JPS617273A - Production of perfluoro-1,2-ethanesultone - Google Patents

Production of perfluoro-1,2-ethanesultone

Info

Publication number
JPS617273A
JPS617273A JP12736084A JP12736084A JPS617273A JP S617273 A JPS617273 A JP S617273A JP 12736084 A JP12736084 A JP 12736084A JP 12736084 A JP12736084 A JP 12736084A JP S617273 A JPS617273 A JP S617273A
Authority
JP
Japan
Prior art keywords
reaction
sultone
gas
ratio
diluent gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12736084A
Other languages
Japanese (ja)
Inventor
Ryohei Aihara
相原 良平
Junji Endo
遠藤 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12736084A priority Critical patent/JPS617273A/en
Publication of JPS617273A publication Critical patent/JPS617273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To carry out the reaction of tetrafluoroethylene with sulfur trioxide for the production of the titled substance, preventing the explosion hazard, by diluting the reaction system with a diluent gas at a specific dilution ratio. CONSTITUTION:The compound of formula (sultone) is produced by the reaction of CF2=CF2 with SO3. The reaction is carried out by diluting the reaction system with a diluent gas at a volume ratio Z of the gaseous phase of <0.6 and keeping the ratio X of SO3 in the gaseous phase (SO3+sultone+diluent gas) to <=Y (=0.16+0.067Z). The diluent gas is tetrafluoroethylene used as a reaction material or an inert gas (preferably N2 gas). The ratio X of SO3 can be maintained to <=Y by introducing SO3 and CF2=CF2 into the reaction system containing the objective sultone. USE:Synthetic raw material or synthetic intermediate for various functional fluorine compounds.

Description

【発明の詳細な説明】 [産業上の利用分野] 一エタンスルトンの製造方法に関し、更に詳しく言えば
、テトラフルオロエチレン(CF2 =CF2 )と三
酸化硫黄(SO3)の特定の反応方法により、爆発範囲
を回避して工業的に安全確実な操業を可能にしたパーフ
ルオロ−1,2−エタンスルトンの新規な製造方法に関
する。
Detailed Description of the Invention [Industrial Field of Application] Concerning the method for producing monoethane sultone, more specifically, a specific reaction method of tetrafluoroethylene (CF2 = CF2) and sulfur trioxide (SO3) is used to reduce the explosive range. The present invention relates to a new method for producing perfluoro-1,2-ethane sultone that avoids the above problems and enables industrially safe and reliable operation.

[従来の技術] パーフルオロ−1,2−二タンスルトン(以下、弔にス
ルトンと略記することがある)は、トリエチルアミンの
如き塩基の存在下に容易目一つ定量的に二官能性化合物
であるFOC−CF2−9O2Fに転位し得るもので、
各種官能性フッ素化合物の合成原料あるいは合成中間体
として有用であることが知られている。例えば、米国特
許第2852554号明細書などを参照。かかるヌルト
ンはCF2’4;F2とS03の反応により良好な収率
で製造され得ることも古くから知られている。
[Prior Art] Perfluoro-1,2-nitane sultone (hereinafter sometimes abbreviated as sultone) is a difunctional compound that can be easily and quantitatively analyzed in the presence of a base such as triethylamine. It can be rearranged to FOC-CF2-9O2F,
It is known to be useful as a synthetic raw material or synthetic intermediate for various functional fluorine compounds. See, eg, US Pat. No. 2,852,554. It has also been known for a long time that such nulltons can be produced in good yields by the reaction of CF2'4;F2 and S03.

上記米国特許第2852554号明細書や米国特許第3
16311t56号明細書などを参照。
The above-mentioned U.S. Patent No. 2,852,554 and U.S. Patent No. 3
See the specification of No. 16311t56, etc.

