JPS6172885A - Shock absorber in swash plate type variable displacement compressor - Google Patents

Shock absorber in swash plate type variable displacement compressor

Info

Publication number
JPS6172885A
JPS6172885A JP59195589A JP19558984A JPS6172885A JP S6172885 A JPS6172885 A JP S6172885A JP 59195589 A JP59195589 A JP 59195589A JP 19558984 A JP19558984 A JP 19558984A JP S6172885 A JPS6172885 A JP S6172885A
Authority
JP
Japan
Prior art keywords
pressure chamber
chamber
pressure
bypass passage
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59195589A
Other languages
Japanese (ja)
Inventor
Hisao Kobayashi
久雄 小林
Katsunori Kawai
河合 克則
Hiroyuki Deguchi
出口 弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP59195589A priority Critical patent/JPS6172885A/en
Publication of JPS6172885A publication Critical patent/JPS6172885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To aim at preventing a driving feeling from worsening, by installing a capacity selector mechanism for opening of closing a first bypass passage and a control valve, gradually closing all passages by means of dynamic pressure of reflux gas inside a second bypass passage with closure of this passage both inside a discharge chamber. CONSTITUTION:Compressed high temperature discharge gas is fed, with pressure, to a back pressure chamber 57 via a high pressure pipe 60, while a spool 47 is moved to a regular closing position together with a discharge valve 44 and a valve guard 46, closing a first bypass passage 56. Therefore, the whole quantity of gas discharged to the discharge chamber 22 passes through a second passage 65 alone and is made to flow back to a swash plate chamber 8 whereby a control valve 67 tries to be moved in a direction to close the passage 65 by dint of dynamic pressure of reflux gas, but since the intake of pressure compensating for negative pressure in a back pressure chamber 69 is throttled by a pressure intake hole 70, its motion is regulated so as to come sluggish, and a gas quantity is gradually increased till the control valve 67 comes to 100% operation having closed the passage 65 completely so that with this increase, engine load also slowly goes up, therefore a shock is effectively relievable.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は車両空調用に好適な斜板式可変容量圧縮機に係
り、さらに詳しくは、冷房出力アップ時における運転フ
ィーリングの悪化を防止するショック緩和装置に関する
ものである。
Detailed Description of the Invention Object of the Invention (Industrial Application Field) The present invention relates to a swash plate type variable capacity compressor suitable for vehicle air conditioning, and more specifically, to a swash plate type variable capacity compressor suitable for vehicle air conditioning, and more specifically, to reduce the deterioration of driving feeling when cooling output is increased. This invention relates to a shock mitigation device that prevents shocks.

(従来の技術) 一般に車両空調装置においては、圧縮機を能力制御等の
目的で断続運転させた場合、起動時における急激なエン
ジン負荷の増加が瞬間的にエンジンブレーキと同様な症
状を呈し、いわゆる起動シコックによる運転フィーリン
グの悪化を生ずることになる。
(Prior art) In general, in vehicle air conditioners, when the compressor is operated intermittently for the purpose of capacity control, etc., a sudden increase in engine load at startup causes symptoms similar to engine braking, so-called This results in deterioration of the driving feeling due to the startup shock.

上記欠点を解消するために、起動時には圧縮機の半分を
無能力化する50%稼動としてエンジン負荷を低減させ
、タイミングをとって100%稼動に移行づるようにし
た可変容量型のもの(特開昭57−738775号)も
提案されているが、起動時には半減されたとはいえ50
%稼動相当の負荷が急激に加わり、しかも50%稼動か
ら100%稼動への移行時においてもやはり負荷の増加
が瞬間的に行われるので、上述したショック緩和すなわ
ち運転フィーリングの悪化防止に完全を期し難い。この
フィーリングの悪化をもたらす稼動 、ショックのうち
、電磁クラッチが接続される圧縮機起動時においては、
エアコンスイッヂをONされるという運転者の意思に基
づく動作が行なわれた後生起するもので、予期している
ことであり、そのショックは、さほど異としないが、温
度センサー等から検出信号に基づいて50%稼動から1
00%稼動へ移行するとぎには、運転者の意思にかかわ
りなく出力アップが行われるので、この場合のショック
すなわち運転フィーリングの悪化は以外と気になるもの
である。
In order to eliminate the above disadvantages, a variable capacity type (unexamined patent application) is designed to reduce the engine load by disabling half of the compressor at 50% operation at start-up, and shifting to 100% operation at the appropriate timing. No. 57-738775) has also been proposed, but even though it was halved at the time of startup, the
The load equivalent to % operation is suddenly added, and the increase in load is also instantaneous during the transition from 50% operation to 100% operation, so it is impossible to completely alleviate the shock mentioned above, that is, to prevent deterioration of driving feeling. It's hard to predict. Among the operating shocks that cause this deterioration of feeling, when starting the compressor when the electromagnetic clutch is connected,
This shock occurs after the driver performs an action based on the driver's intention, such as turning on the air conditioner switch, and is expected.The shock is not that different, but it is caused by a detection signal from a temperature sensor, etc. Based on 50% operation to 1
When shifting to 00% operation, the output is increased regardless of the driver's intention, so the shock in this case, that is, the deterioration of the driving feeling, is of particular concern.

