JPS6172803A - Turbomachine - Google Patents
TurbomachineInfo
- Publication number
- JPS6172803A JPS6172803A JP59193396A JP19339684A JPS6172803A JP S6172803 A JPS6172803 A JP S6172803A JP 59193396 A JP59193396 A JP 59193396A JP 19339684 A JP19339684 A JP 19339684A JP S6172803 A JPS6172803 A JP S6172803A
- Authority
- JP
- Japan
- Prior art keywords
- shape memory
- movable blade
- blade
- movable
- turbomachine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 27
- 230000007246 mechanism Effects 0.000 claims abstract description 21
- 229910045601 alloy Inorganic materials 0.000 abstract 2
- 239000000956 alloy Substances 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/16—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
- Hydraulic Turbines (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、可動翼形のターボ機械に於ける動翼機構に関
する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a moving blade mechanism in a movable airfoil turbomachine.
(発明が解決しようとする問題点)
従来の可動翼形のポンプ、送風機、水車等のターボ機械
に於いては、油圧または機械的動翼機構をローターの主
軸やボス部内に内蔵し、運転中でも外部から可動翼の迎
角を制御出来る構造となっている。世し、これ等の動翼
機構は複雑な機構のため小形のターボ機械には適用が難
しい不具合を有している。(Problems to be Solved by the Invention) In conventional movable vane-shaped turbo machines such as pumps, blowers, and water turbines, hydraulic or mechanical rotor blade mechanisms are built into the main shaft or boss of the rotor, and the The structure allows the angle of attack of the movable wings to be controlled from the outside. However, these rotor blade mechanisms are complicated and have drawbacks that make them difficult to apply to small turbomachinery.
(問題点を解決するだめの手段)
本発明に係るターボ機械は上記不具合を解消し小形のタ
ーボ機械でも可動翼形化を可能にすることを目的として
、可動翼形のターボ機械に於いて可動翼を把持するボス
部内に形状記憶合金と該形状記憶合金に熱を与える加熱
器と上記形状記憶合金の変形量を可動翼の回転軸に回転
角度として伝達する機構とを有してなる構成を特徴とす
るものである。(Means for Solving the Problem) The turbomachine according to the present invention solves the above-mentioned problems and enables even small turbomachines to have a movable airfoil shape. A configuration comprising a shape memory alloy in a boss portion that grips the blade, a heater that applies heat to the shape memory alloy, and a mechanism that transmits the amount of deformation of the shape memory alloy to the rotation axis of the movable blade as a rotation angle. This is a characteristic feature.
(作 用)
即ち、ローターのボス部内に形状記憶合金が内蔵されて
おり、その近傍にローターの主軸内に配された配線によ
り外部から電流の供給が可能々加熱器が装着されている
。上記ローターのボス部で把持されている可動翼は、形
状記憶合金の変形量を可動翼の回転軸に回転角度とj〜
で伝達する変形量伝達機構を介して、形状記憶合金に連
結されている。ここに於て、配線を通じて外部から電流
が加熱器に供給されると、その電流に応じて形状記憶合
金の温度が変化して変形を行なう。この変形量は変形量
伝達機構を介して可動翼の回転軸に回転角度として伝達
されるので、ターボ機械の外部から供給される電流に応
じて可動翼の迎角が制御される。(Function) That is, a shape memory alloy is built into the boss portion of the rotor, and a heater is installed near the shape memory alloy to which electric current can be supplied from the outside through wiring arranged in the main shaft of the rotor. The movable blade held by the boss of the rotor has a shape-memory alloy whose deformation amount is determined by the rotation angle and the rotation axis of the movable blade.
It is connected to the shape memory alloy via a deformation transmission mechanism that transmits the amount of deformation. Here, when an electric current is supplied from the outside to the heater through wiring, the temperature of the shape memory alloy changes in accordance with the electric current, causing deformation. This amount of deformation is transmitted as a rotation angle to the rotary shaft of the movable blade via the deformation amount transmission mechanism, so that the angle of attack of the movable blade is controlled in accordance with the current supplied from the outside of the turbomachine.