CF2=CF2とS03の反応によるスルトンの製造方
法においては、通常は蒸留したばかりの無水のS03を
耐圧反応器に仕込み、ここにCF、=GF2を加圧下に
連続的に導入して、反応系の温度を80’C!以下に保
持しつつ(発熱反応であるから冷却しながら)、反応せ
しめるという操作が一般的に採用されている。かかる従
来の反応操作においては、CF2=CF2の吸収が止ま
るまで反応を続けることにより、はぼ定量的に目的とす
るスルトンが得られる。
In the method for producing sultone by the reaction of CF2 = CF2 and S03, freshly distilled anhydrous S03 is usually charged into a pressure-resistant reactor, and CF, = GF2 are continuously introduced therein under pressure to start the reaction system. The temperature is 80'C! Generally, an operation is adopted in which the reaction is allowed to occur while maintaining the temperature below (cooling as it is an exothermic reaction). In such conventional reaction operations, the desired sultone can be obtained almost quantitatively by continuing the reaction until absorption of CF2=CF2 stops.

[発明の解決しようとする問題点] −1二記の如きCF2=CF2とS03の反応によるス
ルトンの製造方法において、かって猛烈な爆発が発生し
たという報告がある。この報告においては、原料のS0
3と生成物のスルトンとの混合物が不安定であり、広範
囲の混合比にわたって、特にl:lの混合比のときに爆
発し易く、着火源の存在あるいは過熱を避けなければな
らない、ということが指摘されている。
[Problems to be Solved by the Invention] There is a report that a violent explosion once occurred in the method for producing sultone by the reaction of CF2=CF2 and S03 as described in -1-2. In this report, the raw material S0
3 and the product sultone are unstable and prone to explosion over a wide range of mixing ratios, especially at l:l mixing ratios, and the presence of ignition sources or overheating must be avoided. has been pointed out.

原料のSO3と生成物のスルトンとの混合物が特にl:
1の混合比のときに爆発し易いということは、工業的な
実施に当って、次のような重大な問題点を招来する。す
なわち、反応の進行によりスルトンが生成する過程で、
S03 とスルトンの混合比が上記爆発範囲に入ってし
まい、爆発の危険を伴なう。着火源の存在や過熱を回避
可能な反応装置の採用も考えられるが、反応過程で必ず
爆発範囲を通過するということは、万一の危険という点
で工業的実施に対し不利とな゛る。
The mixture of raw material SO3 and product sultone is especially l:
The fact that it is easy to explode when the mixture ratio is 1 leads to the following serious problems in industrial implementation. In other words, in the process of producing sultone as the reaction progresses,
The mixing ratio of S03 and sultone falls within the above-mentioned explosive range, resulting in the danger of explosion. Although it is possible to adopt a reaction device that can avoid the presence of ignition sources and overheating, the fact that the reaction process always passes through the explosion range is disadvantageous for industrial implementation due to the danger of unexpected accidents. .

c問題を解決するための手段1 本発明は、前記の問題点を解決すべくなされたものであ
り、 CF2=CF2とS03の反応によりトンを製造
する方法において、上記反応をテトラフルオロエチレン
及び不活性ガスからなる群から選ばれる少なくとも一種
の希釈ガスにより希釈しあるいは希釈せずに行なわしめ
ることからなり、希釈ガスによる上記反応系の気相部分
の希釈比率Zを0.6未満とし、上記反応系の気相部分
におけるS03の割合XをY以下に保持して、上記CF
2=CF2とSO3の反応を行なわしめることを特徴と
するパーフルオロ−1,2−エタンスルトンの製造方法
を新規に提供するものである。ただし、上記において、 であり、Yは0.16+0.0872である。
Means for Solving Problem 1 The present invention has been made to solve the above-mentioned problem, and in a method for producing tons by the reaction of CF2=CF2 and S03, the above reaction is carried out using tetrafluoroethylene and non-fluoroethylene. The reaction is carried out with or without dilution with at least one kind of diluent gas selected from the group consisting of active gases, and the dilution ratio Z of the gas phase portion of the reaction system by the diluent gas is less than 0.6, and the reaction is carried out with or without dilution. By keeping the proportion X of S03 in the gas phase part of the system below Y,
The present invention provides a new method for producing perfluoro-1,2-ethane sultone, which is characterized by carrying out a reaction between 2=CF2 and SO3. However, in the above, and Y is 0.16+0.0872.

