JPS617288A - Alkylthioglucoside derivative - Google Patents

Alkylthioglucoside derivative

Info

Publication number
JPS617288A
JPS617288A JP59128334A JP12833484A JPS617288A JP S617288 A JPS617288 A JP S617288A JP 59128334 A JP59128334 A JP 59128334A JP 12833484 A JP12833484 A JP 12833484A JP S617288 A JPS617288 A JP S617288A
Authority
JP
Japan
Prior art keywords
formula
compound
alkylthioglucoside
octyl
octylthioglucoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59128334A
Other languages
Japanese (ja)
Inventor
Sadao Saito
斉藤 節生
Tomofusa Tsuchiya
友房 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOUJIN KAGAKU KENKYUSHO KK
Original Assignee
DOUJIN KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOUJIN KAGAKU KENKYUSHO KK filed Critical DOUJIN KAGAKU KENKYUSHO KK
Priority to JP59128334A priority Critical patent/JPS617288A/en
Publication of JPS617288A publication Critical patent/JPS617288A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

NEW MATERIAL:The compound of formula I (R is 6-10C alkyl). EXAMPLE:n-Octylthioglucoside. USE:Solubilizing agent for biological substance. It can be produced at a low cost, and can be reconstituted to an artificial membrane. PREPARATION:For example, the acetyl-protected glucosethiourea compound of formula II is made to react with the compound of formula RX (X is halogen) (e.g. n-octyl bromide) e.g. in a 1:1 mixture of acetone and water, in the presence of potassium carbonate and sodium sulfite, etc. for 15hr under stirring, extracting the reaction product with methylene chloride, etc., and eliminating the protecting group by hydrolyzing with an alkali.

Description

【発明の詳細な説明】 この発明は界面活性作用を有し、生体膜萱白質の可溶化
剤として有用な新規アルキルチオグルコシドに関するも
のである。生体膜は極性脂質の二重層と生体物質の代謝
や輸送、情報伝達を担う各種灸白質とで構成されている
0これらの膜蛋白質を取り出し。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel alkylthioglucoside which has a surfactant action and is useful as a solubilizer for biological membranes and white matter. Biological membranes are composed of a double layer of polar lipids and various types of white matter that are responsible for the metabolism, transport, and information transmission of biological substances.These membrane proteins were extracted.

その性質を詳しく調べることKより生命現象を理解しよ
うとする試みが広くなされるようになってきた。これオ
で一般式(式中のRは炭素数6〜10のアルキル基であ
る)で表わされるアルキルグルコシド誘導体、とりわけ
n−オクチルグルコシドが膜蛋白質溶解剤として公知で
あるが、その合成過程に多量の銀触媒を用いるため製造
コストが嵩み汎用する界面活生剤としては利用し難いと
言う欠点を有している。また生体成分を可溶化する際に
共存するグルコシダーゼによって分解をうけ、界面活性
を失う欠点もある。更に可溶化分離した生体膜の性質や
機能を解析するために0人工膜に組込んで、膜の再構成
を行うが、従来用いられているオクチルグルコシドは希
釈再構成の再現性に問題がある。
Attempts to understand life phenomena by examining their properties in detail have become widespread. In this case, alkyl glucoside derivatives represented by the general formula (R in the formula is an alkyl group having 6 to 10 carbon atoms), especially n-octyl glucoside, are known as membrane protein solubilizing agents, but in the synthesis process, large amounts of Since it uses a silver catalyst, it has the drawback of being expensive to produce and difficult to use as a general-purpose surfactant. Another disadvantage is that they are degraded by glucosidases that coexist when solubilizing biological components, resulting in loss of surface activity. Furthermore, in order to analyze the properties and functions of the solubilized and separated biomembrane, it is incorporated into an artificial membrane and the membrane is reconstituted, but the conventionally used octyl glucoside has problems with the reproducibility of diluted reconstitution. .

