JPS6173031A - Method for inspecting electric shaver sound - Google Patents

Method for inspecting electric shaver sound

Info

Publication number
JPS6173031A
JPS6173031A JP19530284A JP19530284A JPS6173031A JP S6173031 A JPS6173031 A JP S6173031A JP 19530284 A JP19530284 A JP 19530284A JP 19530284 A JP19530284 A JP 19530284A JP S6173031 A JPS6173031 A JP S6173031A
Authority
JP
Japan
Prior art keywords
sound
electric shaver
shaving
quality
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19530284A
Other languages
Japanese (ja)
Inventor
Shintaro Hirose
広瀬 新太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19530284A priority Critical patent/JPS6173031A/en
Publication of JPS6173031A publication Critical patent/JPS6173031A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Dry Shavers And Clippers (AREA)

Abstract

PURPOSE:To decide a bad sound generated from a driving source part and a shaving part quantitatively by dividing the sound generated from the driving source part and the sound generated from the shaving part into respective cycle zones and detecting a value of the sound volume of each cycle zone. CONSTITUTION:The sound generated from an electric shaver 2 while driving is collected by a microphone 1. Then, the cycle zone of the sound generated from the driving source part, for instance, 1-2kHz and the cycle zone of the sound generated from the shaving part, for instance, 2-5kHz are abstracted respectively by BPFs 3, 4. Then, the outputs of each cycle zone are rectified 5, 6 and inputted to comparators 7, 8. Respective reference values 9, 10 are inputted to the comparators 7, 8 and compared with the measured values to detect the bad sound. Accordingly, since the values of the sound volume are detected by dividing into the cycle zones of the driving source part and the shaving part, the decision of the quality of the electric shaver can be made quantitatively and it is unnecessary to rely on a person's intuition.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は電気かみそりの品質検査の際の音検査 ・工程
における自動化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for automating sound inspection and processes during quality inspection of electric shavers.

<cy>  従来の技術 電気かみそりの品質において、音の要素の占める部分が
大きいことから、従来より駆動中の電気かみそりが発生
する騒音の音質を検査し、製品の良否を判定する方法が
採用されている.電気かみそりから発生する音量につい
てはJIS(C−9614 − 79)の規格で最大基
準量が規定されており。
<cy> Conventional technology Since sound plays a large part in the quality of electric shavers, a method has traditionally been adopted to determine the quality of the product by inspecting the sound quality of the noise generated by the electric shaver while it is in operation. ing. The JIS (C-9614-79) standard stipulates the maximum standard amount for the sound volume generated by electric shavers.

一般には、この規格に準じた音量の測定だけでも良いが
、実際の工程ではその基準を満足するものについても更
に音質面から良否を区別して品質の向上を図っている。
In general, it is sufficient to just measure the volume according to this standard, but in the actual process, even those that meet the standard are further distinguished from quality in terms of sound quality in order to improve quality.

音質の評価としては、切味の良きそうな音がr良」で、
鈍そうな音がr不良」というように主観的な判定要素が
強く、従来からこの種の音検査工程では専任の試験員が
第8図に示す如く1台1台電気かみそり(101)の発
生する音を聞き、これを予め用意された基準となる限定
見本(102)の発生する音と比較して良否の判定を行
なう所謂官能検査方法が採用きれ℃いた。
In terms of sound quality evaluation, a sound that seems to have good sharpness is rated as good.
Traditionally, in this type of sound inspection process, a full-time tester has been responsible for determining whether each electric shaver (101) has a dull sound as shown in Figure 8. A so-called sensory test method has been adopted in which the quality of the product is judged by listening to the sound generated by the product and comparing it with the sound produced by a limited sample (102) that serves as a reference prepared in advance.

しかしながらこのような官能検査の方法では■かなり熟
練した試験員が必要 ■判定基準が定量化されないので、判定基準が例えば試
験員の体調等に左右移れやすいなどの問題があり、この
種の音検査工程については判定基準の定量化による検査
の安定化及び省力化を図ることが望まれる。
However, this type of sensory testing method requires a highly skilled tester.Since the judgment criteria are not quantified, the judgment criteria can easily change depending on the physical condition of the tester. Regarding the process, it is desirable to stabilize the inspection and save labor by quantifying the criteria.