(発明が解決しようとする問題点) 本発明は、以上の欠点を解消するため、圧縮機の出力ア
ップ時において急激なエンジン負荷の増加を抑制し得る
制御11機能を付与することをその解決しようとする問
題点とするものである。
(Problems to be Solved by the Invention) In order to eliminate the above-mentioned drawbacks, the present invention aims to solve the problem by providing a control function 11 that can suppress a sudden increase in engine load when the output of the compressor is increased. This is a problem that should be addressed.

発明の構成 (問題点を解決するための手段) 本発明は上記問題点を解消するため、リヤ側の吐出室等
高圧室と吸入室等低圧室とをリヤ側板に離隔貫設された
2個の連通孔を含む第1及び第2のバイパス通路により
連通し、該高圧室の第1バイパス通路開口部と対向する
位置に、背圧室が圧縮機の起動・停止信号又は冷房負荷
の検出信号により選択的に低圧室とフロント側高圧部と
に連通して、該第1バイパス通路の開閉を行い、リヤ側
の圧縮機能を無能化可能ならしめるスプールと、該プー
ルの背圧室が低圧室と連通した時スプールを開放する向
きに付勢してこれを浮上保持するばねとから構成された
容量切換機構を配設するとともに、前記高圧室の第2バ
イパス通路開口部と対向する位置に、収容凹所と、その
凹所に収容されて第2バイパス通路を経て低圧室へ流れ
る還流ガスの動圧によって第2バイパス通路の開口部を
閉じる向きに作動しその開度を調整する制御弁と、その
制御弁の収容凹所底部に形成される背圧室と前記高圧室
とを導通する絞り作用を有する導圧孔と、前記制御弁の
進退方向に作用する圧力が平衡した1、1該制御弁を開
放する向きに付勢してこれを浮上保持するばねどから構
成されたショック緩和機格を配設するという手段を採っ
ている。
Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention separates a high pressure chamber, such as a discharge chamber, and a low pressure chamber, such as a suction chamber, on the rear side by providing two chambers that are separated and penetrated through the rear side plate. A back pressure chamber communicates with the first and second bypass passages including communication holes, and is located at a position facing the first bypass passage opening of the high pressure chamber, and receives a compressor start/stop signal or a cooling load detection signal. A spool that selectively communicates with the low pressure chamber and the front high pressure section to open and close the first bypass passage and disable the compression function on the rear side, and the back pressure chamber of the pool is connected to the low pressure chamber. A capacity switching mechanism is provided at a position facing the second bypass passage opening of the high pressure chamber, and a spring that biases the spool in the direction of opening the spool and keeps it floating when the spool is in communication with the spool. a control valve that operates in a direction to close the opening of the second bypass passage and adjusts the degree of opening thereof by the dynamic pressure of the recirculated gas contained in the accommodation recess and flowing through the second bypass passage to the low pressure chamber; , a pressure guide hole having a throttling effect that communicates a back pressure chamber formed at the bottom of the accommodation recess of the control valve with the high pressure chamber, and 1, 1 in which the pressures acting in the forward and backward directions of the control valve are balanced. The method is to provide a shock-reducing mechanism consisting of a spring that biases the control valve in the direction of opening and holds it floating.

(作用) 圧縮機の50%稼動状態すなわちフロント側では完全な
圧縮仕事が行われ、リヤ側では吐出ガスが開放された第
1.第2バイパス通路から斜板室等低圧室に還流されて
実質的に圧縮仕事が無能化された状態において、温度セ
ンサ等の検出信号により、容量切換機構が100%稼動
状態に切換えられて第1バイパス通路が閉鎖されると、
リヤ側の吐出ガスのすべてが第2バイパス通路から還流
することになり、制御弁に作用する該還流ガスの動圧が
高まる。従って、制御弁はばねの付勢力に抗して第2バ
イパス通路を閉じる方向へ動作しようとするが、その背
圧室の負圧を補填する圧力の導入が導圧孔によって絞ら
れているので、その動ぎが緩慢となるよう調節される。
(Function) The compressor is in a 50% operating state, that is, complete compression work is performed on the front side, and the discharge gas is released on the rear side. In a state where the compression work is substantially disabled by flowing back from the second bypass passage to a low pressure chamber such as a swash plate chamber, the capacity switching mechanism is switched to a 100% operating state by a detection signal from a temperature sensor, etc., and the first bypass When the passage is closed,
All of the discharged gas on the rear side is recirculated from the second bypass passage, and the dynamic pressure of the recirculated gas acting on the control valve is increased. Therefore, the control valve tries to operate in the direction of closing the second bypass passage against the biasing force of the spring, but the introduction of pressure to compensate for the negative pressure in the back pressure chamber is restricted by the pressure guiding hole. , the movement is adjusted so that it is slow.