本発明者らはこの種のアルキルグルコシド誘導体で膜儀
白質の可溶化能及び再構成能にすぐれ1合成過程に銀触
媒を用い力い化合物を開発するために鋭意研究を重ねた
結果、アルキルチオグルコシド誘導体がその目的に適合
しうろことを見出し、この知見に基づいてこの発明をな
すに至った0す力わち、この発明は一般式(式中のRけ
炭素数6〜10より成る直鎖アルキル基である)で表わ
されるアルキルチオグルコシド誘導体を提供するもので
ある。
The present inventors have conducted extensive research to develop a powerful compound using this type of alkyl glucoside derivative, which has excellent ability to solubilize and reconstitute membranous white matter. It was discovered that derivatives were suitable for the purpose, and based on this knowledge, the present invention was made.In other words, this invention is based on the general formula (where R is a linear chain having 6 to 10 carbon atoms). The present invention provides an alkylthioglucoside derivative represented by (which is an alkyl group).

この一般式(1)[おけるアルキル基は炭素数6〜10
のアルキル基であってn−ヘキシル基、n−ヘプチル基
、n−オクチル基。
The alkyl group in the general formula (1) has 6 to 10 carbon atoms.
an alkyl group such as n-hexyl group, n-heptyl group, or n-octyl group.

n−ノニル基、n−デシル基などがある。この発明の化
合物はいずれも文献未載の新規化合物であり、たとえば
(1)式で表わされる。
Examples include n-nonyl group and n-decyl group. The compounds of this invention are all novel compounds that have not been described in any literature, and are represented by the formula (1), for example.

OO アセチル保唖グルコースチオ泳素体ニ一般式%式%() (式中のRけ前記と同じ意味をもち、Xはハロゲン原子
である)で表わさhる〃−置換アルキルハライドをほぼ
等モルで反応させ。
OO Acetyl-binding glucose thiophores, general formula % formula % () (in the formula, R has the same meaning as above, and X is a halogen atom) approximately equimolar of h-substituted alkyl halides. Let it react.

次いでアルカリ加水分解によセ脱保護を行りうことによ
って製造することができる。一般式(1)で示されるア
セチル保護グルコースチオI(素体け、まずペンタアセ
チルグルコースに25チ臭化水素酸/酢酸を加えブロム
化を行危い1次いでアセトン中でチオl素と30分間反
応させることによって合成することができる。
It can then be produced by performing deprotection by alkaline hydrolysis. Acetyl-protected glucose thio I (base structure) represented by general formula (1) is first brominated by adding 25-thihydrobromic acid/acetic acid to pentaacetyl glucose. It can be synthesized by reaction.

具体的にはチオ予素体(1)とW−置換ハロゲン化アル
キル(1)をアセトン−水(1;1)混合溶媒に溶り、
炭酸カリウム−亜硫酸す)IJウムを加え、15時間攪
拌下に反応させ、生成物を塩化メチレンで抽出し、溶媒
留去後に脱アセチル化を行々い、最終産物であるアルキ
ルチオグルコシド(+)を得る。
Specifically, the thiopretrogen (1) and the W-substituted alkyl halide (1) are dissolved in an acetone-water (1;1) mixed solvent,
Potassium carbonate-sulfite) was added, and the reaction was allowed to proceed with stirring for 15 hours. The product was extracted with methylene chloride, and after evaporation of the solvent, deacetylation was performed to obtain the final product, alkyl thioglucoside (+). obtain.

この発明の化合物け、生体物質を変質させることなく可
溶化できる性能を有し。分解酵素(グルコシダーゼ)に
よっても分解され難い特徴をもっているので、生体物質
可溶化剤として好適である。更に可溶化分離した生体膜
物質を人工的に再構成させる場合に効率良く再現できる
点も利点とたっている。
The compound of this invention has the ability to solubilize biological materials without altering their properties. It is suitable as a biological material solubilizer because it is difficult to be degraded even by degrading enzymes (glucosidase). Another advantage is that it can be efficiently reproduced when solubilized and separated biomembrane substances are artificially reconstituted.

次に実施例によってこの発明を更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 n−オクチルチオグルコシドはペンタアセチルグルコー
スのブロム化、チオ湊素体の生成、臭化n−オクチルに
依るオクチル化。
Example 1 n-octyl thioglucoside is produced by bromination of pentaacetyl glucose, production of a thiominato compound, and octylation with n-octyl bromide.

最後にアセチル基の脱保護を行々い合成することができ
る。すなわち、まずペンタアセチルグルコース133g
に25チ臭化水素酸/酢酸140mを加えブロム化を行
危う。ペンタアセチルグルコースが完全に溶解してのち
1時間後0反応液を11の水にあけ。
Finally, the acetyl group can be deprotected for synthesis. That is, first, 133 g of pentaacetyl glucose
140 m of 25-thihydrobromic acid/acetic acid was added to bromate the mixture. One hour after pentaacetylglucose was completely dissolved, pour the reaction solution into water in Step 11.