ところで電気かみそりの不良症状は大別してモータ等の
駆動源から発生するビビリ音と、外刃及び内刃からなる
剃毛部から発生する振音や濁音とに分けられ、官能検査
においても駆動源不良と剃毛部不良とに選別して不良品
を夫々の修理工程に回すようにしている。
By the way, the symptoms of defective electric razors can be roughly divided into chattering noise generated from the drive source such as the motor, and vibration and dullness generated from the shaving part consisting of the outer and inner blades.Sensory tests also indicate that the drive source is defective. The defective products are sorted into those with defects in the shaved part and defects in the shaved part, and the defective products are sent to the respective repair processes.

きて電気かみそりの発生音の良否を判定する方法の一つ
として前述のJ I 5(C−9614−79)の規格
に準して例えば実公昭56−34266号公報にある騒
音計を用いて音量を判定する方法も考えられるがこの方
法では上述の如き駆動源から発生する音と剃毛部から発
生する音との夫々の不良症状を区別することができない
One way to judge the quality of the noise produced by an electric shaver is to use the sound level meter described in Japanese Utility Model Publication No. 56-34266, in accordance with the above-mentioned JI 5 (C-9614-79) standard. A method of determining the volume may be considered, but with this method, it is not possible to distinguish between the respective defective symptoms of the sound generated from the drive source and the sound generated from the shaving section as described above.

(ハ)発明が解決しようとする問題点 本発明が解決しようとする問題点は電気かみそりの駆動
源部及び剃毛部から発生する音の不良症状を定量的に判
定し、音検査工程を自動化し得る識別方法を提供するこ
とである。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are to quantitatively determine the defective symptoms of sounds generated from the drive source section and shaving section of an electric shaver, and to automate the sound inspection process. The purpose of the present invention is to provide a method of identification that can be used.

(ニ) 問題点を解決するための手段 作動中の電気かみそりから発生する音成分を、駆動源部
から発生する音が占める周波数帯域と、剃毛部から発生
する音が占める周波数帯域とに区別し、夫々の周波数帯
域における音量値と良否判定の為に予め設定した駆動源
及び剃毛部の各音量基準値との大小比較を行うことによ
って電気かみそりの品質の良否を判定する。
(d) Measures to solve the problem: Distinguish the sound components generated from an electric shaver during operation into a frequency band occupied by the sound generated from the drive source section and a frequency band occupied by the sound generated from the shaving section. Then, the quality of the electric shaver is determined by comparing the volume values in each frequency band with respective volume reference values of the drive source and shaving section that are set in advance for quality determination.

(ホ) 作用 例として回転式電気かみそりから発生する音を分析しそ
の結果について説明する。
(e) As an example of the effect, the sound generated from a rotary electric shaver will be analyzed and the results will be explained.

この種の回転式電気かみそりにおける音の発生箇所は駆
動源としてのモータ音と内刃の回転による外刃との摺動
音であり、各部分からの発生音にIt@シて区分できる
ように内刃をつけないでモータを駆動させた場合と、内
刃をつけてモータ及び内刃を駆動許せた場合を比較しそ
の音のスペクトル分布を第2図に示す。
The sources of sound in this type of rotary electric shaver are the motor sound as the drive source and the sliding sound between the outer blade due to the rotation of the inner blade.The noise generated from each part can be classified based on the noise generated from each part. Figure 2 shows the spectral distribution of sound comparing the case where the motor is driven without the inner cutter and the case where the motor and the inner cutter are allowed to be driven with the inner cutter attached.

この図において横軸に周波数f(Hz)縦軸に音圧レベ
ル(dB)の相対値をとり、モータのみの場合〈曲線I
)を実線で、内刃をつけた場合(曲線■)を点線でプロ
ットしている。モータのみの場合のスペクトル特性を見
ると1〜2KHzの周波数帯域で音圧レベルが大きく、
更に微細構造を見ると大体200〜300Hzの間隔で
ピークが生じていることが認められる。このピークの周
波数は、モータの回転数をr。(Hz)としたとき、r
Mの整数倍に対応する。
In this figure, the horizontal axis represents the frequency f (Hz), and the vertical axis represents the relative value of the sound pressure level (dB).
) is plotted as a solid line, and the case with an inner blade (curve ■) is plotted as a dotted line. Looking at the spectral characteristics of the motor alone, the sound pressure level is high in the frequency band of 1 to 2 KHz,
Furthermore, when looking at the fine structure, it is recognized that peaks occur at intervals of approximately 200 to 300 Hz. The frequency of this peak is the rotational speed of the motor. (Hz), r
Corresponds to an integer multiple of M.