本発明は、次の事実の発見に基いて完成されたものであ
る。すなわち、S03とスルトンとは、その沸点が前者
46℃、後者42℃と近接しており、反応系での液相部
分と気相部分におけるS03とスルトンの組成比が近接
していること、及び気相部分での!発が生起し易いこと
、従って反応系の気相部分における爆発を防止すれば、
全反応系の爆発が有効に防止できることである。
The present invention was completed based on the discovery of the following fact. That is, the boiling points of S03 and sultone are close to each other, 46°C for the former and 42°C for the latter, and the composition ratios of S03 and sultone in the liquid phase part and the gaseous phase part of the reaction system are close to each other. In the gas phase part! Therefore, if explosion in the gas phase of the reaction system is prevented,
Explosion of the entire reaction system can be effectively prevented.

而して、本発明者の研究によれば、反応系を適当な希釈
ガスで特定値以上に希釈する場合には、仮に着火源の存
在や過熱が回避されない場合でも、S03とスルトンの
全混合比にわたって爆発を生起しないのであるが、希釈
しない場合や希釈比率が特定値未満の場合には、反応系
の気相部分におけるS03の割合を特定値以下に保持す
ることにより、爆発を有効に防止することができるとい
う事実を見出したものである。
According to the research of the present inventor, when diluting the reaction system to a certain value or more with an appropriate diluent gas, even if the presence of an ignition source or overheating is not avoided, all of S03 and sultone are Although no explosion occurs at all mixing ratios, if no dilution or dilution ratio is less than a specific value, the explosion can be effectively prevented by keeping the proportion of S03 in the gas phase of the reaction system below a specific value. We have discovered that this can be prevented.

本発明においては、 CF2 =CF、とS03の反応
は、特定の希釈ガスにより希釈しあるいは希釈せずに実
施される。希釈ガスとしては、本発明における反応原料
であるテトラフルオロエチレン及び本発明における反応
原料や生成物に対して不活性な不活性ガスが採用され得
る。本発明において採用可能な不活性ガスとしては、窒
素ガス、炭耐ガス、アルゴンガス、ヘリウムガスなどが
例示され得るが、工業的実施においては窒素ガスが好適
に採用され得る。本発明における反応系の希釈比率Zは
、反応系の気相部分に存在するスルI・ン、S03及び
希釈ガスの総量基準の希釈ガスの容量比、すなわち 満である。
In the present invention, the reaction between CF2 = CF and S03 is carried out with or without dilution with a specific diluent gas. As the diluent gas, an inert gas that is inert to tetrafluoroethylene, which is a reaction raw material in the present invention, and the reaction raw materials and products in the present invention may be employed. Examples of the inert gas that can be employed in the present invention include nitrogen gas, carbon gas, argon gas, and helium gas, but nitrogen gas can be preferably employed in industrial implementation. The dilution ratio Z of the reaction system in the present invention is the volume ratio of the diluent gas based on the total amount of SulfI, S03, and diluent gas present in the gas phase portion of the reaction system, that is, it is full.

本発明においては、反応系の気相部分におけるスルトン
、S03及び希釈ガスの総量基準のS03の割合X、す
なわち に示す特定値Y以下に保持して、CF2=CF2とS0
3の反応を行なわしめることが重要である。特定値Yは
、上記の希釈比率Zに対応して、0.18+ ’0.0
872で表わされる。例えば、希釈せずに反応を実施す
る際には、特定値Yは0.16となり、S03の割合X
を0.16以下から選定し、また希釈比率Zを0.5に
して反応を実施する際には、特定値Yは約0.19とな
り、S03の割合Xを約0.18以下から選定するなど
である。
In the present invention, the ratio X of S03 based on the total amount of sultone, S03, and diluent gas in the gas phase portion of the reaction system is maintained at a specific value Y or less shown in CF2=CF2 and S0
It is important to carry out reaction 3. The specific value Y is 0.18+'0.0, corresponding to the above dilution ratio Z.
872. For example, when carrying out the reaction without dilution, the specific value Y is 0.16, and the proportion of S03
When carrying out the reaction with a dilution ratio Z of 0.16 or less and a dilution ratio Z of 0.5, the specific value Y will be approximately 0.19, and the proportion X of S03 will be selected from a value of approximately 0.18 or less. etc.