この制御弁がバイパス通路の開口部に近づくにつれて、
前記還流ガスの流量が漸次制限されるので、高圧室の圧
力が上昇し、バイパス通路が完全閉止されて100%稼
動になるまでに冷房回路に送り出されるガス口は徐々に
増加する。従って、エンジン負荷は実質的な圧縮仕事の
増加につれてゆるやかな経過をたどって上昇するので、
ショックは効果的に緩和される。
As this control valve approaches the opening of the bypass passage,
Since the flow rate of the reflux gas is gradually restricted, the pressure in the high pressure chamber increases, and the number of gas ports sent to the cooling circuit gradually increases until the bypass passage is completely closed and 100% operating. Therefore, the engine load increases gradually as the actual compression work increases;
The shock is effectively alleviated.

また、100%稼動状態において容量切換機構が50%
稼動へ切換えられると、第1バイパス通路が開かれるの
で、制御弁の前接両端に作用するガス圧が低圧状態でバ
ランスし、制御弁はばねの付勢力により開放位置に復帰
する。
In addition, the capacity switching mechanism is 50% in the 100% operating state.
When switched to operation, the first bypass passage is opened, so that the gas pressures acting on both front ends of the control valve are balanced in a low pressure state, and the control valve returns to the open position by the biasing force of the spring.

(実施例) 以下、本発明を具体化した一実施例を第1図〜第4図に
基づいて説明する。この圧縮機は片側5気筒つまり10
気筒のものを示し、図において対接されたシリンダブロ
ック1.2の両端部は、弁板3,4を介して接合された
フロント及びリヤの両ハウジング5,6によって閉鎖さ
れ、これらは適数本のボルト7によって組み立てられて
いる。
(Example) Hereinafter, an example embodying the present invention will be described based on FIGS. 1 to 4. This compressor has 5 cylinders on each side, or 10
Both ends of the cylinder block 1.2, which are opposed in the figure, are closed by both front and rear housings 5, 6, which are joined via valve plates 3, 4, which are arranged in appropriate numbers. It is assembled with real bolts 7.

シリンダブロック1.2の接合部分には斜板室8が形成
され、そこにはシリンダブロック1.2の中心に貫設さ
れた軸孔ia、2aを貫通する駆動軸9に対して傾斜し
て固着された斜板10が収容されている。駆動軸9が貫
通するシリンダブロック1,2のボス部11.12には
、該駆動軸9を支承するラジアルベアリング13.14
が圧入され、又、ボス部11.12と斜板10との間に
はスラストベアリング15.16が介在されている。
A swash plate chamber 8 is formed at the joint portion of the cylinder block 1.2, and is fixed thereto at an angle with respect to a drive shaft 9 passing through shaft holes ia and 2a provided through the center of the cylinder block 1.2. A swash plate 10 is housed therein. The boss portions 11.12 of the cylinder blocks 1 and 2 through which the drive shaft 9 passes are provided with radial bearings 13.14 that support the drive shaft 9.
is press-fitted therein, and a thrust bearing 15.16 is interposed between the boss portion 11.12 and the swash plate 10.

シリンダブロック1.2には駆動軸9と平行に、かつ該
駆動軸9を中心とする放射状の位置に5相のシリンダボ
ア17が並設され、シリンダボア17に嵌挿されたビス
1〜ン18はボール19及びシュー20よりなる軸受装
置を介して斜板10に係留されており、該斜板10の回
転力によってピストン18はシリンダボア17内を往復
動可能である。フロント及びリヤの各ハウジング5.6
には中心側に吐出室21.22が形成され、外周側に該
吐出室21.22を取り囲むようにしてほぼ環状の吸入
室23.24が形成されており、特にフロント側の吐出
室21は環状に形成され、リヤ側の吐出室22は円筒形
に形成されている。吸入室23.24は前記ボルト7の
通し孔を兼用する吸入通路25.26によって斜板室8
と連通され、該斜板室8はシリンダブロック1.2の合
せ面の近くに取り付けられた吸入フランジ27と連通さ
れている。
In the cylinder block 1.2, five-phase cylinder bores 17 are arranged parallel to the drive shaft 9 and radially around the drive shaft 9, and the screws 1 to 18 inserted into the cylinder bore 17 are The piston 18 is moored to the swash plate 10 via a bearing device consisting of a ball 19 and a shoe 20, and the piston 18 can reciprocate within the cylinder bore 17 by the rotational force of the swash plate 10. Front and rear housings 5.6
A discharge chamber 21.22 is formed on the center side, and a substantially annular suction chamber 23.24 is formed on the outer circumferential side so as to surround the discharge chamber 21.22.In particular, the discharge chamber 21 on the front side is The discharge chamber 22 on the rear side is formed in a cylindrical shape. The suction chambers 23 and 24 are connected to the swash plate chamber 8 by suction passages 25 and 26 which also serve as through holes for the bolts 7.
The swash plate chamber 8 is in communication with a suction flange 27 mounted near the mating surface of the cylinder block 1.2.