この測定においてモータは第3図に示すような3スロツ
ト型のもの(3つの回転子(103)を有する。(10
4)(104)は界磁磁石、(105)はコイルである
。)を用いている。この場合モータの回転数は周波数表
示で70〜LOOHzである。各ピークの周波数r1は rs−3Xf’MX  N  (Nは自然数)で求まり
、またピークの周波数間隔は3fMz210〜300(
Hz)となり、第2図のスペクトル特性は理論値と略一
致していることが分る。
In this measurement, the motor was of a three-slot type (having three rotors (103) (10
4) (104) is a field magnet, and (105) is a coil. ) is used. In this case, the rotational speed of the motor is 70 to LOOHHz in frequency representation. The frequency r1 of each peak is determined by rs-3Xf'MX N (N is a natural number), and the frequency interval of the peaks is 3fMz210~300 (
Hz), and it can be seen that the spectral characteristics in FIG. 2 substantially match the theoretical values.

また第2図において2KHz以上の周波数帯域では内刃
を取り付けた場合に音圧レベルが増大することが認めら
れる。この周波数帯域の音は主として内刃及び外刃の摺
動音と考えられる。この場合の各ピークの周波数r2は r2−rPIXM   (Mは自然数)で求まる。但し
Mの値は第4図に示す外刃(106)の孔(107)の
形状によって決まり、−量分の孔数に対応する値である
Furthermore, in FIG. 2, it is recognized that the sound pressure level increases in the frequency band of 2 KHz or higher when the inner cutter is attached. The sounds in this frequency band are considered to be mainly the sliding sounds of the inner and outer cutters. In this case, the frequency r2 of each peak is determined by r2-rPIXM (M is a natural number). However, the value of M is determined by the shape of the hole (107) of the outer cutter (106) shown in FIG. 4, and is a value corresponding to the number of holes corresponding to - amount.

以上のように主としてモータから発生する音と主として
剃毛部から発生する音とはスペクトル特性上分離して考
えることができるわけである。
As described above, the sound mainly generated from the motor and the sound mainly generated from the shaving section can be considered separately based on their spectral characteristics.

次に官能テストで良否を判定した電気かみそりについて
上記の如きスペクトル特性を比較した例を第5図の(a
)〜(d)に示す、但しモータの回転数rPlはたとえ
同一型の電気かみそりでもバラツキがあり、しかもモー
タの駆動電圧によっても異なるため常に一定ではなく、
従ってスペクトル特性のピーク周波数(即らf’t−3
f’MNやf’zmf1.1M〉はバラツキが生じる。
Next, Fig. 5 (a
) to (d), however, the rotation speed rPl of the motor varies even in the same type of electric shaver, and also varies depending on the driving voltage of the motor, so it is not always constant.
Therefore, the peak frequency of the spectral characteristic (i.e. f't-3
Variations occur in f'MN and f'zmf1.1M>.

このため第5図では1/3オクタ一ブ幅に縮小したスペ
クトル分布の形にして表わしである。
For this reason, FIG. 5 shows the spectrum distribution in the form of a 1/3 octave width reduced.

第5図(a)はモータ及び剃毛部共に「良」と判定きれ
た電気かみそりのスペクトル分布、(b)は剃毛部は「
良、であるがモータはr不良」と判定された電気かみそ
りのスペクトル分布、(C)はモ〜りは「良」であるが
剃毛部はr不良」と判定きれた電気かみそりのスペクト
ル分布、(d)はモータ及び剃毛部共にr不良、と判定
された電気かみそりのスペクトル分布を示し、符号■で
示す一点鎖線はモータ音に対する基準値、符号■で示す
二点鎖線は刺毛訃音に対する基準値である。また図中斜
線を施しである部分はモータ音が基準値を越えている部
分を示し、網目を施しである部分は刺毛訃音が基準値を
越えている部分を示している。
Figure 5 (a) shows the spectral distribution of an electric razor in which both the motor and the shaving part were determined to be "good", and (b) shows the spectral distribution of the shaving part as "good".
(C) is the spectral distribution of an electric razor that was determined to be "good" but the motor was "defective"; (C) is the spectral distribution of an electric shaver that was determined to be "good" for the motor but "defective" for the shaving part. , (d) shows the spectral distribution of an electric razor in which both the motor and the shaving part were determined to be defective, the dashed-dotted line marked with the symbol ■ indicates the standard value for the motor sound, and the dashed-double line marked with the symbol ■ indicates the hair growth. This is a reference value for sound. Further, in the figure, hatched areas indicate areas where the motor noise exceeds the reference value, and hatched areas indicate areas where the rattling sound exceeds the reference value.