本発明においては、」二記の構成が満足される限り、そ
の他の反応条件、操作などは、従来より公知乃至周知の
条件などが広範囲にわたって適宜採用可能である。例え
ば、反応温度は通常25〜80°C程度が好ましく採用
され、反応圧力は通常0〜3kg/’cvdG程度が好
ましく採用され得る。また、 CF2 =CF2とS0
3の反応モル比も特に限定されずに広範囲にわたって採
用可能であり、例えば目的物であるスルトンに対するS
03の比率が−(二記特定値の範囲内になるように、所
定比率でスルトンとS03を仕込んである反応器内にC
F2=CF2を連続的に導入したり、あるいはスルトン
を予め仕込んである反応器内に0F2=CF2とS03
を適当な仕込速度で連続的に導入したりすることができ
る。
In the present invention, as long as the configuration described in item 2 is satisfied, a wide range of conventionally known or well-known conditions can be appropriately adopted as other reaction conditions and operations. For example, the reaction temperature is usually preferably about 25 to 80°C, and the reaction pressure is usually about 0 to 3 kg/'cvdG. Also, CF2 = CF2 and S0
The reaction molar ratio of 3 is not particularly limited and can be adopted over a wide range, for example, the reaction molar ratio of S to the target product sultone
C in a reactor in which sultone and S03 are charged at a predetermined ratio so that the ratio of 03 is within the range of the specified value specified in
0F2=CF2 and S03 are introduced into a reactor in which F2=CF2 is continuously introduced or sultone is charged in advance.
can be introduced continuously at an appropriate feeding speed.

CF2 =CF2とS03の反応は、高い反応速度で且
つほぼ定量的に進行するが、発熱反応であるから、反応
系内の温度の急激な上昇を抑制すべく、通常は冷却下に
行なうのが望ましい。また、反応系内への水分の混入は
、望ましくない副反応の生起の原因ともなるので、避け
ることが望ましい。本発明における反応は、特に触媒や
反応媒体の使用を必要としないが、必要に応じて適宜不
活性媒体などを使用しても差支えない。
The reaction between CF2 = CF2 and S03 proceeds at a high reaction rate and almost quantitatively, but since it is an exothermic reaction, it is usually carried out under cooling in order to suppress the rapid rise in temperature within the reaction system. desirable. Furthermore, it is desirable to avoid the introduction of water into the reaction system, as this may cause undesirable side reactions. The reaction in the present invention does not particularly require the use of a catalyst or reaction medium, but an inert medium may be used as appropriate, if necessary.

本発明にお□いては、反応系におけるS03の比率を特
定値以下に保持して、OF、=CF2と903の反応を
実施することにより、有効に爆発を回避し得るのである
が、通常の反応操作では、予め反応系に目的物であるス
ルトンを存在させ、ここにS03とCF2=CF2を導
入するのが好適である。かくして、S03の導入速度を
コントロールすることで、反応を常に503の存在比率
が特定値以下で実施することが可能となる。かかる反応
操作は、当然のことながらバッチ方式でも実施可能であ
るが、連続プロセスとしても容易に実施できる。例えば
、気泡塔形式の反応器に予めスルトンを充填し、かかる
反応器下部からCF2=CF2とS03を連続的に導入
して、反応器−L部へ移動させつつ反応せしめ、反応器
上部から残存S03のほとんどOのスルトンを連続的に
抜き出す、というよう゛な連続プロセスが可能である。
In the present invention, explosion can be effectively avoided by maintaining the ratio of S03 in the reaction system below a specific value and carrying out the reaction between OF, = CF2 and 903. In the reaction operation, it is preferable to make the target substance sultone exist in the reaction system in advance, and to introduce S03 and CF2=CF2 therein. Thus, by controlling the rate of introduction of S03, it is possible to always carry out the reaction with the abundance ratio of 503 below a specific value. Such a reaction operation can naturally be carried out in a batch manner, but it can also be easily carried out as a continuous process. For example, a bubble column type reactor is filled with sultone in advance, CF2 = CF2 and S03 are continuously introduced from the bottom of the reactor and reacted while being moved to the L section of the reactor, and the remaining sultone is introduced from the top of the reactor. A continuous process is possible in which the mostly O sultone of S03 is continuously extracted.