550 mlのクロロホルムで抽出する。クロロホルム
相を分相し。
Extract with 550 ml of chloroform. Separate the chloroform phase.

溶媒を減圧下に留去しプロ人体を得る。ブロム体140
gを500冨Iのアセトンに溶解1−、チオf(素30
FKを加えて加熱還流させる。
The solvent is distilled off under reduced pressure to obtain a prohuman body. Brome body 140
Dissolve 1-, thio f (element 30
Add FK and heat to reflux.

析出する白色結晶のチオL素体(1)をP取する。アセ
トン−水混合溶媒(191)500MIに得られたチオ
蒸素体10g、臭化n−オクチル45gを加え、炭酸カ
リウム3g、亜硫酸ソーダ2gを触媒として添加し、1
5時間攪拌下に反応させる。塩化メチレン200dで2
回抽出する。塩化メチレン相を水で洗浄後、忙2硝で乾
燥し、得られたオクチル体、をベンゼン−アセトンを用
いてシリカゲルカラム処理により精製する0脱アセチル
化はアルカリ性メタノールにより行なうことができる。
The precipitated white crystals of thio-L element (1) are collected as P. 10 g of the obtained thio vapor and 45 g of n-octyl bromide were added to 500 MI of acetone-water mixed solvent (191), and 3 g of potassium carbonate and 2 g of sodium sulfite were added as catalysts.
The reaction is allowed to proceed for 5 hours with stirring. 2 with 200d of methylene chloride
Extract times. After washing the methylene chloride phase with water, it is dried over dichloromethane, and the resulting octyl compound is purified by silica gel column treatment using benzene-acetone. Deacetylation can be performed using alkaline methanol.

オクチル体7gに5mM水酸化ナトリウム−メタノール
溶液100m/を加え2時間反応後。
Add 100ml of 5mM sodium hydroxide-methanol solution to 7g of octyl compound and react for 2 hours.

酢酸で中和12.蒸発乾固する。得られた白色ワックス
状固体をジクロロメタンに溶解し、シリカゲルカラムク
ロマトグラフィーにより精製すると、目的とするn−オ
クチルチオグルコシドの純品4.5Bを得る。
Neutralize with acetic acid 12. Evaporate to dryness. The obtained white waxy solid is dissolved in dichloromethane and purified by silica gel column chromatography to obtain the target pure n-octylthioglucoside 4.5B.

計算値(憾)    54.52  9.15実測値(
チ)   54.41  898このものの赤外線吸収
スペクトルを第1図に示す。
Calculated value (regret) 54.52 9.15 Actual value (
H) 54.41 898 The infrared absorption spectrum of this product is shown in Figure 1.

実施例2 実施例1における臭化n−オクチルの代り1で鎖長を異
にする〃−置換臭化アルキルとして、臭化n−ヘキシル
、臭化n−ヘプチル、臭化n−ノニル、臭化n−デシル
を用い同様の操作を行うことにより、それぞれ対応する
アルキルチオグルコシド化合物類を得た。次表に得られ
た化合物の元素分析結果を次表に示す。
Example 2 In place of n-octyl bromide in Example 1, the chain length is changed by 1. As the substituted alkyl bromide, n-hexyl bromide, n-heptyl bromide, n-nonyl bromide, n-nonyl bromide By performing the same operation using n-decyl, corresponding alkylthioglucoside compounds were obtained. The following table shows the results of elemental analysis of the compound obtained.