又、シリンダブロック1,2におけるボア挟間のうちの
一箇所には弁板3,4との接触面から合せ面にかけて吐
出通路28.29が穿設されており、該吐出通路28.
29はその一端がシリンダブロック1,2の合せ而の近
くに取り付けられた吐出フランジ30とそれぞれ連通孔
31.32゜35を介して連通され、細端が弁板3,4
に貫設された連通孔33.3/Iを介して吐出室21,
22と連通されている。ただし、吐出室21.22は吐
出通路28.29との連通部が外周側に適宜膨出されて
いる。又、リヤ側の連通孔32には、吐出通路28から
吐出フランジ30を経て吐出通路29へのガスの逆流を
防止するための逆止弁36が設けられている。
Further, a discharge passage 28.29 is bored at one location between the bores in the cylinder blocks 1, 2 from the contact surface with the valve plates 3, 4 to the mating surface.
29 has one end communicating with a discharge flange 30 mounted near the joint of the cylinder blocks 1 and 2 through communication holes 31, 32 and 35, respectively, and a narrow end communicating with the valve plate 3 and 4.
The discharge chamber 21 through the communication hole 33.3/I provided through the
It is connected to 22. However, the communication portion of the discharge chambers 21.22 with the discharge passages 28.29 is appropriately bulged toward the outer circumferential side. Further, a check valve 36 is provided in the rear communication hole 32 to prevent gas from flowing backward from the discharge passage 28 to the discharge passage 29 via the discharge flange 30.

前記弁板3,4には吸入口37.38及び吐出口39.
40が貫設され、これらを介してシリンダボア17がそ
れぞれ吸入室23.24及び吐出室21.22と連通さ
れており、これら吸入口37.38及び吐出口39,4
.0にはそれぞれ吸入弁41./12及び吐出弁43.
44が配設されている。さらに、吐出弁43.44は介
挿え45゜46によってその変形量が規制されていて、
フロント側にあっては弁板3とフロントハウジング5と
の間に挟着固定されているが、リヤ側にあっては介挿え
46とともに正規の閉鎖位置と吐出口40を開放する聞
き位置とに切換可能となっている。
The valve plates 3, 4 are provided with suction ports 37, 38 and discharge ports 39.
40 are provided through the cylinder bore 17, through which the cylinder bore 17 communicates with the suction chamber 23.24 and the discharge chamber 21.22, respectively, and these suction ports 37.38 and discharge ports 39, 4
.. 0 each have a suction valve 41. /12 and discharge valve 43.
44 are arranged. Furthermore, the amount of deformation of the discharge valves 43, 44 is regulated by an interposition 45° 46,
On the front side, it is clamped and fixed between the valve plate 3 and the front housing 5, but on the rear side, with an insert 46, it has two positions: a normal closed position and a listening position that opens the discharge port 40. It is possible to switch to

すなわち、リヤ側介挿え46は第3図に示すように吐出
弁44と同一形状つまり環状基部4.68と各吐出口4
0に対向すべく延在したリード部46bとにより形成さ
れており、第1図に示寸ように重合された吐出弁44と
介挿え46及び同介挿え46の背面に同心的に当接され
た円柱形のスプール47とはボルト48によって一体化
され、同スプール47はリヤハウジング6の中心部に隔
壁6aによって区画形成された円形凹所49内に軸方向
に摺動可能に嵌合されている。なお、ボルト48にて一
体化された3つの部材はリヤハウジング6の隔壁6aに
植設された位置決めピン50により回り止めされている
That is, the rear insert 46 has the same shape as the discharge valve 44 as shown in FIG.
1, and a lead portion 46b that extends to face the discharge valve 44 and the interposed insert 46, which are overlapped as shown in FIG. The cylindrical spool 47 that is in contact with the spool 47 is integrated with a bolt 48, and the spool 47 is slidably fitted in the circular recess 49 defined by the partition wall 6a in the center of the rear housing 6 in the axial direction. has been done. The three members integrated by the bolts 48 are prevented from rotating by a positioning pin 50 implanted in the partition wall 6a of the rear housing 6.

リヤ側のシリンダブロック2の中心部に形成された軸孔
2aの後端部には、弁板4の中心部に貫設された連通孔
52を介して吐出室22の中央部分と連通ずる円形空間
部51が形成されている。
At the rear end of the shaft hole 2a formed in the center of the rear cylinder block 2, there is a circular hole that communicates with the center of the discharge chamber 22 through a communication hole 52 penetrated through the center of the valve plate 4. A space 51 is formed.

前記円形空間部51内には円板状のばね受53が嵌入さ
れ、該ばね受53と吐出弁44の間には該吐出弁7I/
lを常に聞ぎ位置に浮上付勢するばね54が収容されて
いる。又、ばね受53には軸孔2aと円形空間部51と
を連通させる小孔53aが貫設され、ざらにりA7側シ
1,1ンダブロツク2には斜板室8ど円形空間部51と
を連通させる連通路55が形成されている。0η記円形
空間部51、連通孔52及び連通路55からなる第1バ
イパス通路56に、1;ってm出弁44が開き位置に保
持されている状態では吐出室22は斜板室8と連通され
るが、吐出弁44が正規の閉鎖位置に変位することでそ
の連通が断たれる。
A disk-shaped spring receiver 53 is fitted into the circular space 51, and the discharge valve 7I/
A spring 54 is housed therein which constantly biases the l to float to the position. In addition, a small hole 53a is provided through the spring receiver 53 to communicate the shaft hole 2a and the circular space 51, and the rough A7 side side 1, 1 dowel block 2 has a swash plate chamber 8 and the circular space 51. A communication path 55 for communication is formed. When the discharge valve 44 is held in the open position, the discharge chamber 22 communicates with the swash plate chamber 8 through a first bypass passage 56 consisting of a circular space 51, a communication hole 52, and a communication passage 55. However, when the discharge valve 44 is displaced to the normal closed position, the communication is cut off.