[実施例] 次に、未発′明の実施例について更に具体的に説明する
が、かかる説明によって本発明が何ら限定されるもので
ないことは勿論である。
[Example] Next, an uninvented example will be explained in more detail, but it goes without saying that the present invention is not limited to this explanation in any way.

1産I」υ+支爽瀞ユ 内径120iI1mφ、高ざ100+amの耐熱ガラス
(商品名“パイレックス“′)製円筒容器(肉厚5mm
)の1−下をポリプロピレン製の厚板(厚さ10■)で
はさんだ、密閉槽型爆発限界測定装置を組立てた。上部
の厚板には径90mmφの孔が穿たれており、鎖孔はポ
リプロピレン酸の可動板で塞がれている。槽内には、ガ
スの均一混合をはかるための撹拌機、温度計及び着火源
を与えるための電極二本が装着されている。
Cylindrical container (wall thickness: 5 mm) made of heat-resistant glass (product name: "Pyrex") with an inner diameter of 120 iI 1 mφ and a height of 100 + am
) A sealed tank explosion limit measuring device was assembled in which the lower part of the tank was sandwiched between polypropylene thick plates (10 cm thick). A hole with a diameter of 90 mm is bored in the upper thick plate, and the chain hole is closed with a movable plate made of polypropylene acid. A stirrer for uniform gas mixing, a thermometer, and two electrodes for providing an ignition source are installed inside the tank.

予め容器内を真空ポンプを用いて十分に排気したのち、
S03.スルトン、N2(または/及び)  CF2 
=CF2を、水銀マノメーターで読みながら仕込む。全
圧は大気圧よりやや低く保ち、−100〜−150mm
Hgの範囲で行なった。外部より赤外線ランプで加熱し
、容器内温度を55〜60℃に保ってS03及びスルト
ンの凝縮を防いだ。
After thoroughly evacuating the inside of the container using a vacuum pump,
S03. Sulton, N2 (or/and) CF2
= Prepare CF2 while reading it with a mercury manometer. Keep the total pressure slightly lower than atmospheric pressure, -100 to -150mm
The tests were carried out within the Hg range. The container was heated from the outside with an infrared lamp and the temperature inside the container was maintained at 55 to 60° C. to prevent condensation of S03 and sultone.

槽内な充分に攪拌したのち、インパルス発生装置(東北
金属工業株式会社製Nodel −5595)により放
電させた。爆発の有無は、槽上部の可動板の動き及び水
銀マノメーターの振れで判定した。なお、二本の電極間
に加えたエネルギーは、2.25〜12.2ジユールで
あった。
After the tank was sufficiently stirred, electric discharge was performed using an impulse generator (Nodel-5595, manufactured by Tohoku Metal Industry Co., Ltd.). The presence or absence of an explosion was determined by the movement of the movable plate at the top of the tank and the swing of the mercury manometer. Note that the energy applied between the two electrodes was 2.25 to 12.2 Joules.

槽内に仕込むガス組成を下記第1表に示すように変えて
実験を行ない、放電させた場合の爆発の有無を調べた、
その結果を下記第1表にまとめて示す。
An experiment was conducted by changing the gas composition charged into the tank as shown in Table 1 below, and the presence or absence of an explosion when electric discharge was investigated was investigated.
The results are summarized in Table 1 below.