(実施例)
本発明の構成と作用を具体的に第1図と第2図に示す実
施例に基き説明する。第1図は本発明に係るターボ機械
に於ける可動翼の動翼機構の説明図にして、図に於いて
図示しないローターのボス部内に形状記憶合金1が内蔵
されており、その近傍に図示しないローターの主軸内に
配された配線2により外部から電流の供給が可能な加熱
器3が装着されている。上記ローターのボス部で把持さ
れている可動翼4は形状記憶合金1の変形量を可動翼4
の図示しない回転軸に回転角度として伝達する変形量伝
達機構5を介して形状記憶合金1に連結されている。こ
こに於いて、配5写通じて外部から電流が加熱器3に供
給されると、その電流に応じて形状記憶合金1の温度が
変化して変形を行なう。この変形量は変形量伝達機構5
を介して可動翼4の回転軸に回転角度として伝達される
ので、ターボ機械の外部から供給される電流に応じて可
動翼4の迎角が制御される。(Example) The structure and operation of the present invention will be specifically explained based on the example shown in FIGS. 1 and 2. FIG. 1 is an explanatory diagram of a moving blade mechanism of a movable blade in a turbomachine according to the present invention, in which a shape memory alloy 1 is built in the boss portion of the rotor (not shown in the figure), and a shape memory alloy 1 is shown in the vicinity thereof. A heater 3 to which electric current can be supplied from the outside is attached via wiring 2 disposed within the main shaft of the rotor. The movable blade 4 held by the boss portion of the rotor changes the amount of deformation of the shape memory alloy 1 into the movable blade 4.
The deformation amount transmission mechanism 5 is connected to the shape memory alloy 1 through a deformation amount transmission mechanism 5 that transmits the rotation angle to a rotation shaft (not shown). Here, when an electric current is supplied from the outside to the heater 3 through the arrangement, the temperature of the shape memory alloy 1 changes in accordance with the electric current, causing the shape memory alloy 1 to deform. This deformation amount is determined by the deformation amount transmission mechanism 5.
The angle of attack of the movable blade 4 is controlled in accordance with the current supplied from the outside of the turbomachine.
第2図は本発明に係るターボ機械の一実施例に於ける可
動翼の動翼機構の断面図にして、図にjセロ−ターのボ
ス部60内に形状記憶合金10が内蔵されており、その
近傍に図示しないローターの主軸内に配された配線によ
り外部から電流の供給が可能な加熱器30が装着されて
いる。ローターのボス部60で把持されている可動翼4
0の回転軸40′は変形量伝達機構50を介して形状記
憶合金10と連結されている。FIG. 2 is a sectional view of a moving blade mechanism of a movable blade in an embodiment of a turbomachine according to the present invention, and the figure shows a shape memory alloy 10 built into the boss portion 60 of the J serotor. A heater 30 to which electric current can be supplied from the outside is installed near the heater 30 through wiring arranged inside the main shaft of the rotor (not shown). Movable blade 4 held by rotor boss 60
The rotational shaft 40' of 0 is connected to the shape memory alloy 10 via a deformation transmission mechanism 50.
ここに於いて、」−記配線を通じて外部から電流が加熱
器30に供給されると、その電流に応じて形状記憶合金
10の温度が変化して変形を行なう。この変形量は変形
量伝達機構50を介して可動翼40の回転軸4dに回転
角度として伝達されるので、ターボ機械の外部から供給
される電流に応じて可動翼40の迎角が制御される。Here, when an electric current is supplied to the heater 30 from the outside through the wiring, the temperature of the shape memory alloy 10 changes in accordance with the electric current, causing the shape memory alloy 10 to deform. This amount of deformation is transmitted as a rotation angle to the rotating shaft 4d of the movable blade 40 via the deformation amount transmission mechanism 50, so the angle of attack of the movable blade 40 is controlled according to the current supplied from outside the turbomachine. .
(発明の効果)
斯かる構成と作用とに因り、可動翼を制御する単純で小
形の動翼機構が得られ小形のターボ機械でも可動翼形化
が可能になる効果が奏せられる。(Effects of the Invention) Due to such a configuration and operation, a simple and compact moving blade mechanism for controlling the movable blade can be obtained, and even a small turbomachine can have the effect of being able to have a movable blade shape.