前記り17ハウジング6の[1]心部には静圧にて圧縮
容量を切換える容吊切挽機構が装備され、この機構は、
スプール47と、このスプール背圧室57に圧力を導く
導圧孔58と前記ばね54とより成り、この導圧孔58
は第1電磁弁59を含む高圧管60によって吐出フラン
ジ30若しくはフロン1〜側川出室21ど連絡されると
ともに、第2電磁弁61を含む低圧管62によって吸入
フランジ27と連絡されている。そして、リヤ側の吐出
室22内が低圧状態では逆止弁36が連通孔32を閉鎖
し、高圧状態では逆止弁36が連通孔32を開放する。
[1] The core of the housing 6 described above is equipped with a lifting and cutting mechanism that switches the compression capacity using static pressure, and this mechanism is
It consists of a spool 47, a pressure guiding hole 58 that guides pressure to the spool back pressure chamber 57, and the spring 54, and this pressure guiding hole 58
is connected to the discharge flange 30 or the fluorocarbon 1 to the side discharge chamber 21 through a high pressure pipe 60 including a first solenoid valve 59, and is also connected to the suction flange 27 through a low pressure pipe 62 including a second solenoid valve 61. When the pressure inside the rear discharge chamber 22 is low, the check valve 36 closes the communication hole 32, and when the pressure inside the rear discharge chamber 22 is high, the check valve 36 opens the communication hole 32.

又、すV側部出室22内には50%稼動から100%稼
動への容量切換時のショックを緩和するための本発明の
要部であるショック緩和Ia構が設けられている。この
ショック緩和機構について説明すると、リヤ側の弁板4
及びシリンダブロック2には連通孔63及び前記第1バ
スパス通路56より分岐した連通路64がそれぞれ貫設
され、互いに連通ずることによって吐出室22と斜板室
8どを余裕をもってつまり大きい通路面積で連通ずる第
2バイパス通路65が形成されている。
Further, a shock mitigation mechanism Ia, which is an important part of the present invention, is provided in the V side outlet chamber 22 to alleviate the shock when switching the capacity from 50% operation to 100% operation. To explain this shock mitigation mechanism, the rear valve plate 4
A communication hole 63 and a communication passage 64 branched from the first bus pass passage 56 are respectively provided through the cylinder block 2, and by communicating with each other, the discharge chamber 22 and the swash plate chamber 8 are connected with ample space and a large passage area. A second bypass passage 65 communicating therewith is formed.

前記リヤハウジング6の吐出室22内において、前記連
通孔63と対応して形成された円筒状の収容凹所66内
には、該連通孔63(第2バイパス通路65の吐出室2
2側開口部)を動圧によって開閉可能な制御弁67が嵌
入されている。この制御弁67と弁板4との間には、ば
ね68が介装され、制御弁67を常には開き位置に浮上
保持するようにしている。前記制御弁67には吐出室2
2と該制御弁67の背面側に形成された背圧室69とを
連通づるための絞り作用を右する導圧孔70が貫設され
、常時吐出室22と背圧室69の圧力をバランスさける
ようにしている。なお、該導圧7L 70はリヤハウジ
ング6側に設(プてもよい。
In the discharge chamber 22 of the rear housing 6, a cylindrical accommodation recess 66 formed corresponding to the communication hole 63 is provided with the communication hole 63 (the discharge chamber 2 of the second bypass passage 65).
A control valve 67 that can open and close the second side opening) using dynamic pressure is fitted. A spring 68 is interposed between the control valve 67 and the valve plate 4, so that the control valve 67 is always kept floating in the open position. The control valve 67 has a discharge chamber 2
2 and a back pressure chamber 69 formed on the back side of the control valve 67. A pressure guiding hole 70 is provided through the control valve 67 to perform a throttling action to communicate between the discharge chamber 22 and the back pressure chamber 69 formed on the back side of the control valve 67. I try to avoid it. Note that the guiding pressure 7L 70 may be provided on the rear housing 6 side.

次に、前記のように構成した斜板式可変容量圧縮機につ
いてその作用を説明する。
Next, the operation of the swash plate type variable capacity compressor constructed as described above will be explained.

