JPS6172801A - Step of total flow turbine - Google Patents

Step of total flow turbine

Info

Publication number
JPS6172801A
JPS6172801A JP59195377A JP19537784A JPS6172801A JP S6172801 A JPS6172801 A JP S6172801A JP 59195377 A JP59195377 A JP 59195377A JP 19537784 A JP19537784 A JP 19537784A JP S6172801 A JPS6172801 A JP S6172801A
Authority
JP
Japan
Prior art keywords
flow
total flow
nozzle
rotor blade
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59195377A
Other languages
Japanese (ja)
Other versions
JPH0425403B2 (en
Inventor
Ryozo Nishioka
西岡 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59195377A priority Critical patent/JPS6172801A/en
Publication of JPS6172801A publication Critical patent/JPS6172801A/en
Priority to US07/045,700 priority patent/US4778335A/en
Publication of JPH0425403B2 publication Critical patent/JPH0425403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows

Abstract

PURPOSE:To enable highly efficient power conversion by forming a flow passage in such a manner that a two-phase flow running through moving blades does not turn within the flow passage together with forming a flow passage section into a divergent shape so that the flow can conduct expansion and acceleration in succession. CONSTITUTION:In a total flow turbine either hot water flow or a combined flow of hot water and steam is expanded and accelerated at total flow nozzle 1 and introduced into a space between moving blades 2 so that the flow does work, thereby obtaining rotative power. In this case, flat plate cascades are adopted as the moving blade profile so as to minimize the turning of the flow within the moving blades 2. Meanwhile, the section of the flow passage of the moving blades 2 is formed into a divergent shape. In addition, the total flow nozzle 1 and the moving blades 2 are arranged in such a manner that a velocity triangle formed by the flow velocity at the nozzle outlet and the blade inlet becomes nearly an isosceles triangle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は熱水または熱水と蒸気の混合流体を直接トー
タルフローノズルで膨脹さぜ、タービンの動翼に働かせ
て動力に変換するトータルフロータ−ビンに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a total floater in which hot water or a mixed fluid of hot water and steam is directly expanded in a total flow nozzle and applied to the rotor blades of a turbine to convert it into power. - Concerning bottles.

〔従来の技術〕[Conventional technology]

この種のトータルフロータ−ビンとして従来から衝動式
のタービンが一般に採用されてきている。
Impulse type turbines have been generally employed as this type of total flow turbine.

しかし今日に到るまで衝動式トータルフロータ−ビンで
高効率のものは今だ完成されていない。その理由はノズ
ルで膨脹した熱水が2相流となり、この2相流が衝動具
を通る間に高効率に転向させることに難があるからであ
る。− 一例として5気圧の飽和熱水を大気圧まで膨脹させた場
合、等エントロピー変化をするものと仮定すると、膨脹
後の熱水はその重量の5)1%が水によって占められ、
すなわち速度エネルギーの91%は水が保有しているの
に対し、その容積の99.4%は蒸気が占めている。し
たがって動翼内の流路は、この99.4%の容積を占め
る蒸気の流れを考慮して設計することになるが、水の密
度は蒸気の密度の1650倍もあるため、水滴は動翼の
中で小さな曲率半径で転向して流れる蒸気の流れと一緒
に流れることができず、直接動翼の腹側の面に衝突し動
翼の腹面でうすい層をなす粘性流となって流れ、動翼か
ら流れ去る。そして動翼を流れ出る蒸気と水との間に大
きな差異が生じ、動翼出口の両者の速度三角形は全く異
ったものになる。この関係を第7図に示す。
However, to date, a highly efficient impulse type total flow turbine has not yet been completed. The reason for this is that the hot water expanded in the nozzle becomes a two-phase flow, and it is difficult to convert this two-phase flow with high efficiency while passing through the impulse tool. - As an example, when saturated hot water at 5 atm is expanded to atmospheric pressure, assuming isentropic changes, 5) 1% of the weight of the hot water after expansion is occupied by water,
That is, 91% of the velocity energy is held by water, while 99.4% of the volume is occupied by steam. Therefore, the flow path inside the rotor blades must be designed taking into account the flow of steam, which occupies 99.4% of the volume, but since the density of water is 1650 times that of steam, water droplets do not flow into the rotor blades. It is not possible to flow together with the flowing steam by turning with a small radius of curvature within the rotor blade, and directly collides with the ventral surface of the rotor blade, forming a thin layer of viscous flow on the ventral surface of the rotor blade. Flows away from the moving blades. There is a large difference between the steam and water flowing out of the rotor blades, and the velocity triangles at the exit of the rotor blades are completely different. This relationship is shown in FIG.

