JPS6172880A - Driving device using temperature differential - Google Patents

Driving device using temperature differential

Info

Publication number
JPS6172880A
JPS6172880A JP19267184A JP19267184A JPS6172880A JP S6172880 A JPS6172880 A JP S6172880A JP 19267184 A JP19267184 A JP 19267184A JP 19267184 A JP19267184 A JP 19267184A JP S6172880 A JPS6172880 A JP S6172880A
Authority
JP
Japan
Prior art keywords
temperature
simple substance
weight
rotary shaft
installing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19267184A
Other languages
Japanese (ja)
Inventor
Fumio Munekata
宗方 二三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19267184A priority Critical patent/JPS6172880A/en
Publication of JPS6172880A publication Critical patent/JPS6172880A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To make a rotary shaft rotatable with a temperature differential utilized, by installing a deformable temperature detecting part, as a simple substance, at the base end side of a connecting rod installing a weight in its tip end, while attaching the plural numbers of this simple substance to a periphery of the rotary shaft set up in and around a boundary surface between the atmosphere and a liquid. CONSTITUTION:A rotary shaft 3 is horizontally installed in and around a boundary surface H between the atmosphere having a temperature differential and a liquid through bearings, and plural numbers of simple substance 1-1-1-8 (hereinafter, appended figures omitted) are radially set up in this rotary shaft 3 at the specified intervals. Each simple substance 1 is made up of installing a retractable temperature detecting part (or an expandable coil-form temperature detecting part) 7 composed of a form memory alloy and a bimetal at the base end side of a connecting rod 6 installing a weight in its tip end. This temperature detecting part 7 is bent and expanded longer as shown in illustration when ambience temperature varies, whereby each simple substance 1 is installed so as to make it deformable in a state of being bent by about 90 deg. from the initial straight line state. And, utilizing the deflection of a center-of-gravity position of the whole device caused by deformation of the simple substance 1, the rotary shaft 1 is made so as to be rotated.

Description

【発明の詳細な説明】 − tSOコ参号「温度差をオU用した駆動装置」及び
特願昭ty−oqiiココ 号「湿度差をオU用した駆
動装置」等を更に進展させた温度差をオU用した駆動装
置に関するものである。
[Detailed description of the invention] - Temperature technology that is a further development of the tSO Koko No. ``Drive device that utilizes temperature differences'' and the patent application Sho TY-OQII Coco No. ``Drive device that uses humidity differences.'' This relates to a drive device that uses the difference.

即ち、前記先願のものは、温度差を有する液体と気体、
若くは温度差と比重差を有する液俸憎I/cToるそれ
ら駆動機の多数の重錘が、周辺の温度変化で軸から「距
離」が軸上を通る鉛垂線の左右で不均衡となることが主
たる原因で回転するものであるが、本発明は軸と重錘と
の距離便化よりも軸上鉛垂線の左右の重錘のF数」を不
均衡にすることを回転の主たる手段に改良したものであ
る。
That is, in the prior application, a liquid and a gas having a temperature difference,
The large number of weights in these driving machines, which tend to have liquid pressure I/cTo with differences in temperature and specific gravity, become unbalanced in their "distance" from the axis on the left and right sides of the vertical line passing through the axis due to changes in surrounding temperature. However, in the present invention, the main means of rotation is to make the F number of the weights on the left and right sides of the vertical line on the axis unbalanced, rather than shortening the distance between the shaft and the weight. This is an improved version.

以下実施例を具体的に述べると第7図は此の駆動装置の
単体lで、コイル状或は曲線状の二方向性形状記憶合金
による温度検肖mコ(以下単に二方向検出部−と称す)
の両端には軸3に固着する短い連結杆ダと重錘5に固着
する長い連結杆6がある。
To describe an example in detail below, Fig. 7 shows a single unit of this drive device, and a temperature sensor (hereinafter simply referred to as a two-way detection section) using a coiled or curved two-way shape memory alloy. )
At both ends, there is a short connecting rod fixed to the shaft 3 and a long connecting rod 6 fixed to the weight 5.