停止I: IIYには、第1図に示すように容量切換機
構のスプール47が吐出弁/14とともにはね54によ
り第1バイパス通路56を開放する位置に浮上保持され
、逆止弁36は連通孔32を閉鎖し、第1電磁弁59は
聞かれ第2電磁弁61は閉じられている。また、ショッ
ク緩和機構の制御弁67は、ばね68にJ:り第2バイ
パス通路65を開放する位置に浮上保持されている。か
かる状態において、圧縮機が起動されると、フロント側
では50%容吊で圧縮が有効に行なわれるが、リヤ側で
は第1及び第2のバイパス通路56.65が開放されて
いるので、吐出室22内へ吐出されたガスは全て斜板室
8へ環流され、リヤ側での圧縮仕事は無効化され、50
%容邑で起動される。なお、このとき第2バイパス通路
65から環流されるガス量はリヤ側吐出ガスのほぼ半量
となるので、環流ガスの動圧は、ばね68の付勢力に抗
して制御弁67を閉鎖方向へ移動させるに至らず、該制
御弁67は開放位置に保持されたままとなる。
Stop I: At IIY, as shown in FIG. 1, the spool 47 of the capacity switching mechanism is held floating together with the discharge valve/14 in a position where the first bypass passage 56 is opened by the spring 54, and the check valve 36 is in communication. The hole 32 is closed, the first solenoid valve 59 is turned on, and the second solenoid valve 61 is closed. Further, the control valve 67 of the shock mitigation mechanism is held floating by a spring 68 at a position where it opens the second bypass passage 65. When the compressor is started in such a state, compression is effectively performed at 50% capacity on the front side, but since the first and second bypass passages 56, 65 are open on the rear side, the discharge is reduced. All the gas discharged into the chamber 22 is recirculated to the swash plate chamber 8, and the compression work on the rear side is nullified.
It is started with % Yongyu. At this time, the amount of gas recirculated from the second bypass passage 65 is approximately half of the rear side discharge gas, so the dynamic pressure of the recirculated gas resists the biasing force of the spring 68 and moves the control valve 67 in the closing direction. Without being moved, the control valve 67 remains in the open position.

その後、フロント側で圧縮されたガスが吐出7ランジ3
0へ圧送されると、この高圧の吐出ガスは高圧管60を
経て背圧室57へ圧送され、背圧室57内圧力(静圧)
の上背に伴い、スプール47は吐出弁44及び弁理え4
6とともに正規の閉鎖位置へすみやかに移動され、第1
バイパス通路56を閉鎖する。従って、吐出ロアIOか
ら吐出室22へ吐出されたガスの令聞は、第2バイパス
通路65のみを通って勢いよく斜板室8へ環流され、こ
の結果制御弁67が環流ガスの動圧によりばね68の付
勢力に抗して第2バイパス通路65を閉鎖する方向へ動
作しようとするが、その背圧室69のf1圧を補l眞す
る圧力の導入が導圧孔70によって絞られているので、
その動きは緩慢となるよう調節される。この制御弁67
が第2バイパス通路65の開目端に近づくにつれて環流
ガスの流化が制限されてゆき吐出室22の圧力も上昇し
ていく。そして、制御弁67が第2バイパス通路65を
完全に閉鎖した100%稼動になるまで冷房回路に送り
出されるガス吊は除々に増加し、これに伴いエンジン負
荷もゆるやに上昇するのでショックは効果的に緩和され
る。
After that, the gas compressed on the front side is discharged from 7 lunges 3
0, this high-pressure discharged gas is fed to the back pressure chamber 57 via the high pressure pipe 60, and the internal pressure (static pressure) of the back pressure chamber 57 increases.
Along with the upper back of the spool 47, the discharge valve 44 and the valve holder 4
6 to the normal closed position, and the first
Bypass passage 56 is closed. Therefore, the gas discharged from the discharge lower IO to the discharge chamber 22 is vigorously recirculated to the swash plate chamber 8 through only the second bypass passage 65, and as a result, the control valve 67 is activated by the dynamic pressure of the recirculated gas. The second bypass passage 65 attempts to close against the biasing force of the second bypass passage 68, but the introduction of pressure to compensate for the f1 pressure in the back pressure chamber 69 is restricted by the pressure guiding hole 70. So,
The movement is adjusted to be slow. This control valve 67
As the gas approaches the open end of the second bypass passage 65, the flow of the recirculated gas is restricted and the pressure in the discharge chamber 22 also increases. Then, the amount of gas sent to the cooling circuit gradually increases until the control valve 67 reaches 100% operation with the second bypass passage 65 completely closed, and the engine load gradually increases accordingly, so the shock is effective. will be alleviated.

一方、100%稼動状態において、車室温度が設定調度
より低下し、過冷房となると、その冷房負荷検出信号に
より第1電磁弁59が閉じられ第2電磁弁61が開かれ
るので、スプール47の背圧室57が低圧となって該ス
プール47が吐出弁44及び弁理え46とともにばね5
4により開放位置に浮上保持され、50%稼動に切換え
られる。
On the other hand, in the 100% operating state, when the cabin temperature drops below the set temperature and becomes overcooled, the cooling load detection signal closes the first solenoid valve 59 and opens the second solenoid valve 61, so that the spool 47 The back pressure chamber 57 becomes low pressure, and the spool 47, together with the discharge valve 44 and the valve retainer 46, releases the spring 5.
4, it is held floating in the open position and switched to 50% operation.