図において実線は動翼内の蒸気の流れ、点線は水滴の流
れを示すものである。なお、1はトータルフローノズル
、2は衝動買である。以上の考察にもとづいてトータル
フロー衝動式タービンの段1   落動率を検討すると
衝動タービンとしての最適の速度比を選択した場合、−
試算例によると、蒸気の部分の周辺効率74%に対し、
その91%を占める水の部分の効率はその半分の38%
にしか達せず、したがってトータルフロータ−ビンとし
ての周辺効率は42%程度の極めて悪いレベルのものに
なる。
In the figure, solid lines indicate the flow of steam within the rotor blades, and dotted lines indicate the flow of water droplets. Note that 1 is a total flow nozzle and 2 is an impulse purchase. Considering the stage 1 fall rate of a total flow impulse turbine based on the above considerations, if the optimum speed ratio for an impulse turbine is selected, -
According to an example calculation, the peripheral efficiency of the steam part is 74%,
The efficiency of the water portion, which accounts for 91%, is half that, at 38%.
Therefore, the peripheral efficiency as a total flow turbine is at an extremely poor level of about 42%.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、トータルフローノズルそのものは適正な寸
法および形状を選定すれば90%以上の高い速度係数が
得られているから、この技術を巧に利用するとともに動
翼列の改良をはかり衝動式トータルフロータ−ビンの有
する上記問題点を克服し高効率のタービン段落を得るこ
とを発明の課題とするものである。衝動式トータルフロ
ータ−ビンの問題点は上述のように水と蒸気の二相流を
動翼の中で大きく転向させることにあるから、本発明に
おいてはトータルフロータ−ビンの動翼内の流路を流れ
る二相流に極方向りが生じないように動翼内の流路を改
良して水滴の動翼プロフィルへの衝突を防ぎ、損失の少
ない、高効率の動力の変換を可能ならしめようとするも
のである。
Since the total flow nozzle itself can achieve a high velocity coefficient of 90% or more if the appropriate dimensions and shape are selected, this invention skillfully utilizes this technology and improves the rotor blade row to create an impulse type total flow nozzle. It is an object of the invention to overcome the above-mentioned problems of float turbines and to obtain a highly efficient turbine stage. The problem with impulse type total flow turbines is that, as mentioned above, the two-phase flow of water and steam is largely diverted within the rotor blades. The aim is to improve the flow paths within the rotor blades so that the two-phase flow that flows through the rotor blades does not become polar-oriented, thereby preventing water droplets from colliding with the rotor blade profile, and enabling highly efficient power conversion with less loss. That is.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上記課題を達成するために、タービンの駆動
流体としての熱水または熱水と蒸気との混合流体を膨脹
・増速するトータルフローノズルと、このノズルによっ
て加速された駆動流体を受入れる動翼列とからなり、動
翼内の流路な流れる駆動流体がこの流路内で極力転向し
ないように流路が形成さn、かつ連続して膨脹・増速が
行なえるように流路断面か末拡がりとなっているトータ
ルフロータ−ビンの段を提供するものである。なお、動
翼のプロフィル断面を平板翼列の形状としこの動翼内の
流路断面の末拡がりを翼長な増大させることにより形成
してもよく、さらに70ないし90%の臂い反動度を有
し、ノズル出口と動翼入口における速度三角形がほぼ二
等辺三角形の形状を有するようにするとさらによい。
In order to achieve the above object, the present invention provides a total flow nozzle that expands and speeds up hot water or a mixed fluid of hot water and steam as a driving fluid of a turbine, and a total flow nozzle that expands and accelerates hot water or a mixed fluid of hot water and steam as a driving fluid of a turbine, and a total flow nozzle that receives the driving fluid accelerated by this nozzle. The flow path is formed so that the driving fluid flowing in the rotor blade does not turn as much as possible within this flow path, and the cross section of the flow path is designed to allow continuous expansion and speed increase. The stage of the total flow turbine is provided with a widening end. Note that the profile cross section of the rotor blade may be formed in the shape of a flat plate blade row, and the end spread of the flow passage cross section within the rotor blade may be increased by the blade length, and further, the degree of recoil at the elbow can be reduced by 70 to 90%. It is further preferable that the velocity triangle at the nozzle outlet and the rotor blade inlet have a substantially isosceles triangular shape.