さて第5図においτ良品と不良品との音圧レベルを比較
すると ■モータネ良品については1〜2KHzの周波数帯域の
音圧レベルが基準値を越える。(第5図(b)参照) ■剃毛部不良品については2〜5KHzの周波数帯域の
背圧レベルが基準値を越える。(第5図(c)参照ン ■モータ及び剃毛部共に不良と認められた製品について
は1〜2KHz及び2〜5KHzの周波数帯域の音圧レ
ベルが共に基準値を越える。
Now, in FIG. 5, when comparing the sound pressure levels of the non-defective product and the defective product, the sound pressure level of the non-defective motor product exceeds the standard value in the frequency band of 1 to 2 KHz. (Refer to FIG. 5(b)) ③ For defective shaved parts, the back pressure level in the frequency band of 2 to 5 KHz exceeds the standard value. (See Figure 5(c).) For products in which both the motor and the shaving part were found to be defective, the sound pressure levels in the frequency bands of 1 to 2 KHz and 2 to 5 KHz both exceeded the standard value.

(第5図(d)参照) と特徴づけることができる。(See Figure 5(d)) can be characterized as.

本発明は上記の背分析結果に基づいて前記手段を用いる
ことにより音検査の自動化を図るものであり、モータ音
の良否判定には1〜2KHzの周波数帯域の音圧レベル
を検出して予め設定した基準値との大小関係を比較して
、基準値を越えるものはr不良」と判定し、越えないも
のはr良」と判定する。また剃毛部の良否判定には2〜
5KH2の周波数帯域の音圧レベルを検出して予め設定
した基準値との大小関係を比較して基準値を越えるもの
は1不良」と判定し、越えないものは「良、と判定する
The present invention aims to automate the sound inspection by using the above-mentioned means based on the above-mentioned back analysis results, and detects the sound pressure level in the frequency band of 1 to 2 KHz and sets it in advance to determine the quality of the motor sound. The magnitude relationship with the reference value is compared, and if it exceeds the reference value, it is determined to be ``failure'', and if it does not exceed the value, it is determined to be ``good''. Also, to judge the quality of the shaved part, 2~
The sound pressure level in the 5KH2 frequency band is detected and compared in magnitude with a preset reference value, and if it exceeds the reference value it is determined to be 1 failure, and if it does not exceed it it is determined to be ``good''.

(へ〉 実施例 第1図に本発明の音検査方法を実行するための基本構成
のブロック図を示す。
Embodiment FIG. 1 shows a block diagram of the basic configuration for carrying out the sound testing method of the present invention.

(1)は駆動中の肢検査電気かみそり(2)から発生き
れる混成前を拾うマイクロフォン、(3)(4)はモー
タ音或いは刺毛訃音に着目した周波数成分を夫々抽出す
るバンドパスフィルタ(BPF)、(5)(6)は該フ
ィルタ(3)(4)からの夫々の出力を整流スルvli
流回路、(7)(8>ハ該IHIJl路(5)(6)か
らの出力と予め設定纏れたモータ音或いは刺毛訃音の基
準値(9)(10)との比較を行うフンパレータである
。斯かる構成において前記バンドパスフィルタ(3)(
4>の抽出周波数や、前記フンパレータ(7)(8)の
比較電圧(基準値)は検査きれる電気かみそりの種類に
応じて適宜調整を行なえばよい。
(1) is a microphone that picks up the mixed signals generated by the electric shaver (2) that is being operated, and (3) and (4) are band-pass filters that extract frequency components focused on the motor sound or hair stinging sound ( BPF), (5) and (6) rectify the respective outputs from the filters (3) and (4).
Flow circuit, (7) (8>c) A funparator that compares the output from the IHIJl path (5) and (6) with preset reference values (9) and (10) of motor sound or stinging sound. In such a configuration, the bandpass filter (3) (
The extraction frequency of 4> and the comparison voltage (reference value) of the humparators (7) and (8) may be adjusted as appropriate depending on the type of electric shaver to be inspected.