二方向検出部コは周囲の温度が変化すると第一図の如く
方向を変えて曲シ、且つ伸長して、その単体/l;J当
初の点線位置から約90度角度Bを変じたC線先端位置
に3[錘Sを移す。此の場合、軸3から重錘j迄の距離
0は肖初の距離Aと変らない。
When the ambient temperature changes, the two-way detection part changes its direction, bends, and expands as shown in Figure 1. 3. Move the weight S to the tip position. In this case, the distance 0 from the axis 3 to the weight J is the same as the distance A at the beginning.

検出部を第3.lI−図で示す如く1字型からL字型に
移る形にするとよシ構造簡単で強力な単体Iが出来る。
The detection part is the third one. I - If you change the shape from a 1-shape to an L-shape as shown in the diagram, you can create a simple and powerful unit I.

但し此の二方向検出部7は曲るだけで伸長しないから、
曲った場合は軸3から重錘S迄の距離りは、曲らなかっ
た場合の距離Iよシ若干短かくなる。又、宜紬Sを出来
るだけ線Eの先端位置s’に近ずける為に、単体lの曲
る角度B′は90度以上とする。勿論温度が元に戻れば
単体lの形も元に戻る。二方向検出部の代シにバイメタ
ルその他の温度変化によシ角度を曲げる他のものを用い
てもよい。
However, since this two-direction detection section 7 only bends and does not extend,
If it is bent, the distance from the shaft 3 to the weight S will be slightly shorter than the distance I if it is not bent. In addition, in order to bring the pongee S as close as possible to the tip position s' of the line E, the bending angle B' of the single body l is set to be 90 degrees or more. Of course, if the temperature returns to normal, the shape of the single element L will return to its original shape. Instead of the two-way detection section, a bimetal or other device that bends the angle due to temperature changes may be used.

一方向性形状記憶合金による検出部を用いる場合KFi
、検出部の反対方向への運動には他力を要するゆえ、例
えは帛!f、A図の如く連結杆弘と4の間にくの字型一
方向性形状記憶合金検出部r(以下単に一方向検出部t
と称す)の両端末をバイアスバネ9で連結し、それで温
度変化の際反対運動を生せしめればよい。
When using a detection part made of a unidirectional shape memory alloy, KFi
, an external force is required to move the detection unit in the opposite direction, so the analogy is a cloth! f, A dogleg-shaped unidirectional shape memory alloy detection part r (hereinafter simply unidirectional detection part t) between the connecting lever and 4 as shown in Figure A.
It is sufficient to connect both ends of the spring 9 with a bias spring 9, so that opposite movements occur when the temperature changes.

バイメタルで検出部を作る場合にはフィル状にすればよ
い。例えば帯板状バイメタルを用うるなら、第q、を図
の如くらせん状に形成して、両端末/l、/コに連結杆
ダ、≦を固着しておけば、熱変化に応じ二方向検出部7
と同じような連結杆基の角度が変化し、効果が得られる
If the detection part is made of bimetal, it may be made into a fill shape. For example, if a strip-shaped bimetal can be used, if the qth part is formed into a spiral shape as shown in the figure, and the connecting rods, ≦ are fixed to both terminals /l and /ko, it can move in two directions according to thermal changes. Detection section 7
The same effect can be obtained by changing the angle of the connecting rod base.

以上の各種検出部のうち例えば第3.参図の二方向検出
部7を有する単体ざケを用いた駆動装置の全体を第9図
で例示する。
Among the above various detection units, for example, the third detection unit. FIG. 9 shows an example of the entire driving device using a single-piece mechanism having the two-direction detecting section 7 shown in the figure.