〔作用〕[Effect]

上記構成になるこの発明においては、動翼内の流路を流
れる二相流に曲がりがほとんど生じないので、水滴が+
mカプロフィルに衝突することもなく、シたがってその
作用としてトータルフロータ−ビンの段における損失が
減少し、高効率の動力変換可能なトータルフロータ−ビ
ンの段を得ることができる。
In this invention having the above configuration, there is almost no bending in the two-phase flow flowing through the flow path in the rotor blade, so water droplets are
Since there is no collision with the m-car profile, the loss in the total flow turbine stage is reduced as a result of this, and it is possible to obtain a total flow turbine stage capable of highly efficient power conversion.

〔実施例〕〔Example〕

次にこの発明によるトータルフロータ−ビンの段の実施
例を示す@1図ないし第2図によってこの発明の詳細な
説明する。まず槙2図に実線で示すトータルフローノズ
ルにおいて、熱水は末拡がりのノズル内を通って膨脹し
速度C′、角度α′でノズルから流出する。このノズル
YI−Iの面で軸方向(Z−Z軸の方向)に分割しI−
Iと■−■の而の間の部分のノズルのプロフィル部分を
Z−Z軸に対して鏡面対称的に破線のように配置転換し
て動翼プロフィルを形成させこれを周速Uで回転させた
とする。I−断面におけるノズル出口の熱水の速度をC
1、出口角α1(α1生α′)と動翼入口の相対速度W
1、相対人口角β1との間に、CI =+ V1’1、
α1=π−β1の関係が成立するように、すなわち動翼
入口の速度三角形がほぼ二等辺三角形になるように周速
Uを選択すると、熱水は動翼の中をノズルから通してあ
たかも一本のトータルフローノズルを流れるかの如く膨
脹して速度W2 (w2ミC′)、角度β2(β2ごπ
−β1ミα1ごα′)で動翼から流出することになる。
Next, the present invention will be explained in detail with reference to Figures 1 and 2 showing embodiments of stages of a total flow turbine according to the present invention. First, in the total flow nozzle shown by the solid line in Fig. 2, hot water passes through the diverging nozzle, expands, and flows out from the nozzle at a speed C' and at an angle α'. This nozzle YI-I is divided in the axial direction (Z-Z axis direction) and I-
The profile portion of the nozzle between I and Suppose that The velocity of hot water at the nozzle outlet in the I-section is C
1. Exit angle α1 (α1 raw α') and relative speed W at the rotor blade inlet
1, between relative population angle β1, CI = + V1'1,
If the circumferential speed U is selected so that the relationship α1 = π - β1 holds, that is, the velocity triangle at the inlet of the rotor blade is approximately an isosceles triangle, the hot water passes through the rotor blade from the nozzle as if it were all in one line. It expands as if flowing through the total flow nozzle of a book, and the velocity W2 (w2miC') and the angle β2 (β2 π
−β1miα1goα′) will flow out from the rotor blade.

この場合動翼内での転向角Δβ=π−(β1+β2)苫
0となっている。すなわち熱水はノズルと動翼の中をあ
たかも一本のストレートなトータルフローノズルを流れ
るかの如く損失を少なくして膨脹・増速を果し得ること
がで會る。第1図にこの考えにもとづいて形成されたト
ータルフロータ−ビンの段を示す。図において1はトー
タルフローノズル、2は@翼である。
In this case, the turning angle within the rotor blade is Δβ=π−(β1+β2)=0. In other words, the hot water meets the nozzle and the rotor blade as if it were flowing through a single straight total flow nozzle, allowing it to expand and increase speed with less loss. FIG. 1 shows the stages of a total flow turbine constructed based on this idea. In the figure, 1 is a total flow nozzle, and 2 is an @ wing.

なお、第3図および第4図に、動翼の中での流れの転向
が生じない(すなわちΔβ=π−(β1+β2)=0)
トータルフロータ−ビン段の周辺効率ηnと反動度δ、
速度比ξ′j、【らびにΔ=α1−β2の関係を示す。
Furthermore, in Figures 3 and 4, there is no turning of the flow within the rotor blade (i.e. Δβ = π - (β1 + β2) = 0).
The peripheral efficiency ηn and the recoil degree δ of the total floater bin stage,
The relationship between speed ratio ξ′j, [and Δ=α1−β2] is shown.