表1.  n−アルキルチオグルコシドの元素分析結果
1、  B−へキシルチオグルコシド OizHtiO
g8 51.40  B、63 50.98 8,42
2、  n−ヘプチルチオグルコシド O+sHnOg
8 53.03 8.90 52.88 8,903、
  n−ノニルチオグルコシド  0m5I(saoi
s  55.87 9.3B  55.66 9.33
4 n−デシルチオグルコシド  0m6H*tOs8
 57.11 9.59 56.89 9.51実施例
3 オクチルチオグルコシドとすでに勝れた膜−自回溶化剤
として公知のオクチルグルコシドについて、可溶化能を
比較した。大腸菌膜小胞をフレンチプレス法により調製
した。50mMリン酸カリウム緩衝液中(pm7.5)
を膜小胞(1,51F’、iil/ml) 、  1 
m Mジチオスレイトール、脂質(4”?/g#)存在
下で種々の濃度のオクチルチオグルコシドまたはオクチ
ルグルコシドと混和し、6°Cで10分間保温1−た。
Table 1. Elemental analysis results of n-alkylthioglucoside 1, B-hexylthioglucoside OizHtiO
g8 51.40 B, 63 50.98 8,42
2, n-heptylthioglucoside O+sHnOg
8 53.03 8.90 52.88 8,903,
n-nonylthioglucoside 0m5I (saoi
s 55.87 9.3B 55.66 9.33
4 n-decylthioglucoside 0m6H*tOs8
57.11 9.59 56.89 9.51 Example 3 The solubilizing ability of octyl thioglucoside and octyl glucoside, which is known as a superior membrane self-solubilizing agent, was compared. E. coli membrane vesicles were prepared by the French press method. In 50mM potassium phosphate buffer (pm 7.5)
Membrane vesicles (1,51F', il/ml), 1
M dithiothreitol was mixed with various concentrations of octylthioglucoside or octylglucoside in the presence of lipid (4"?/g#) and incubated at 6°C for 10 minutes.

超遠心機(170,000Xg、 1時間)K、かけ、
可溶化成分(上清)と不可溶化成分(沈殿)とを分離し
た。両者について蛋白質の定賠を行ない可溶化能力を調
べた。35mM以上のオクチルチオグルコシドで約70
チの膜蛋白を可溶化することができる。同程度の可溶化
IC50m M以上のオクチルグルコシドを必要とする
。図2は可溶能の比較を示したものである。可溶化され
た蛋白質の変性は両者いずれの場合も認められかかった
Ultracentrifuge (170,000Xg, 1 hour) K,
The solubilized component (supernatant) and the insolubilized component (precipitate) were separated. Both proteins were subjected to constant protein infusion to examine their solubilizing ability. 70 at 35mM or more of octylthioglucoside
It can solubilize membrane proteins of chi. A similar solubilization IC50mM or higher of octyl glucoside is required. Figure 2 shows a soluble comparison. Denaturation of the solubilized protein was barely observed in either case.

実施例4 生体膜低白質の性質や機能を解析したり、生体膜の働き
を研究するために1人工膜実験が行なわれる。この場合
、生体膜から取出した張白質力どをいかにして人工膜に
組込むかが問題と々る。
Example 4 An artificial membrane experiment is conducted to analyze the properties and functions of biological membranes and to study the functions of biological membranes. In this case, a problem arises as to how to incorporate the neural tissue extracted from the biological membrane into the artificial membrane.

人工膜として最も使いやすいのはリポシーJ・であり、
最も緩和で簡単迅速な再構成法は界面活性剤希釈法であ
る。オクチルグルコシドを甲いた希釈再構成法は既に報
告されている(例えばTsuchiya  らJ、 B
j ol、 chem、 257.5125 (198
2) ) (、しかしこの方法は再構成に用い得るオク
チルグルコシドの1113範囲が狭く、再現性に問題が
ある。本研究で得られたオクチルチオグルコシドを用い
て膜蛋白質をリボゾーム再構成することを試み良好な結
果を得た。実施例3で述べた方法に従い、大腸菌の膜蛋
白質を可溶化した。可溶化ゑ白質(150)Le)と脂
質(50)Ll。
The easiest to use artificial membrane is Lipocy J.
The most relaxed, simple and rapid reconstitution method is the surfactant dilution method. Dilute reconstitution methods using octyl glucoside have already been reported (e.g. Tsuchiya et al. J, B.
jol, chem, 257.5125 (198
2) ) (However, this method has a narrow range of 1113 octylglucosides that can be used for reconstitution, and there are problems with reproducibility. Good results were obtained.Escherichia coli membrane proteins were solubilized according to the method described in Example 3.Solubilized white matter (150)Le) and lipids (50)Ll.