第1図は本発明に係るターボ機械に於ける可動翼の動翼
機構の説明図、第2図は本発明に係るターボ機械の一実
施例に於ける可動翼の動翼機構の断面図である。
1.10・・・形状記憶合金、3.30・・・加熱器、
4.40・・・可動翼、5.50・・・変形量伝達機構
、60・・・ボス部。FIG. 1 is an explanatory diagram of a moving blade mechanism of a movable blade in a turbomachine according to the present invention, and FIG. 2 is a sectional view of a moving blade mechanism of a movable blade in an embodiment of a turbomachine according to the present invention. be. 1.10... Shape memory alloy, 3.30... Heater,
4.40... Movable blade, 5.50... Deformation amount transmission mechanism, 60... Boss portion.
Claims (1)
内に形状記憶合金と該形状記憶合金に熱を与える加熱器
と上記形状記憶合金の変形量を可動翼の回転軸に回転角
度として伝達する機構とを有してなることを特徴とする
ターボ機械。In a movable vane-shaped turbomachine, a shape memory alloy is provided in the boss portion that grips the movable vane, a heater that applies heat to the shape memory alloy, and the amount of deformation of the shape memory alloy is transmitted to the rotating shaft of the movable vane as a rotation angle. A turbomachine characterized by having a mechanism for.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59193396A JPS6172803A (en) | 1984-09-14 | 1984-09-14 | Turbomachine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59193396A JPS6172803A (en) | 1984-09-14 | 1984-09-14 | Turbomachine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6172803A true JPS6172803A (en) | 1986-04-14 |
Family
ID=16307246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59193396A Pending JPS6172803A (en) | 1984-09-14 | 1984-09-14 | Turbomachine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6172803A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2539095A (en) * | 2015-06-04 | 2016-12-07 | Rolls Royce Plc | An actuation arrangement |
-
1984
- 1984-09-14 JP JP59193396A patent/JPS6172803A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2539095A (en) * | 2015-06-04 | 2016-12-07 | Rolls Royce Plc | An actuation arrangement |
GB2539095B (en) * | 2015-06-04 | 2017-10-11 | Rolls Royce Plc | An actuation arrangement for effecting actuation of a pivotable vane in a gas turbine engine |
US10100663B2 (en) | 2015-06-04 | 2018-10-16 | Rolls-Royce Plc | Actuation arrangement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4556366A (en) | Propeller actuation system | |
SE7509005L (en) | WIND TURBINE | |
KR20070028426A (en) | Wind turbine rotor overhang | |
EP2198151A1 (en) | Multistage wind turbine with variable blade displacement | |
US20100254799A1 (en) | Wind energy device | |
US6892538B2 (en) | Apparatus for controlling exhaust attack angle for a variable turbine | |
MA34223B1 (en) | ROTOR OF WINDMILL AND WINDMILL | |
JPS62206294A (en) | Variable stator blade turbocompressor | |
JPS6172803A (en) | Turbomachine | |
US8444383B1 (en) | Wind turbine with internal ram air turbine | |
SE8900308D0 (en) | TURBINE DEVICE | |
SE8203721L (en) | CONTROL DEVICE FOR A WIND TURBINE BLADE | |
JPH07205897A (en) | Rotor with shroud | |
SU1502877A1 (en) | Wind motor rotor | |
US20230108395A1 (en) | Fast response rotor system | |
JP2003129938A (en) | Wind power generator | |
RU94011879A (en) | Method and device for control of resultant aerodynamic force of propeller | |
FR2405378A1 (en) | Vertical axis wind-driven machine - has pairs of arms with auxiliary starter vanes and main vanes shaped to offer more wind resistance when moving in one direction | |
JPS5888402A (en) | Turbine driven by shuttling air flow | |
JP2000145612A (en) | Vane opening/closing type windmill | |
ES8406336A1 (en) | Aircraft lift rotors | |
FR2432626A1 (en) | Windmill for electricity generation - has angle of blades controlled by centrifugal mechanism attached to rotor shaft | |
RU1776868C (en) | Wind motor blade | |
JPS6136104U (en) | Turbo gear with variable nozzle | |
CN119801653A (en) | Guide vane adjusting device and turbine |