このとき、吐出室22は第1バイパス通路56ににり斜
板室8の圧力とバランスする低圧状態となるので、高圧
状態にある制御弁67の背圧室69内圧力は導圧孔70
を介して減圧され、この結果制御弁67の前後両側面の
圧力がバランスして該制御弁67がばね68により開放
位置に浮上保持され、次の50%から100%稼動への
移行時におけるショック緩和に備えられる。なお、圧縮
機が前記50%稼動の状態で停止すると、該停止信号に
より電磁弁59が開き、電磁弁61が閉じて当初の状態
に復元する。
At this time, the discharge chamber 22 enters the first bypass passage 56 and is in a low pressure state balanced with the pressure in the swash plate chamber 8, so the pressure inside the back pressure chamber 69 of the control valve 67, which is in a high pressure state, is reduced to the pressure guiding hole 70.
As a result, the pressure on both the front and rear sides of the control valve 67 is balanced, and the control valve 67 is floated and held in the open position by the spring 68, thereby reducing the shock during the next transition from 50% to 100% operation. Be prepared for mitigation. Note that when the compressor is stopped in the 50% operating state, the stop signal causes the solenoid valve 59 to open and the solenoid valve 61 to close, restoring the original state.

なお、本発明は次のような実施例で具体化することもで
きる。
Note that the present invention can also be embodied in the following embodiments.

前記実施例ではリヤ側の吐出弁44を正規の閉鎖位置と
開放位置に切換可能にすることににす、50%稼動と1
00%稼動の容恒切換えを行うようにしたが、吐出弁4
4は弁理え46とともに弁板4に固定し、スプール47
のみにより前記連通IL52を開閉するようにし、背圧
室57と吸入フランジ27とを電磁弁を含む低圧管によ
り連通し、該電磁弁の開閉動作によりスプール47を開
閉動作させて50%と100%稼動の切換えを行うよう
にすること。
In the above embodiment, the rear discharge valve 44 is made switchable between the normal closed position and the open position, with 50% operation and 1
00% operation switching was performed, but the discharge valve 4
4 is fixed to the valve plate 4 together with the valve retainer 46, and the spool 47
The communication IL 52 is opened and closed by a chisel, and the back pressure chamber 57 and the suction flange 27 are communicated by a low pressure pipe including a solenoid valve, and the spool 47 is opened and closed by the opening and closing operation of the solenoid valve. The operation shall be switched.

制御弁67の先端部に対し、ガスの動圧を受は易くする
ためのひだ部あるいは溝部等を設けること。
The tip of the control valve 67 should be provided with folds or grooves to make it easier to receive the dynamic pressure of the gas.

発明の効果 以上詳述したように、本発明は圧縮機のリヤ側吐出室内
に、静圧駆動によって第1バイパス通路を開閉するよう
にしたスプールを含む容量切換機構と、前記第1バイパ
ス通路の閉止に伴って第2バイパス通路に集中する速流
ガスの動圧によって緩動し該第2バイパス通路を除々に
閉止する制御弁を含むショック緩和機構とを配設したも
のであるから、とくに自動制御される50%稼動から1
00%稼動への移行をゆるやかに行うことができ、エン
ジン負荷の急変による運転フィーリングの悪化を効果的
に防止できる。
Effects of the Invention As detailed above, the present invention provides a capacity switching mechanism including a spool disposed in the rear discharge chamber of a compressor that opens and closes a first bypass passage by static pressure drive, and a capacity switching mechanism for opening and closing the first bypass passage. It is especially automatic because it is equipped with a shock mitigation mechanism including a control valve that slowly closes the second bypass passage by moving slowly due to the dynamic pressure of the fast-flowing gas that concentrates in the second bypass passage when the second bypass passage is closed. 1 from 50% operation controlled
The transition to 00% operation can be performed gradually, and deterioration of driving feeling due to sudden changes in engine load can be effectively prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は〜第4図は本発明の一実施例を示し、第1図及
び第2図は中央部縦断面図、第3図は第1図におけるA
−A線断面図、第4図は吐出口のガス流れ部を示す縦断
面図である。 ジリンダブロツク1.2、弁板3,4、フロントハウジ
ング5、リヤハウジング6、斜板室8、シリンダボア1
7、吐出室21.22、吸入室23.24、吐出通路2
8.29、逆止弁36、吐出弁43.44、スプール4
7、円形凹所49、ばね54.68、第1.第2のバイ
パス通路56゜65、背圧室57.69、第1電磁弁5
9、第2電磁弁61、高圧管60、低圧管62、収容凹
所66、制御弁67゜
1 to 4 show an embodiment of the present invention, FIGS. 1 and 2 are longitudinal cross-sectional views of the central part, and FIG. 3 is an A in FIG. 1.
-A line sectional view, and FIG. 4 is a longitudinal sectional view showing the gas flow part of the discharge port. Jill cylinder block 1.2, valve plates 3, 4, front housing 5, rear housing 6, swash plate chamber 8, cylinder bore 1
7, discharge chamber 21.22, suction chamber 23.24, discharge passage 2
8.29, check valve 36, discharge valve 43.44, spool 4
7, circular recess 49, spring 54.68, 1st. Second bypass passage 56.65, back pressure chamber 57.69, first solenoid valve 5
9, second solenoid valve 61, high pressure pipe 60, low pressure pipe 62, accommodation recess 66, control valve 67°

Claims (1)