モータの不良及び剃毛部の不良に対する判定結果は前記
コンパレータ(7)(8)の出力として得られるので、
この出力信号を利用して良品、不良品の仕分けを行う。
Since the determination results regarding the defective motor and the defective shaving unit are obtained as the outputs of the comparators (7) and (8),
This output signal is used to sort out good products and defective products.

第6図及び第7図に上記基本構成に基く一実施回路ブロ
ック図及びその動作の流れ図を示す。
FIGS. 6 and 7 show a block diagram of an implementation circuit based on the above basic configuration and a flowchart of its operation.

この実施例では音検査工程を完全に自動化できるように
マイクロコンピュータ(以下マイコンと言う)を用いて
制御を行なう場合を示している。
This embodiment shows a case where control is performed using a microcomputer (hereinafter referred to as microcomputer) so that the sound inspection process can be completely automated.

第6図において(11)は駆動中の電気かみそりから発
生きれる混成前を拾うマイクロフォン、(12)は前記
マイクロフォン〈11)の出力よりモータ音に着目した
周波数成分を抽出するバンドパスフィルタA、(13)
は同じく前記マイクロフォン(11)の出力より刺毛訃
音に着目した周波数成分を抽出するバンドパスフィルタ
B 、 (L4 )(15)ハ前記バントバスフィルタ
A(12)及びB(13)よりの出力を整流するt流器
A及びB、<16017)は前記ti器A (14ン及
びB (15)のアナログ出力をデジタル信号に度換す
るA/DコンバータA及びB、 (18)(19)は前
記A/DコンバータA (16)及びB(17)のデジ
タル信号を取り込むインタフェイスのI10ポートA(
ボート番号1)及びB(ポート番号2)、そして(20
)は前記I / Oホー トA (18)及ヒB (1
9)(7)データを処理するマイフンである。
In FIG. 6, (11) is a microphone that picks up the mixed noise generated from the electric shaver while it is being driven; (12) is a bandpass filter A that extracts frequency components focused on motor sound from the output of the microphone (11); 13)
Similarly, is a bandpass filter B, (L4) (15) which extracts a frequency component focused on the tingling sound from the output of the microphone (11). C) Outputs from the bandpass filters A (12) and B (13) The t-current devices A and B, <16017) that rectify the t-current device A and B (15) are A/D converters A and B, (18) and (19) that convert the analog output of the t-current device A (14) and B (15) into digital signals. is the I10 port A (
boat number 1) and B (port number 2), and (20
) is the I/O port A (18) and H B (1
9) (7) It is a microphone that processes data.

この実施例の場合、モータ音や刺毛訃音の良否判定に用
いる設定基準値は前記マイコン(20)のプログラムで
行えばよく、また基準値に対する大小関係の判定も前記
マイコン(20)による演算処理で行える。更にモータ
音及び刺毛訃音の音圧レベルの検出は、前記インタフェ
イスのI10ボートA(18)、B(19)のポート番
号をプログラムによって選択し、前記マイコン(20)
に取り込まれる情報を瞬間的に切換えることができるの
で、モータ音と刺毛訃音の良否の判定を時間的に直列処
理で行うことができる。
In the case of this embodiment, the setting reference value used for determining the quality of the motor sound and the scratching sound can be done by the program of the microcomputer (20), and the determination of the magnitude relationship with respect to the reference value can also be performed by the calculation by the microcomputer (20). This can be done by processing. Furthermore, detection of the sound pressure level of motor noise and stinging noise is carried out by selecting the port numbers of I10 ports A (18) and B (19) of the interface by a program, and
Since the information taken in can be instantaneously switched, it is possible to judge whether the motor sound and the stinging sound are good or bad by temporally serial processing.

第7図に基いて前記マイコン(20)内でのデータ処理
を説明する。
Data processing within the microcomputer (20) will be explained based on FIG.

まずインタフェイスのポート番号を1として、前記I1
0ポートA(18)のモータ音に着目した周波数帯(1
〜2KHz)の音圧レベルのアナログデジタル変換後の
データAを前記マイコン(20)に取り込み、プログラ
ムによって予め設定した音圧レベル基準値Bとの差A−
Bを演算し、A−Bが正のときは「モータネ良」、負の
ときは1モータ良」として判定して結果を出力する。
First, set the interface port number to 1, and
Frequency band (1) focusing on the motor sound of 0 port A (18)
Data A after analog-to-digital conversion of the sound pressure level (~2KHz) is input into the microcomputer (20), and the difference A- from the sound pressure level reference value B set in advance by the program is
B is calculated, and when A-B is positive, it is determined that "motor is good", and when it is negative, it is determined that "one motor is good", and the result is output.