25w9)を混和し、更に種々の濃度(30〜75mM
)のオクチルチオグルコシドを加える。22゛Cで15
分間保温後、この混和液を30倍のリン酸緩衝液で希釈
する。これを超遠心機(Zoo、OOOXg、1時間)
にかけ、再構成されたプロテオリボゾームを集める。こ
の再構成プロテオリボゾームについてメリビオース輸送
活性を調べた(、45rnMから70mMのオクチルチ
オグルコシドを用いた場合圧再構成が可能であり、55
mM付近の場合が最も良いことが分った。図3にその結
果を示した。オクチルチオグルコシド希釈法によって得
られた結果(最高約70ナノモル、メリビオース/町蛋
白質)はオクチルグルコシド希釈法によ て得られた結
果(最高約40ナノモルメリビオース/■長白つ 質)よりもか彦り高い。再現性もオクチルチオグルコシ
ドを用いた時の方が高い。
25w9) and further various concentrations (30-75mM
) of octylthioglucoside. 15 at 22°C
After incubating for a minute, the mixture is diluted with 30 times phosphate buffer. Put this in an ultracentrifuge (Zoo, OOOXg, 1 hour)
and collect the reconstituted proteoribosomes. The melibiose transport activity of this reconstituted proteolibosome was investigated (pressure reconstitution is possible when using 45rnM to 70mM octylthioglucoside;
It was found that the best value was around mM. The results are shown in Figure 3. The results obtained by the octyl thioglucoside dilution method (up to about 70 nanomoles, melibiose/machi protein) are lower than the results obtained by the octyl glucoside dilution method (up to about 40 nanomoles melibiose/■ long protein). It's expensive. Reproducibility is also higher when using octylthioglucoside.

実施例5 界面活性剤のρ−グルコシターゼに対する感受性を調べ
た。
Example 5 The sensitivity of surfactants to ρ-glucosidase was investigated.

50mM酢酸緩衝液中、43mMのオクチルチオグルコ
シドまたはオクチルグルコシド存在下、0.1η/dの
p−グルコシダーゼ(Sigma社、  lj;mul
sin )を37゛Cで作用させ、各時間ごとにサンプ
リングを行々い1両グルコシドの分解を調べた。その結
果、オクチルグルコシドでは著しい分解がみられたが、
オクチルチオグルコシドでは分解が全く見られ彦かった
。分解速度の比較を図4に示した。
In 50 mM acetate buffer, in the presence of 43 mM octylthioglucoside or octyl glucoside, p-glucosidase (Sigma, lj; mul
sin) at 37°C, and sampling was performed at each time interval to examine the decomposition of both glucosides. As a result, significant decomposition was observed in octyl glucoside;
No degradation was observed with octylthioglucoside. A comparison of decomposition rates is shown in Figure 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はオフチオグルコシドの赤外線吸収スペクトル図
、第2図は界面活性剤の可溶化能の比較、第3図はメリ
ビオース輸送担体のリポソームへの再構成に対するオク
チルチオグルコシド濃度の影響、第4図はC−グルコシ
ダーゼ作用に対する安定性の比較を示したものである。 図中−0−0−はオクチルチオグルコシド。 −41−tはオクチルグルコシドを表わす。 以上 FJUA 、(hr) 笛今図
Figure 1 is an infrared absorption spectrum of off-thioglucoside, Figure 2 is a comparison of the solubilizing ability of surfactants, Figure 3 is the influence of octylthioglucoside concentration on the reconstitution of melibiose transport carrier into liposomes, and Figure 4 is The figure shows a comparison of stability against C-glucosidase action. -0-0- in the figure is octylthioglucoside. -41-t represents octyl glucoside. Above FJUA, (hr) flute now

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ (式中のRは炭素数6〜10のアルキル基である)で表
わされるアルキルチオグルコシド誘導体。 2、特許請求の範囲第1項記載のアルキルチオグルコシ
ド誘導体を用いる物質の可溶化方法 3、特許請求の範囲第1項記載のアルキルチオグルコシ
ド誘導体を用いる可溶化物質の人工膜への再構成方法
[Claims] 1. An alkylthioglucoside derivative represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (R in the formula is an alkyl group having 6 to 10 carbon atoms). 2. A method for solubilizing a substance using the alkylthioglucoside derivative according to claim 1; 3. A method for reconstituting a solubilized substance into an artificial membrane using the alkylthioglucoside derivative according to claim 1.
JP59128334A 1984-06-20 1984-06-20 Alkylthioglucoside derivative Pending JPS617288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59128334A JPS617288A (en) 1984-06-20 1984-06-20 Alkylthioglucoside derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59128334A JPS617288A (en) 1984-06-20 1984-06-20 Alkylthioglucoside derivative