この例ではα1=15°、速度係数ψCノズル)=ψ(
動翼)=0.9が仮定されている。第3図から周辺効率
の最高値は反動度0.7〜0.9の高反動度の範囲、速
度比ξ(=C0/)が1.0〜1.5の範囲において得
られることがわかる。
In this example, α1 = 15°, velocity coefficient ψC nozzle) = ψ(
moving blade)=0.9 is assumed. From Figure 3, it can be seen that the highest value of peripheral efficiency is obtained in the high recoil range of 0.7 to 0.9 and in the speed ratio ξ (=C0/) range of 1.0 to 1.5. .

また、角度差Δ=α1−β2はこの場合はぼ0に近づく
。これは動翼入口の速度三角形がほぼ二等−タルフロー
タービンの段の異なる実施例を示す。
Further, the angular difference Δ=α1−β2 approaches 0 in this case. This shows a different embodiment of a stage of a Tarflo turbine where the velocity triangle at the rotor blade inlet is approximately equatorial.

第5図はその平均直径上のプロフィルの断面、第6図は
その軸方向の断面をそれぞれ示すものであり、図におい
て1はトータルフローノズル、2は  。
FIG. 5 shows a cross section of the profile on its average diameter, and FIG. 6 shows a cross section in the axial direction. In the figure, 1 is a total flow nozzle, and 2 is a total flow nozzle.

動翼、3はノズルホルダー、4はロータ、5トロはそれ
ぞれラビ11ンスシール部である。この例では動翼プロ
フィルに平板翼列を採用して動翼内の流れの転向を最小
にしている。この例においても熱水は1本のトータルフ
ローノズルを通って膨脹するが如く、ノズルと動翼を通
って流れるが動翼流路の流路面積の拡がりは第6図に示
すように動翼の入口から出口への高さの増大によって形
成している。ノズル出口(動翼入口)の速度三角形は本
発明によりα1ミπ−β1ミβ2となりしたがってCI
 = Wlとなりほぼ二等辺三角形をしている。このタ
ービン段落は高反動度を有する故、動翼の前後には圧力
差が生じ、したがって軸方向のスラスト力がロータに働
くことになるが、これはスラスト軸受の容量の増大、バ
ランスピストンの設置あるいは2流式対向流とする既知
の方法によって解決できる。
3 is a nozzle holder, 4 is a rotor, and 5 is a labyrinth seal. In this example, the rotor blade profile employs a flat plate cascade to minimize flow diversion within the rotor blade. In this example as well, hot water expands through one total flow nozzle and flows through the nozzle and rotor blades, but the flow area of the rotor blade flow path is expanded as shown in Figure 6. is formed by an increase in height from the inlet to the outlet. According to the present invention, the velocity triangle at the nozzle exit (rotor blade inlet) becomes α1 mi π-β1 mi β2, and therefore CI
= Wl, making it almost an isosceles triangle. Since this turbine stage has a high degree of reaction, a pressure difference is created before and after the rotor blades, and an axial thrust force acts on the rotor. Alternatively, the problem can be solved by a known method of two-flow counterflow.

以上の説明では、水と水蒸気の二相流を例にとって説明
したが、段落差の大きい場合に多段構造に適用すること
あるいは水蒸気以外のフレオン。
In the above explanation, the two-phase flow of water and steam was used as an example, but it can also be applied to a multi-stage structure when the step difference is large, or to Freon other than water vapor.

アンモニアその他の媒体を使ったトータルフロータ−ビ
ンにももちろん適用可能である。
Of course, it is also applicable to total flow turbines using ammonia or other media.