【特許請求の範囲】[Claims] 1. リヤ側の吐出室等高圧室と吸入室等低圧室とをリ
ヤ側板に離隔貫設された2個の連通孔を含む第1及び第
2のバイパス通路により連通し、該高圧室の第1バイパ
ス通路開口部と対向する位置に、背圧室が圧縮機の起動
・停止信号又は冷房負荷の検出信号により選択的に低圧
室とフロント側高圧部とに連通して、該第1バイパス通
路の開閉を行い、リヤ側の圧縮機能を無能化可能ならし
めるスプールと、該プールの背圧室が低圧室と連通した
時スプールを開放する向きに付勢してこれを浮上保持す
るばねとから構成された容量切換機構を配設するととも
に、前記高圧室の第2バイパス通路開口部と対向する位
置に、収容凹所と、その凹所に収容されて第2バイパス
通路を経て低圧室へ流れる還流ガスの動圧によって第2
バイパス通路の開口部を閉じる向きに作動しその開度を
調整する制御弁と、その制御弁の収容凹所底部に形成さ
れる背圧室と前記高圧室とを導通する絞り作用を有する
導圧孔と、前記制御弁の進退方向に作用する圧力が平衡
した時該制御弁を開放する向きに付勢してこれを浮上保
持するばねとから構成されたシヨック緩和機構を配設し
た斜板式可変容量圧縮機におけるシヨック緩和装置。
1. A high-pressure chamber such as a discharge chamber on the rear side and a low-pressure chamber such as a suction chamber are communicated through first and second bypass passages including two communicating holes separated from each other through the rear side plate, and the first bypass of the high-pressure chamber A back pressure chamber, located at a position facing the passage opening, selectively communicates with the low pressure chamber and the front side high pressure section in response to a compressor start/stop signal or a cooling load detection signal, and opens and closes the first bypass passage. It is composed of a spool that enables the compression function on the rear side to be disabled, and a spring that biases the spool in the direction of opening and keeps it floating when the back pressure chamber of the pool communicates with the low pressure chamber. A capacity switching mechanism is disposed in the high-pressure chamber at a position opposite to the second bypass passage opening, and a storage recess is provided in the high-pressure chamber at a position facing the second bypass passage opening, and a reflux gas contained in the recess and flowing to the low-pressure chamber via the second bypass passage second due to the dynamic pressure of
A control valve that operates to close the opening of the bypass passage and adjusts its opening, and a guiding pressure having a throttling effect that connects the high pressure chamber to a back pressure chamber formed at the bottom of a housing recess for the control valve. A swash plate type variable variable valve equipped with a shock mitigation mechanism consisting of a hole and a spring that biases the control valve in the direction of opening and holds it floating when the pressures acting in the forward and backward directions of the control valve are balanced. Shock mitigation device in capacity compressor.
JP59195589A 1984-09-18 1984-09-18 Shock absorber in swash plate type variable displacement compressor Pending JPS6172885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195589A JPS6172885A (en) 1984-09-18 1984-09-18 Shock absorber in swash plate type variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195589A JPS6172885A (en) 1984-09-18 1984-09-18 Shock absorber in swash plate type variable displacement compressor

Publications (1)

Publication Number Publication Date
JPS6172885A true JPS6172885A (en) 1986-04-14

Family

ID=16343656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195589A Pending JPS6172885A (en) 1984-09-18 1984-09-18 Shock absorber in swash plate type variable displacement compressor

Country Status (1)

Country Link
JP (1) JPS6172885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944491A (en) * 1996-02-13 1999-08-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston-type compressor with improved shock absorption during start up

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944491A (en) * 1996-02-13 1999-08-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston-type compressor with improved shock absorption during start up

Similar Documents

Publication Publication Date Title
JP3432994B2 (en) Control valve for variable displacement compressor
JPH07127566A (en) Clutchless one side piston type variable displacement compressor
JP3254871B2 (en) Clutchless one-sided piston type variable displacement compressor
JP2000199479A (en) Variable capacity compressor
JP2000009045A (en) Control valve for variable displacement type compressor, variable displacement type compressor, and variable setting method for set suction pressure
KR970005980B1 (en) Clutchless one side piston type variable displacement compressor
JPH05149249A (en) Reciprocating compressor
JPS59113279A (en) Variable capacity refrigerant compressor
JPS6172889A (en) Operating shock absorber in compressor
JPS6172885A (en) Shock absorber in swash plate type variable displacement compressor
KR980009898A (en) Variable displacement compressor
JPH07310654A (en) Clutchless single piston type variable displacement compressor
JPS6172886A (en) Operating shock absorber in swash plate type compressor
JP2765057B2 (en) Variable capacity compressor
JPS6172884A (en) Shock absorber at starting in swash plate type variable displacement compressor
JPH09256947A (en) Valve seat structure in compressor
JPH11324910A (en) Variable capacity compressor
JPH09324752A (en) Clutch-less capacity controlled compressor
JP3267426B2 (en) Clutchless one-sided piston type variable displacement compressor
JPH0241356Y2 (en)
JPH0776552B2 (en) Variable capacity vane compressor
JPH076515B2 (en) Variable capacity van compressor
JPH06336979A (en) Clutchless single-side piston type variable displacement compressor
JPH0437277Y2 (en)
JPS63285276A (en) Variable displacement compressor