次に連続してインタフェイスのポート番号を2として、
前記I10ボートB (19>の刺毛訃音に着目した周
波数帯(2〜5KHz)の音圧レベルのアナログデジタ
ル変換後のデータCをマイコン(2o)に取り込み、プ
ログラムによって予め設定した音圧レベル基準値りとの
差C−Dを演算し、C−Dが正のときは1剃毛部不良」
、負のときには「剃毛部長」として判定して結果を出力
する。
Next, successively set the interface port number to 2,
Data C after analog-to-digital conversion of the sound pressure level in the frequency band (2 to 5 KHz) focusing on the stinging sound of I10 boat B (19>) is imported into the microcomputer (2o), and the sound pressure level is set in advance by the program. Calculate the difference CD from the standard value, and if CD is positive, 1 shaved part is defective.
, if it is negative, it is determined as "shaving head" and the result is output.

以上の如くして「不良、と判定きれた電気かみそりは、
人的に抜き取るか或いは自動的に抜き取るかして良品と
区別される。
As described above, electric razors that have been determined to be defective are
Good products are distinguished from non-defective products by manually or automatically removing them.

(ト) 発明の効果 本発明は以上の説明の如く、作動中の電気かみそりから
発生する音成分を、駆動源部から発生する音が占める周
波数帯域と、剃毛部から発生する音が占める周波数帯域
とに区別し、夫々の周波数帯域における音量値と良否判
定の為に予め設定した駆動源及び剃毛部の各音量基準値
との大小比較を行うことによって電気かみそりの品質の
良否を判定するものであるから、電気かみそりの良否判
定基準を従来のような人の勘に頼ることなく、定量化が
行えるので品質検査の安定化が図れ、しかも検査の自動
化及び単位時間当たりの検査台数の向上も図れるので、
検査工程の高能率化や省力化に効果が大きく、生産工程
における利益は多大なるものとなる。
(G) Effects of the Invention As explained above, the present invention distinguishes the sound components generated from an electric shaver during operation by adjusting the frequency band occupied by the sound generated from the drive source section and the frequency band occupied by the sound generated from the shaving section. The quality of the electric shaver is determined by comparing the volume values in each frequency band with the volume reference values of the drive source and shaving part set in advance for quality determination. Because it is a product, it is possible to quantify the criteria for determining the quality of electric razors without relying on human intuition as in the past, making quality inspections more stable, and also automating inspections and increasing the number of units inspected per unit time. You can also aim for
It has a great effect on improving efficiency and saving labor in the inspection process, and the profits in the production process are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気かみそりの音検査方法の基本構成
を示すブロック図、第2図は電気がみそりの発生音のス
ペクトル分析図、第3図は駆動源部の一実施例の要部断
面図、第4図は剃毛部の一実施例の上面図、第5図は官
能検査によって良否を判定した相異なる電気かみそりの
スペクトル分布図で(a)はモータ及び剃毛部共に良の
製品、(b)はモータネ良の製品、(c)は剃毛部不良
の製品、(d)はモータ及び剃毛部共に不良の製品の夫
々のスペクトル分布図、第6図は上記第1図の実施ブロ
ック回路図、第7図は第6図の動作を説明する流れ図、
第8図は従来の官能検査方法の説明図である。
Fig. 1 is a block diagram showing the basic configuration of the sound inspection method of an electric shaver of the present invention, Fig. 2 is a spectrum analysis diagram of the sound generated by an electric shaver, and Fig. 3 is an outline of an embodiment of the drive source section. 4 is a top view of an embodiment of the shaving section, and FIG. 5 is a spectral distribution diagram of different electric razors whose quality was determined by sensory testing. (a) shows that both the motor and the shaving section are good. (b) is a product with a good motor quality, (c) is a product with a defective shaving part, and (d) is a product with a defective motor and shaving part. 7 is a flowchart explaining the operation of FIG. 6,
FIG. 8 is an explanatory diagram of a conventional sensory testing method.