軸3を中心として一定間隔で単体/ −/ −1−1を
放射状に配置し、冷気νと熱#Gの境゛界面■附近に軸
3を横架させると、加熱されたqヶの検出部?−4〜?
−tはL状となシ、冷やされたtケの検出部?−/〜ク
ー参は工状となる。従って単体/−/  /−コ及び/
−3〜ノー4の4ケの先端の重錘3−/、j−J及び5
−3〜s−zは、軸3を通る鉛垂線ニーJ12)左側に
集シ、単体/−3,1−参〇重錘S−3゜S−参のコケ
のみが右側にある。よって此の装置全体の重心は左右不
均衡となハ常に軸3の左右の一方に偏する故検出部りを
屈伸させる温度差がある限シ、装置株時計と反対の方向
に回転を続ける。
If the single units / - / -1-1 are arranged radially at regular intervals around the axis 3, and the axis 3 is placed horizontally near the boundary between the cold air ν and the heat #G, the q heated units can be detected. Department? -4~?
-T is L-shaped, is it a cooled detection part? −/~Ku ginseng becomes a state of work. Therefore, single unit /-/ /-ko and /
-3 to No.4 4 tip weights 3-/, j-J and 5
-3 to sz are collected on the left side of the plumb perpendicular knee J12) passing through axis 3, and only the moss of the single body/-3,1-3 weight S-3°S-3 is on the right side. Therefore, the center of gravity of the entire device is unbalanced, and is always biased to either the left or right side of the shaft 3. As long as there is a temperature difference that bends or stretches the sensing portion, the device continues to rotate in the opposite direction.

第9図の検出部クー参の実線が工手屋でなくへの字型で
あるのは、装置が回転している場合熱湯Gから冷気Fに
接した直後の検出部がまだ十分冷却していない場合を例
示している。
The reason why the solid line of the detection part in Fig. 9 is in the shape of a square instead of a craftsman is because when the device is rotating, the detection part has not yet been sufficiently cooled immediately after coming into contact with the cold air F from the hot water G. This example shows a case where there is no.

第1O図に示す温度差駆動装置も前例と同様に装置の有
する重錘の[数」を軸上鉛直線の左右で不均衡として回
転力を得んとするものである。
Similarly to the previous example, the temperature difference drive device shown in FIG. 1O is designed to obtain rotational force by making the number of weights included in the device unequal on the left and right sides of the axial vertical line.

円環13を半分に分断するようKして、端末外、ljで
支える支持杆14の中央を、横架する軸17に固着する
。この同項13には端末/4A、/3位置に一端を固着
し、しかも円環/3を通し九二本の二方向性形状記憶合
金製コイルによる温度検出部lざ、12(以下単にコイ
ルと記す)と、コイルの他端に固着した精製重錘20.
.2/を有し、重lli!i!に、コ/は、倒れもコイ
ルitr、itの伸縮に伴い円環13に沿って円周の参
分の71換言すれば軸17にて角度90度の範囲内で移
動可能になっている。
The ring 13 is cut in half, and the center of the support rod 14 supported by lj outside the end is fixed to the horizontally extending shaft 17. In this item 13, one end is fixed to the terminal /4A, /3 position, and the temperature detection part 12 (hereinafter simply referred to as coil ) and a refining weight 20. fixed to the other end of the coil.
.. It has 2/, heavy lli! i! In addition, the coils itr and it can be tilted and moved along the annular ring 13 within a range of 90 degrees around the axis 17 by 71 degrees of the circumference.

此の同一の単体り、M、N、Oのtケを図の如く支持杆
/A −/−/6−弘を中心位置で円周の1分のノ、即
ちIj[宛角度をずらせて第11図第1J図に示すよう
に軸/7に対し放射状になるようにして固着し、この軸
17を冷気Fと熱湯Gの境界面夏附近に横架させると同
一時点での単体Lm ” @−” e Oに於けるtヶ
のコイル/I−/−参、/1−/−参の伸縮の度合と重
錘の移動位置は大要以下の如くなる。
As shown in the figure, take this same unit, M, N, and O. As shown in Fig. 11 and Fig. 1J, the shaft 17 is fixed in a radial manner to the shaft 7, and this shaft 17 is hung horizontally near the interface between cold air F and hot water G, and the single unit Lm at the same time. The degree of expansion and contraction of the t coils /I-/- and /1-/- and the movement position of the weight in @-"e O are roughly as follows.