第1表 上記第1表の実験結果からも明らかなように、反応系の
気相部分に窒素ガスやC2F4ガスが存在しない系(す
なわち、希釈しない反応系)においても、S03の割合
(容量比)を、0.16以下に保持すれば、爆発が生起
しない。また、希釈ガスによる希釈比率(容量比)が0
.6未満の、例えば0.3の場合には、 0.16+0
.087 XO,3=0.18以下にS03の割合を保
持すれば、爆発を回避できる。
Table 1 As is clear from the experimental results in Table 1 above, even in a system where nitrogen gas or C2F4 gas does not exist in the gas phase of the reaction system (i.e., a reaction system without dilution), the proportion of S03 (volume ratio ) is kept below 0.16, no explosion will occur. Also, the dilution ratio (volume ratio) by dilution gas is 0.
.. If it is less than 6, for example 0.3, 0.16+0
.. If the ratio of S03 is kept below 087 XO,3=0.18, explosion can be avoided.

実施例I C2F4ガス吹込口、S03液入口、目皿板及びジャケ
ットを備えた内径2811肩、高さ2Ilのステンレス
製気泡塔に、スルトンを900g仕込んだ。
Example I A stainless steel bubble column with an inner diameter of 2811 mm and a height of 2 Il, equipped with a C2F4 gas inlet, an S03 liquid inlet, a perforated plate, and a jacket, was charged with 900 g of sulton.

ジャケット冷却水温度を25℃に保ちながら、気泡塔の
底部に設けられたガス吹込口よりC2F4ガスを28文
/時、また気泡塔下部の目皿板のやや上部に設けられた
液入口より、予め蒸留により禁止剤を除いたSO3を8
5g/時で供給した。塔上部より20c+a下に設けら
れたオーバーフロー管から流出する生成物をガスクロマ
トグラフにより分析したところ、得られるスルトン流出
物中の残存S03はほとんどOであった。反応系に多量
のスルトンが残存するので、S03の存在比率が非常に
低く保持され、爆発の危険は全くなかった。
While maintaining the jacket cooling water temperature at 25°C, C2F4 gas was supplied at 28 liters/hour from the gas inlet installed at the bottom of the bubble column, and from the liquid inlet slightly above the perforated plate at the bottom of the bubble column. 8 SO3 from which inhibitors have been removed by distillation in advance
It was fed at 5g/hour. When the product flowing out from the overflow pipe provided 20c+a below the top of the column was analyzed by gas chromatography, it was found that the remaining S03 in the obtained sultone effluent was almost O. Since a large amount of sultone remained in the reaction system, the abundance ratio of S03 was kept very low, and there was no danger of explosion.

実施例2 ジャケット及び攪拌機を備えた内容積84見のステンレ
ス製オートクレーブに、スルトン70kg及び予め蒸留
により禁止剤を除いたSO3を5kg仕込んだ。オート
クレーブ内は予め窒素ガスにより充分パージして水分の
ないようにした。
Example 2 A stainless steel autoclave with an internal volume of 84 mm and equipped with a jacket and a stirrer was charged with 70 kg of sultone and 5 kg of SO3 from which the inhibitor had been removed by distillation. The inside of the autoclave was sufficiently purged with nitrogen gas in advance to make sure there was no moisture.

ジャケット冷却水温度を調節して、オートクレーブ内温
度を25℃に保持したのち、C2F4導入バルブを徐々
に開き、圧力が0.3kg/cydGになるまでC2F
4を上記オートクレーブ内に供給した。
After adjusting the jacket cooling water temperature to maintain the autoclave internal temperature at 25°C, gradually open the C2F4 introduction valve and inject C2F until the pressure reaches 0.3 kg/cydG.
4 was supplied into the autoclave.

反応は直ちに開始され、消費されたC2 F4の分だけ
圧力が低下するので、それに見合う分のC2F4を連続
的にチャージした。また、反応器内温が25〜30℃に
保持されるように、ジャケット冷却水温度を調節した。
The reaction started immediately, and since the pressure decreased by the amount of C2F4 consumed, C2F4 was continuously charged in an amount corresponding to the amount of C2F4 consumed. Further, the jacket cooling water temperature was adjusted so that the reactor internal temperature was maintained at 25 to 30°C.