〔発明の効果〕〔Effect of the invention〕

この発明によるトータルフロータ−ビンの段ハ動翼内の
流路を流れる二相流がこの流路内で転向しないように流
路が形成され、かつ膨脹と増速を引き続き行なえるよう
に流路断面が末拡がりになっているので、流路を流れる
二相流に曲りが生じることなり、シたがって水滴が動翼
プロフィルに衝突して損失となることを防ぎ高効峯で動
力変換が可能になる。
The flow path is formed so that the two-phase flow flowing through the flow path in the stage rotor blade of the total flow turbine according to the present invention is not diverted within this flow path, and the flow path is configured so that expansion and speed increase can continue. Since the cross section is tapered, the two-phase flow flowing through the flow path is curved, which prevents water droplets from colliding with the rotor blade profile and causing loss, allowing for highly efficient power conversion. become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明によるトータルフロータ
−ビンの段の一実施例を示すもので第1図はその平均直
径上の断面図、第2図はその説明用の図面、第3図およ
び第4図はトータルフロータ−ビン段の周辺効率と反動
度、速度比の関係を示す図面、およびΔ=α1−βlと
速度比の関係を示す図面、第5図および第6図はこの発
明の異なる実施例を示すもので第5図はその平均直径上
のプロフィルの断面、第6図はその軸方向の断面、第7
図はトータルフロータ−ビンの段の従来例を示すもので
ある。 1・・・トータルフローノズル、2・・・動翼。 オl=閃 ! トータルフローノス゛lし 2)徨T動翼 Ct  )ス゛ルムロ傅J爽 ガt fih翼入跣卯りを訣 区勧sP!i1遼
1 and 2 show an embodiment of a stage of a total flow turbine according to the present invention. FIG. 1 is a cross-sectional view of the stage on its average diameter, FIG. 2 is an explanatory drawing, and FIG. FIG. 4 is a drawing showing the relationship between the peripheral efficiency, recoil degree, and speed ratio of the total flow turbine stage, and a drawing showing the relationship between Δ=α1−βl and the speed ratio, and FIGS. 5 and 6 are views of the present invention. Fig. 5 shows a cross section of the profile on the average diameter, Fig. 6 shows a cross section in the axial direction, and Fig. 7 shows different embodiments of the profile.
The figure shows a conventional example of stages of a total flow turbine. 1... Total flow nozzle, 2... Moving blade. Or = Flash! Total Flow Nose 2) Swallow T moving blade Ct) Sumuro 2 J Soga t fih wing entry kneeling sP! i1 Liao

Claims (1)

【特許請求の範囲】 1)タービンの駆動流体としての熱水または熱水と蒸気
との混合流体を膨脹・増速するトータルフローノズルと
、該ノズルによって加速された駆動流体を受入れる動翼
列とからなり、動翼内の流路を流れる前記駆動流体が該
流路内で極力転向しないように該流路が形成され、かつ
連続して膨脹・増速が行なえるように流路断面が末広が
りとなっていることを特徴とするトータルフロータービ
ンの段。 2)特許請求の範囲第1項記載のトータルフロータービ
ンの段において、動翼のプロフィル断面を平板翼列の形
状とし、該動翼内における流路断面の末拡がりを翼長の
増大によって形成することを特徴とするトータルフロー
タービンの段。 3)特許請求の範囲第1項または第2項に記載のトータ
ルフロータービンの段において、70ないし90%の高
い反動度を有し、トータルフローノズル出口と動翼入口
における速度三角形がほぼ二等辺三角形の形状を有する
ことを特徴とするトータルフロータービンの段。
[Scope of Claims] 1) A total flow nozzle that expands and increases the speed of hot water or a mixed fluid of hot water and steam as a driving fluid of a turbine, and a rotor blade row that receives the driving fluid accelerated by the nozzle. The flow path is formed so that the driving fluid flowing through the flow path in the rotor blade is not diverted as much as possible within the flow path, and the cross section of the flow path widens at the end so that continuous expansion and speed increase can be performed. A total flow turbine stage characterized by: 2) In the stage of the total flow turbine according to claim 1, the profile cross section of the rotor blade is shaped like a flat plate blade row, and the end widening of the flow passage cross section within the rotor blade is formed by increasing the blade length. A total flow turbine stage characterized by: 3) The stage of the total flow turbine according to claim 1 or 2 has a high degree of reaction of 70 to 90%, and the velocity triangle at the total flow nozzle outlet and the rotor blade inlet is approximately isosceles. A stage of a total flow turbine, characterized in that it has a triangular shape.
JP59195377A 1984-09-18 1984-09-18 Step of total flow turbine Granted JPS6172801A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59195377A JPS6172801A (en) 1984-09-18 1984-09-18 Step of total flow turbine
US07/045,700 US4778335A (en) 1984-09-18 1987-04-29 Total flow turbine stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195377A JPS6172801A (en) 1984-09-18 1984-09-18 Step of total flow turbine

Publications (2)

Publication Number Publication Date
JPS6172801A true JPS6172801A (en) 1986-04-14
JPH0425403B2 JPH0425403B2 (en) 1992-04-30