コイルitr、itの伸縮の度合を決める要因はコイル
の冷気や熱湯に暴露する度合、コイルの強度、重錘やコ
イルの重量それらの客積と浮力の関係、冷気や熱湯の温
度、装置の回転速度、単体を構成する部品類の熱伝達の
速度、その他であるが、これ等が複雑にからみ合う、そ
れ故第1O図は何れも標準的か着熱的なものでるるか、
以下図によって動作を説明する。先ずコイルは熱湯中で
は冷気中の一倍の長さに伸長するものとして説明する。
The factors that determine the degree of expansion and contraction of the coil ITR and IT are the degree of exposure of the coil to cold air or hot water, the strength of the coil, the weight of the weight or coil, the relationship between their volume and buoyancy, the temperature of the cold air or hot water, and the rotation of the device. The speed, the speed of heat transfer of parts that make up a single unit, and other factors are intricately intertwined, so whether Figure 1O is standard or thermal.
The operation will be explained below with reference to figures. First, the coil will be explained as extending to twice the length in hot water as in cold air.

単体りのコイル/l−/、単体Nのコイル/L/−3、
単体Oのコイルlター弘#1100%冷気ν中に6るゆ
え元の状態物%の長さになっておplそれらのコイルの
端末に固定して占る重錘20−/。
Single coil/l-/, single N coil/L/-3,
A single coil of O #1 is placed in 1100% cold air ν, so it becomes 6% of its original length, and a weight 20-/ is fixed to the terminal of the coil.

2/ −3、2/−ダの位置は図に示した通シの位置に
ある。単体りのコイル/?−/はω%熱湯G中にあるゆ
え元の長さの3倍、コθoXの長さに伸長しておシ、従
って重錘コ/−/は右端境界面Hの直下に移っている。
The positions of 2/-3 and 2/-da are in the through position shown in the figure. Single coil/? Since -/ is in ω% boiling water G, it has been expanded to a length of θoX, which is three times its original length. Therefore, the weight /-/ has moved directly below the right-end boundary surface H.

単体yのコイル/l−コは3%がFA湯G中に浸シ、そ
の−倍のSO%分に伸びたので冷気F中にげ ある?!f%と合し端末/J−5からの元の距離よシノ
コS%伸びた位置に重錘20−2が移動している。
3% of the single coil y/l-co is immersed in FA hot water G, and it has expanded to twice that amount of SO%, so will it bulge in the cold air F? ! The weight 20-2 has moved to a position that is longer than the original distance from the terminal/J-5 by S%.

同じく単体Mのコイル19−一はSO%が熱湯G中にあ
シコ倍の0%に伸長しているゆえ1#Aコ/−一はコイ
ルの端末/4A−コよシの肖初の円環上の距離よp t
sθ%先の位置に移動している。
Similarly, coil 19-1 of single unit M has SO% expanded to 0% of Ashiko in hot water G, so 1#A-1 is the terminal of the coil/4A-Koyoshi's first circle. The distance on the ring is p t
It is moving to a position sθ% ahead.

単体Nのコイル/l−3は熱@G中にある。SO%分が
一倍のIooX分伸びているゆえ冷気F中の分50X合
し!5θ%fφ長じた位置に重鏝コ0−3を移動させて
いる。
The coil of unit N/l-3 is in heat @G. Since the SO% portion has increased by 1 times IooX, the portion in the cold air F is 50X combined! The heavy irons 0-3 are moved to a position that is longer by 5θ%fφ.

単体Oのコイルlざ一弘は熱湯中に況る分が75%でそ
れが3倍のisOX分となっているゆえ、冷気中の分j
%と合し773%伸びた位置に亘岐J−参を移動させて
いる。
For a single O coil, 75% of it is in hot water, which is 3 times as much as isOX, so the amount in cold air is 75%.
%, Wataki J-san has been moved to a position where it has grown by 773%.