この状態で圧力減少がなくなるまで反応を続け、反応開
始後1.5 持回でC2F4の供給を停止し、その後1
114f−間攪拌を続けた。C2F4の供給量総計はE
l、!3 kgであった。
The reaction continues in this state until there is no pressure decrease, and the supply of C2F4 is stopped at 1.5 cycles after the start of the reaction, and then 1.5 cycles after the start of the reaction.
Stirring was continued for 114 f. The total supply of C2F4 is E
l,! It weighed 3 kg.

オー!・クレープ内温を10℃以下に冷却し、未反応C
2F4をパージしたのち、オートクレーブ底部の抜き出
しバルブより生成物を11.0kg抜き出した。
Oh!・Cool the internal temperature of the crepe to 10℃ or less to remove unreacted C.
After purging 2F4, 11.0 kg of the product was extracted from the extraction valve at the bottom of the autoclave.

再びS03を5 kg仕込んで、上記と同時の手順によ
り反応をくり返した。
5 kg of S03 was charged again, and the reaction was repeated according to the same procedure as above.

反応系に多量のスルトンが存在するので、S03の存在
が非常に低く保持され、爆発の危険は全くなかった。
Due to the large amount of sultone present in the reaction system, the presence of S03 was kept very low and there was no risk of explosion.

[発明の効果] 以−にの通り、本発明は、CF2=CF2とS03の反
応によるスルトンの製造方法において、希釈ガスによる
希釈比率が小さい場合あるいは希釈しない場合のいずれ
の場合でも、希釈比率に応じて反応系のSO3の存在比
率を特定値以下に保持して反応せしめることにより、有
効に爆発を防止できるという効果を達成する優れたもの
であ工 5 る。そして、本発明は、工業的実施に対して、連続製造
プロセスとしても爆発を有効に回避して安全確実な操業
を可能にしたものであり、その利点は極めて大きなもの
である。
[Effects of the Invention] As described above, the present invention provides a method for producing sultone by the reaction of CF2=CF2 and S03, in which the dilution ratio is adjusted regardless of whether the dilution ratio with the diluent gas is small or when there is no dilution. Accordingly, by keeping the abundance ratio of SO3 in the reaction system below a specific value and allowing the reaction to occur, it is an excellent method that achieves the effect of effectively preventing explosions. Further, the present invention has an extremely large advantage in industrial implementation because it effectively avoids explosions and enables safe and reliable operation even in a continuous manufacturing process.

Claims (1)

【特許請求の範囲】 1、CF_2=CF_2とSO_3の反応により式▲数
式、化学式、表等があります▼のバーフルオロ−1,2
−エタンスルトンを製造する方法において、上記反応を
テトラフルオロエチレン及び不活性ガスからなる群から
選ばれる少なくとも一種の希釈ガスにより希釈しあるい
は希釈せずに行なわしめることからなり、希釈ガスによ
る上記反応系の気相部分の希釈比率Zを0.6未満とし
、上記反応系の気相部分におけるSO_3の割合XをY
以下に保持して、上記CF_2=CF_2とSO_3の
反応を行なわしめることを特徴とするバーフルオロ−1
,2−エタンスルトンの製造方法。 ただし、Z=希釈ガス/SO_3+スルトン+希釈ガス
[容量比]X=SO_3/SO_3+スルトン+希釈ガ
ス[容量比]Y=0.16+0.067Z 2、バーフルオロ−1,2−エタンスルトンが存在する
反応系にCF_2=CF_2及びSO_3を導入して、
CF_2=CF_2とSO_3の反応を行なわしめる特
許請求の範囲第1項記載のバーフルオロ−1,2−エタ
ンスルトンの製造方法。
[Claims] 1. CF_2 = Barfluoro-1,2 of the formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ due to the reaction of CF_2 and SO_3
- A method for producing ethane sultone, which comprises carrying out the above reaction with or without dilution with at least one kind of diluent gas selected from the group consisting of tetrafluoroethylene and an inert gas, and the reaction system is controlled by the diluent gas. The dilution ratio Z of the gas phase part is less than 0.6, and the proportion X of SO_3 in the gas phase part of the reaction system is Y
Barfluoro-1 characterized in that the reaction between CF_2=CF_2 and SO_3 is carried out by holding the following conditions:
, 2-ethane sultone manufacturing method. However, Z = diluent gas / SO_3 + sultone + diluent gas [volume ratio] X = SO_3 / SO_3 + sultone + diluent gas [volume ratio] Y = 0.16 + 0.067 Introducing CF_2=CF_2 and SO_3 into the system,
The method for producing perfluoro-1,2-ethane sultone according to claim 1, wherein CF_2=CF_2 and SO_3 are reacted.
JP12736084A 1984-06-22 1984-06-22 Production of perfluoro-1,2-ethanesultone Pending JPS617273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12736084A JPS617273A (en) 1984-06-22 1984-06-22 Production of perfluoro-1,2-ethanesultone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12736084A JPS617273A (en) 1984-06-22 1984-06-22 Production of perfluoro-1,2-ethanesultone