Publications (1)

Publication Number Publication Date
JPS617288A true JPS617288A (en) 1986-01-13

Family

ID=14982222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59128334A Pending JPS617288A (en) 1984-06-20 1984-06-20 Alkylthioglucoside derivative

Country Status (1)

Country Link
JP (1) JPS617288A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171608A (en) * 1987-01-10 1987-07-28 株式会社クボタ Apparatus for detecting specific hardness of mud in rice planter
EP0375610A2 (en) * 1988-12-19 1990-06-27 Ciba-Geigy Ag Perfluoroalkylthioglycosides
US4957904A (en) * 1988-05-24 1990-09-18 Ciba-Geigy Corporation Perfluoroalkylthioglycosides
WO2010013423A1 (en) 2008-07-28 2010-02-04 花王株式会社 External preparation for skin, and wrinkle-repairing agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171608A (en) * 1987-01-10 1987-07-28 株式会社クボタ Apparatus for detecting specific hardness of mud in rice planter
JPH0331402B2 (en) * 1987-01-10 1991-05-07 Kubota Kk
US4957904A (en) * 1988-05-24 1990-09-18 Ciba-Geigy Corporation Perfluoroalkylthioglycosides
EP0375610A2 (en) * 1988-12-19 1990-06-27 Ciba-Geigy Ag Perfluoroalkylthioglycosides
WO2010013423A1 (en) 2008-07-28 2010-02-04 花王株式会社 External preparation for skin, and wrinkle-repairing agent

Similar Documents

Publication Publication Date Title
Spivak et al. Reverse-phase hplc separation, quantification and preparation of bilirubin and its conjugates from native bile. Quantitative analysis of the intact tetrapyrroles based on hplc of their ethyl anthranilate azo derivatives
Linker et al. A polysaccharide resembling alginic acid from a Pseudomonas micro-organism
Hackman Studies on chitin I. Enzymic degradation of chitin and chitin esters
FI65441C (en) FOERFARANDE FOER FRAMSTAELLNING AV INKLUSIONSKOMPLEX AV CYKLODEXTRIN OCH INDOMETACIN
KR0147845B1 (en) Glycosphingolipids with a group capable of coupling in the sphingoid portion, the preparation and use thereof
FR2509313A1 (en) 3-FUCOSYL-N-ACETYL LACTOSAMINE DERIVATIVES, THEIR PREPARATION AND THEIR BIOLOGICAL APPLICATIONS
Sowden 6-C14-D-Glucose and 6-C14-D-Glucuronolactone1
Bolton et al. The Synthesis of a Glucosamine—Asparagine Compound. Benzyl N2-Carbobenzyloxy-N-(2-acetamido-3, 4, 6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-L-asparaginate1
CA1265792A (en) Oligosaccharides, synthesis process and biological uses thereof
Parkkinen et al. Isolation and structural characterization of five major sialyloligosaccharides and a sialylglycopeptide from normal human urine
JPS617288A (en) Alkylthioglucoside derivative
US5763586A (en) Extraction of proteins from naturally occuring membranes
Gmelin et al. Glucosinolates in the Caricaceae
US5132296A (en) Membrane NA+ channel protein and related therapeutic compounds
US4895807A (en) Membrane channel protein and related therapeutic compounds
Lin et al. The use of octyl β-D-glucoside as detergent for HOG kidney brush border membrane
Slama et al. The synthesis of glycolipids containing a hydrophilic spacer-group
Keana et al. Improved synthesis of n-octyl-β-d-glucoside: a nonionic detergent of considerable potential in membrane biochemistry
US4009264A (en) Complexes of polysaccharides or derivatives thereof with reduced glutathione and process for preparing said complexes
Eby et al. The synthesis of α-and β-(1→ 2)-and-(1→ 3)-linked glucopyranose disaccharides and their protein conjugates
JPS6170996A (en) Production of maltosyl-alpha-cyclodextrin
EP0082818A1 (en) Process to obtain human lipids and lacto-N-norhexaosyl ceramide
EP0136938A2 (en) Derivatives of furanes, their preparation and application
Yoshino et al. Chemical synthesis of. alpha.-L-fucopyranosylceramide and its analogs and preparation of antibodies directed to this glycolipid
US4950591A (en) Membrane Na+ channel protein and related therapeutic compounds