上記の単体tヶの支持杆/6−/−44を図の如(軸1
7を頂点として角度帖度宛ずらせて横架せる軸17に固
定すると第1/図、及び第72図に示すようになる。従
ってX鈴の数は々$ρ図の通り軸17を通る鉛垂線の右
側はSヶで左ff1JI’ 、7ケとなシ、此の装置は
富に右側が重いゆえ、エンジンとなシ時計方向に回転を
続ける。
As shown in the figure (shaft 1
7 as the apex and fixed to the horizontally mounted shaft 17 at an angle angle, the result will be as shown in Fig. 1/ and Fig. 72. Therefore, as shown in the diagram, the number of X bells is 7 on the right side of the plumb line passing through axis 17, and 7 on the right side. Continue rotating in the direction.

tea明が煩雑になるので省略するが、rヶのコイル自
体のM蓋も合計すると軸17上鉛画線の左側よシ右側が
着干重くなる。
I will omit the details because they are too complicated, but when you add up the M lids of the r coils themselves, the left side of the lead drawing line on the shaft 17 will be heavier than the right side.

上記は上方が冷気、下方が熱湯として1!明したが、上
方が熱気、下方が冷水であってもよい。
The above is cold air at the top and hot water at the bottom! However, the upper side may be hot air and the lower side may be cold water.

父上方に比ムの軽い熱い油、下方が冷い水でもよい。賛
は境界面で検出部やコイルが重錘を動かすに足る温度差
が得られ\ばよい。温度検出部のコイルを二方向性形状
記憶合金コイルとして説明したが温度差で伸縮する他の
もので応用する4Ii11.勿論可能である。
You can also use a light amount of hot oil on the upper side and cold water on the lower side. The best thing to do is to be able to obtain a temperature difference at the interface that is sufficient for the detection unit or coil to move the weight. Although the coil of the temperature detection part has been described as a bidirectional shape memory alloy coil, 4Ii11. Of course it is possible.

此の装置は形状記憶合金の技術、経済性等の進展に伴い
エンジンとしての活躍が期待される。
This device is expected to be used as an engine as shape memory alloy technology and economic efficiency progress.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る温度差tS用した駆動装置の実施例
を示したもので、第1図、第一図は二方向性形状記憶合
金による温度検出部を有した単体の実施例で、第1図は
収縮時を示し、第JrlAは伸び次時の状態を示し比も
のである。第3図M参図は他の実施例の検出部で、第3
図は縮んだ状態で、第ダ図は伸びてL状に屈折した状態
図、H’図は他の実施例で検出部を一方向性形状記憶合
金を用いた単体で、第を図は第3図の伸びた状態図であ
る。第7図はバイメタルを用いた検出部の側面図、第l
r図は第7図の正面図、第7図は第3図の単体を回転軸
に配装した時の駆動部の側面図、m10図は同項に二つ
の検出部を配した単体の作動状態の説明図、第1/図は
、第1O図の単体を回転軸に位相をずらせて配置した正
面図、第1コ図は第1I図の側面図である。
The drawings show an embodiment of a drive device using a temperature difference tS according to the present invention. FIGS. Figure 1 shows the state at the time of contraction, and No. JrlA shows the state at the time of elongation, which is a comparison. FIG. 3M shows the detection section of another embodiment.
The figure shows the contracted state, Figure D shows the state when it is stretched and bent into an L shape, and Figure H' shows another example in which the detection part is a single unit using a unidirectional shape memory alloy. 3 is an expanded state diagram of FIG. 3; FIG. Figure 7 is a side view of the detection unit using bimetal,
Fig. r is a front view of Fig. 7, Fig. 7 is a side view of the drive unit when the unit shown in Fig. 3 is installed on the rotating shaft, and Fig. m10 is the operation of the unit with two detection units arranged in the same section. Explanatory diagrams of the state, Figure 1/Figure 1 is a front view of the unit shown in Figure 1O arranged with the phase shifted about the rotation axis, and Figure 1 is a side view of Figure 1I.