Claims (2)

【特許請求の範囲】[Claims] (1)作動中の電気かみそりから発生する音成分を、駆
動源部から発生する音が占める周波数帯域と、剃毛部か
ら発生する音が占める周波数帯域とに区分し、夫々の周
波数帯域における音量値と良否判定の為に予め設定した
駆動源及び剃毛部の各音量基準値との比較を行うことに
よって電気かみそりの品質の良否を判定することを特徴
とする電気かみそりの音検査方法。
(1) Divide the sound components generated from an operating electric shaver into a frequency band occupied by the sound generated from the drive source section and a frequency band occupied by the sound generated from the shaving section, and calculate the volume in each frequency band. A sound inspection method for an electric shaver, characterized in that the quality of the electric shaver is determined by comparing the value with preset sound volume reference values of a drive source and a shaving part for quality determination.
(2)1〜2KHzの周波数帯域の音成分を前記駆動源
部の良否の判定に用い、2〜5KHzの周波数帯域の音
成分を前記剃毛部の良否の判定に用いることを特徴とす
る上記特許請求の範囲第1項記載の電気かみそりの音検
査方法。
(2) A sound component in a frequency band of 1 to 2 KHz is used to determine the quality of the driving source part, and a sound component in a frequency band of 2 to 5 KHz is used to determine the quality of the shaving part. A method for inspecting the sound of an electric shaver according to claim 1.
JP19530284A 1984-09-18 1984-09-18 Method for inspecting electric shaver sound Pending JPS6173031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19530284A JPS6173031A (en) 1984-09-18 1984-09-18 Method for inspecting electric shaver sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19530284A JPS6173031A (en) 1984-09-18 1984-09-18 Method for inspecting electric shaver sound

Publications (1)

Publication Number Publication Date
JPS6173031A true JPS6173031A (en) 1986-04-15

Family

ID=16338892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19530284A Pending JPS6173031A (en) 1984-09-18 1984-09-18 Method for inspecting electric shaver sound

Country Status (1)

Country Link
JP (1) JPS6173031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117459A (en) * 1994-10-26 1996-05-14 Matsushita Electric Works Ltd Electric razor
WO1997030827A1 (en) * 1996-02-23 1997-08-28 Braun Aktiengesellschaft Process for determining the level of shaved hair in a shaver and device for carrying out said process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117459A (en) * 1994-10-26 1996-05-14 Matsushita Electric Works Ltd Electric razor
WO1997030827A1 (en) * 1996-02-23 1997-08-28 Braun Aktiengesellschaft Process for determining the level of shaved hair in a shaver and device for carrying out said process
US6189215B1 (en) 1996-02-23 2001-02-20 Braun Gmbh Method for data transmission between a shaving apparatus and a cleaning device

Similar Documents

Publication Publication Date Title
CN110587377B (en) Method for monitoring defects of milling cutter on line
JP4080719B2 (en) Acoustic inspection of integrated vaned wheels
JP3484665B2 (en) Abnormality determination method and device
CN103558029A (en) Abnormal engine sound fault on-line diagnostic system and diagnostic method
JPH09166483A (en) Method and apparatus for monitoring equipment
CN110874500B (en) Aircraft structural part machining scheme evaluation method based on vibration monitoring
JP4182399B2 (en) Machine tool operation information collection system
CN111257277B (en) Tobacco leaf similarity judgment method based on near infrared spectrum technology
JP3743001B2 (en) Abnormality determination method and apparatus
Lezanski et al. An intelligent monitoring system for cylindrical grinding
JPS6173031A (en) Method for inspecting electric shaver sound
JPH06344246A (en) Abrasion detecting method for cutting tool
CN114055249A (en) Bore hole surface roughness monitoring method and system and storage medium
CN108388846B (en) Electroencephalogram alpha wave detection and identification method based on canonical correlation analysis
US20230358596A1 (en) Diagnostic apparatus, machining system, diagnostic method, and recording medium
CN114862283A (en) Quality inspection method and quality inspection device for machine tool machining
CN115533617A (en) CNC machining center cutter state on-line monitoring system
WO2021075584A1 (en) Method and system for monitoring working state of work machine
CN111307753B (en) Fiber material detection system and method based on terahertz technology
WO2021079959A1 (en) Method and system for monitoring machining state of work machine
JP3132388B2 (en) Abnormal noise inspection method and apparatus for rotating machine
JP3473008B2 (en) Quality judgment method and device
JPH08261951A (en) Surface flaw inspecting method and device thereof
JP2877901B2 (en) Noise determination method
CN112213104B (en) Bearing detection method, device and system