Family

ID=16340152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195377A Granted JPS6172801A (en) 1984-09-18 1984-09-18 Step of total flow turbine

Country Status (2)

Country Link
US (1) US4778335A (en)
JP (1) JPS6172801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029830A (en) * 2018-08-24 2020-02-27 三菱重工サーマルシステムズ株式会社 Two-phase flow turbine nozzle, two-phase flow turbine including two-phase flow turbine nozzle, and refrigeration cycle including two-phase flow turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59808832D1 (en) * 1998-09-29 2003-07-31 Alstom Switzerland Ltd Highly loaded turbine blading

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE563691C (en) * 1932-11-08 Rudolf Loewenstein Dipl Ing Gap seal for steam turbines
US767689A (en) * 1903-06-13 1904-08-16 Per Johan Hedlund Steam-turbine.
GB190809367A (en) * 1907-05-06 1909-04-30 Arnold Kienast Improvements in Turbines.
GB190909889A (en) * 1909-04-26 1910-03-03 Thomas William Cowan Device for use with Gas Lamps having Depending, or Inverted, Mantles.
US1042147A (en) * 1911-03-29 1912-10-22 Gen Electric Elastic-fluid turbine.
US1771023A (en) * 1924-12-03 1930-07-22 Westinghouse Electric & Mfg Co Turbine blade and method of producing same
BE334235A (en) * 1925-05-27 1926-05-21
US2378372A (en) * 1937-12-15 1945-06-12 Whittle Frank Turbine and compressor
US2410259A (en) * 1941-12-13 1946-10-29 Fed Reserve Bank Elastic fluid mechanism
DE1426847A1 (en) * 1965-06-08 1969-10-16 Reinhardt Berta Compressed air constant pressure turbine
US3475108A (en) * 1968-02-14 1969-10-28 Siemens Ag Blade structure for turbines
CH557468A (en) * 1973-04-30 1974-12-31 Bbc Brown Boveri & Cie TURBINE OF AXIAL DESIGN.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029830A (en) * 2018-08-24 2020-02-27 三菱重工サーマルシステムズ株式会社 Two-phase flow turbine nozzle, two-phase flow turbine including two-phase flow turbine nozzle, and refrigeration cycle including two-phase flow turbine
WO2020039925A1 (en) * 2018-08-24 2020-02-27 三菱重工サーマルシステムズ株式会社 Two-phase flow turbine nozzle, two-phase flow turbine provided with two-phase flow turbine nozzle, and refrigeration cycle provided with two-phase flow turbine

Also Published As

Publication number Publication date
US4778335A (en) 1988-10-18
JPH0425403B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
US4565490A (en) Integrated gas/steam nozzle
US5323661A (en) Laminar flow elbow system and method
US3464357A (en) Reversible hydraulic apparatus
US8257036B2 (en) Externally mounted vortex generators for flow duct passage
US7497666B2 (en) Pressure exchange ejector
CN100385190C (en) Cyclonic fluid separator with vortex generator in inlet section
US4835958A (en) Process for directing a combustion gas stream onto rotatable blades of a gas turbine
US5236349A (en) Two-phase reaction turbine
US4543781A (en) Annular combustor for gas turbine
CN108533332B (en) Turbine nozzle and radial turbine provided with turbine nozzle
US4545197A (en) Process for directing a combustion gas stream onto rotatable blades of a gas turbine
JP2002339703A (en) Turbine moving blade
US4102600A (en) Moving blade ring of high circumferential speed for thermal axially passed through turbines
US4638628A (en) Process for directing a combustion gas stream onto rotatable blades of a gas turbine
JPS6172801A (en) Step of total flow turbine
JPS5944482B2 (en) axial turbine
JP6866187B2 (en) Turbine nozzle and radial turbine equipped with it
JP2002256810A (en) Axial flow turbines
CN213980891U (en) Central body, exhaust diffuser, gas turbine and combined cycle power plant
JP6867189B2 (en) Turbine nozzle and radial turbine equipped with it
JP2001221006A (en) Steam turbine nozzle and steam turbine using thereof
US1803220A (en) Water turbine
WO2021124205A1 (en) A process of enhancing the pressure ratio using base integrated symmetric or asymmetric double cones
Gegg Aerodynamic design of a wave rotor to high pressure turbine transition duct
JPH11173104A (en) Turbine rotor blade

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term