Claims (2)

【特許請求の範囲】[Claims] (1)一端に重錘を設けた連結杆を、他端には、回転軸
に端部を取付ける連結杆を接続した伸縮可能な検出部を
設けて構成した単体を有し、この単体を、温度差を有す
る大気と液体の境界面附近に横架軸受けされた前記回転
軸を中心に複数一定間隔をおいて放射状に配置して取付
け、前記検出部の温度の変化により、重錘の位置を中心
軸を通る鉛直線を境に移動させてなる温度差を利用した
駆動装置。
(1) It has a unit consisting of a connecting rod with a weight attached to one end and an extendable detection section connected to the connecting rod that attaches the end to the rotating shaft at the other end, and this unit has: A plurality of weights are installed radially at regular intervals around the horizontally supported rotating shaft near the interface between the atmosphere and the liquid, which has a temperature difference, and the position of the weight is adjusted by changing the temperature of the detection part. A drive device that utilizes the temperature difference created by moving along a vertical line passing through the central axis.
(2)中央を回転軸に取付ける支持杆の端末を連結して
半分に分断して支持される円環を有し、この円環には、
前記端末に一端を固定し、他端は円環に沿つて移動する
重錘を固定した温度変化で伸縮する温度検出部を前記円
環を通して二ケ所に設けて単体を構成し、この単体を、
温度差を有する大気と液体の境界面附近に横架軸受けさ
れた回転軸に間隔をおいてかつ位相をずらせて前記支持
杆の中央を取付けて並列させてなる温度差を利用した駆
動装置。
(2) It has a circular ring that connects the ends of the support rod whose center is attached to the rotating shaft and is supported by dividing it in half, and this circular ring has:
One end is fixed to the terminal, and the other end is fixed to a weight that moves along the ring. Temperature detection parts that expand and contract with temperature changes are provided at two places through the ring to form a single unit, and this unit is made up of:
A drive device utilizing a temperature difference, in which the support rods are mounted at the center and arranged in parallel at intervals and out of phase with rotary shafts that are horizontally supported near the interface between the atmosphere and a liquid, which have a temperature difference.
JP19267184A 1984-09-17 1984-09-17 Driving device using temperature differential Pending JPS6172880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19267184A JPS6172880A (en) 1984-09-17 1984-09-17 Driving device using temperature differential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19267184A JPS6172880A (en) 1984-09-17 1984-09-17 Driving device using temperature differential

Publications (1)

Publication Number Publication Date
JPS6172880A true JPS6172880A (en) 1986-04-14

Family

ID=16295105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19267184A Pending JPS6172880A (en) 1984-09-17 1984-09-17 Driving device using temperature differential

Country Status (1)

Country Link
JP (1) JPS6172880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434411A (en) * 2011-09-29 2012-05-02 浙江工商大学 Thermal dynamic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434411A (en) * 2011-09-29 2012-05-02 浙江工商大学 Thermal dynamic device

Similar Documents

Publication Publication Date Title
CN108736657B (en) Optical sensor-based permanent magnet spherical motor rotor position detection method
US4106485A (en) Solar energy reflecting system
JPS6172880A (en) Driving device using temperature differential
Gavrilovich et al. Test bench for nanosatellite attitude determination and control system ground tests
CN1472044A (en) Wire walking robot
CN103186255B (en) Based on gyroscope to light target moving processing method and system, user terminal
US4307571A (en) Device driven by heat energy
US2393473A (en) Gyroscopic navigational device
US3221419A (en) Apparatus for producing linear acceleration of a mass
US4000659A (en) Zero stiffness taut ribbon rotary suspension systems
EP2341314A1 (en) Six-direction orienting device
US2878641A (en) Thermal gravity motor
US3451139A (en) Gyrocompass
JPS6053677A (en) Seesaw type centroid-shiftable thermal engine
US2968954A (en) Air-supported spherical gyroscope
US3417474A (en) Gyrocompass
JPS5828920B2 (en) Rotating heat storage type heat exchange device
RU2028011C1 (en) Training device for demonstration of gyroscopic effect
US2735191A (en) carter
US3182514A (en) Two axis case rotating gyroscope
JPH02140702A (en) Rotary variable focal mirror
US584954A (en) Tellurian
JP4755366B2 (en) Gyro compass
JP2003091318A (en) Attitude control driving device
US2412481A (en) Friction-actuated erecting mechanism