Publications (1)

Publication Number Publication Date
JPS617273A true JPS617273A (en) 1986-01-13

Family

ID=14958021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12736084A Pending JPS617273A (en) 1984-06-22 1984-06-22 Production of perfluoro-1,2-ethanesultone

Country Status (1)

Country Link
JP (1) JPS617273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208061B1 (en) 1998-07-29 2001-03-27 Kyung-Soo Kim No-load generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208061B1 (en) 1998-07-29 2001-03-27 Kyung-Soo Kim No-load generator

Similar Documents

Publication Publication Date Title
Brown et al. Dissociation of the addition compounds of trimethylboron with n-Butyl-and neopentyldimethylamines; interaction of trimethylboron and boron trifluoride with highly hindered Bases1, 2
Pilipovich et al. Chlorine trifluoride oxide. I. Preparation and properties
JPS617273A (en) Production of perfluoro-1,2-ethanesultone
US3836524A (en) Preparation of esters of thiocarbamic acids
WO1989007095A1 (en) Nitration of benzene or toluene in a molten nitrate salt
Denney et al. A Study of the Mechanism of the Conversion of Aroyl Peroxides to Anhydrides by Tertiary Phosphines
Martin et al. A comparison of allylic and proparglyic radicals
Steel et al. 197. Kinetics of the thermal decomposition of azomethane
Ramsperger et al. The kinetics of the thermal decomposition of trichloromethyl chloroformate
Miyashita et al. Kinetics of the thermal decompositions of diaryl and dialkyl disulfides
Dainton et al. A study of sensitized explosions. V. Some new experiments on the hydrogen-oxygen reaction sensitized by nitrogen peroxide
US3100803A (en) Preparation of perfluorodimethyl peroxide
JPS617272A (en) Production of perfluoro-1,2-ethanesultone
Fenimore et al. Chemiluminescence of the Sodium or Sodium Halide Catalyzed Oxidation of Carbon Monoxide by Nitrous Oxide1
Mitra et al. Preparation and Properties of Pentafluoroselenium Hypofluorite (F5SeOF) and Bis-(pentafluoroselenium) Peroxide (F5SeOOSeF5)
US3230264A (en) Reaction of carbonyl fluoride with fluorine
McKee et al. Catalytic Vapor-Phase Nitration of Benzene
US2906681A (en) Process for the manufacture of carbon tetrachloride
US2473161A (en) Propane chlorination
Vaughan The Homogeneous Thermal Polymerization of Isoprene
US2535990A (en) Production of sodium nitrate
US3957959A (en) Process for producing fluosulfonic acid
US2459049A (en) Photochemical chlorination of hydrocarbons
RU2144019C1 (en) Method of preparing pentafluoroiodoethane
Miller et al. Kinetics of Aromatic Nitration