
US7294984B2 (en) 2004-11-24 2007-11-13 Mitsubishi Denki Kabushiki Kaisha Motor controller
WO2012098585A1 (en) * 2011-01-21 2012-07-26 Three Eye Co., Ltd. Three-phase inverter for driving variable-speed electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206195A (en) * 1987-02-23 1988-08-25 Fuji Electric Co Ltd Inverter power source drive motor
JPS6439288A (en) * 1987-07-31 1989-02-09 Yaskawa Denki Seisakusho Kk Producing method of motor winding selection command
US6894455B2 (en) 2003-04-30 2005-05-17 Remy Inc. Performance improvement of integrated starter alternator by changing stator winding connection
US7294984B2 (en) 2004-11-24 2007-11-13 Mitsubishi Denki Kabushiki Kaisha Motor controller
US7612509B2 (en) 2004-11-24 2009-11-03 Mitsubishi Denki Kabushiki Kaisha Motor controller
WO2012098585A1 (en) * 2011-01-21 2012-07-26 Three Eye Co., Ltd. Three-phase inverter for driving variable-speed electric machine

Similar Documents

Publication Publication Date Title
JP3435104B2 (en) Apparatus and method for generating braking torque in an AC drive
JPS638683B2 (en)
CN102792577B (en) Power conversion device
JPS6173591A (en) Controlling method of induction main motor
US3815002A (en) Braking circuit for alternating current induction motor
JPH03261307A (en) Control method of inverter for driving electric car and inverter drive electric car system
JP3554798B2 (en) Electric car control device
JPH09149689A (en) Operation controller for pole change motor
JP2980426B2 (en) AC electric vehicle control device
JP2723372B2 (en) AC electric vehicle control device
CN106105011B (en) Power inverter
JP2845093B2 (en) AC electric vehicle control device
JP2002058108A (en) Method and apparatus for controlling electric rolling stock
JP7415969B2 (en) Rotating electrical machine control system
JP2001157303A (en) Control system of power converter for car
JP2592536B2 (en) Power converter control device
JPS59201608A (en) Controller of induction motor type electric railcar
JPS597680A (en) Controller for alternating current elevator
JP2023042118A (en) Power converter control device and control method
JP2827715B2 (en) Control method of AC / DC electric vehicle
JPS5889089A (en) Controlling method for variable voltage and variable frequency inverter of induction motor
JPS62135203A (en) Braking method for ac electric railway car
JPS6133322B2 (en)
JPS60144285A (en) Controller for alternating current elevator
JPH0337363B2 (en)