JPS6172420A - Multi-path echo erasure system - Google Patents

Multi-path echo erasure system

Info

Publication number
JPS6172420A
JPS6172420A JP19526884A JP19526884A JPS6172420A JP S6172420 A JPS6172420 A JP S6172420A JP 19526884 A JP19526884 A JP 19526884A JP 19526884 A JP19526884 A JP 19526884A JP S6172420 A JPS6172420 A JP S6172420A
Authority
JP
Japan
Prior art keywords
echo
signal
circuit
received
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19526884A
Other languages
Japanese (ja)
Inventor
Tetsuo Fujii
哲郎 藤井
Masaharu Shimada
正治 島田
Hiroshi Yasukawa
博 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19526884A priority Critical patent/JPS6172420A/en
Publication of JPS6172420A publication Critical patent/JPS6172420A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To attain multi-channel echo erasure by providing a private echo path characteristic parameter storage circuit at each echo path so as to obtain each echo characteristic parameter. CONSTITUTION:The correcting amount is calculated by using a correction amount calculation circuit 32 and a reception power calculation circuit 34 from a reception signal and a residual signal in order to obtain each echo characteristic to an echo signal of each channel. Then each echo characteristic parameter storage circuit 31 uses each correcting amount to obtain a sequential echo characteristic parameter at each channel and store its content. Further, a convolution integration circuit 33 applies convolution integration between an output signal of the storage circuit 31 and the output signal of a reception signal storage circuit 29 to obtain respectively an approximate echo signal. The approximate echo signal is used to erase the echo signal from a speaker 25 to a microphone 20. Thus, echo erasure of multi-channel is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ステレオ用反響消去装置、多対地音声会議用
反響消去装置等に用いられる。本発明は、複数の受信信
号が複数の反響路を介して、反響信号の和として送信信
号に廻り込む系において、このすべての反響信号を取り
除(ことを目的とする多チヤネル反響消去方式に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is used in stereo echo cancellation devices, multi-site audio conference echo cancellation devices, and the like. The present invention relates to a multi-channel echo cancellation method that aims to remove all the echo signals in a system in which a plurality of received signals pass through a plurality of echo paths and turn into a transmitted signal as the sum of the echo signals. It is something.

〔従来の技術〕[Conventional technology]

通常のモノラル通信における一径路のみの反響信号を消
去する方式として、従来より第7図に示すものがある。
There is a conventional method shown in FIG. 7 as a method for canceling echo signals on only one path in normal monaural communication.

この種の方式としては、例えば昭和58年電子通信学会
総合全国大会No、2034  rテレビ会議室用エコ
ー消去方式の一検討」および電子通信学会電気音響研究
会EA83−11 rテレコンファレンスにおけるエコ
ー制御システム」などがあげられる。
Examples of this type of system include 1988 Institute of Electronics and Communication Engineers General Conference No. 2034 ``A Study of Echo Cancellation Methods for Teleconference Rooms'' and IEICE Electroacoustic Research Group EA83-11 ``Echo Control System in Teleconferences''. ” and so on.

第7図は対地AおよびBの間にマイク・スピーカを用い
るモノラル通信系があり、これの−径路のみの反響信号
を消去する構成を示す。対地Aのマイク1から入力され
た音声信号は伝送路に適合した増幅回路2を介して伝送
路3に送出される。
FIG. 7 shows a configuration in which there is a monaural communication system using microphones and speakers between ground points A and B, and echo signals from only the negative path of the monaural communication system are eliminated. An audio signal input from a microphone 1 on the ground A is sent to a transmission line 3 via an amplifier circuit 2 suitable for the transmission line.

対地Bでは対地Aからの受信信号を増幅回路5で増幅し
スピーカ4を駆動する。スピーカ4からの音声信号は部
屋の反響径路6を介しマイク7により受信される。この
ように対地Aのマイク1から入力された音声信号は、第
7図に示すようにマイク1→増幅回路2−伝送路3−増
幅回路5−スピーカ4−反響径路6−マイク7−増幅回
路8−伝送路9−増幅回路10−スピーカ11−反響径
路12−マイク1なるループを一巡する。このため、対
地Aのマイク1から音声信号が入力されなくても前記ル
ープの利得が1以上のときは、いわゆるハウリング現象
が生ずる。
At ground B, the received signal from ground A is amplified by an amplifier circuit 5 and a speaker 4 is driven. The audio signal from the speaker 4 is received by the microphone 7 via the reverberation path 6 of the room. In this way, the audio signal input from the microphone 1 on the ground A is transmitted through the microphone 1 -> amplifier circuit 2 - transmission line 3 - amplifier circuit 5 - speaker 4 - echo path 6 - microphone 7 - amplifier circuit as shown in Fig. 7. 8-transmission line 9-amplification circuit 10-speaker 11-reverberation path 12-microphone 1 loop. Therefore, even if no audio signal is input from the microphone 1 on the ground A, when the gain of the loop is 1 or more, a so-called howling phenomenon occurs.

これを防止するために、増幅回路5−スピーカ4−反響
径路6−マイク7−増幅回路8を介した反響信号と等価
な近似反響信号を作成し、反響信号を差し引く反響消去
回路13を設ける。また同様に増幅回路10−スピーカ
11−反響径路12−マイク1−増幅回路2を介した反
響信号と等価な近似反否信号を作成し、反響信号を差し
引く反響消去回路14を設けている(詳細は前記文献を
参照)。
In order to prevent this, an echo cancellation circuit 13 is provided which creates an approximate echo signal equivalent to the echo signal via the amplifier circuit 5 - speaker 4 - echo path 6 - microphone 7 - amplifier circuit 8 and subtracts the echo signal. Similarly, an echo canceling circuit 14 is provided which creates an approximate anti-reverse signal equivalent to the echo signal via the amplifier circuit 10 - speaker 11 - echo path 12 - microphone 1 - amplifier circuit 2, and subtracts the echo signal (details). (see the above-mentioned document).

一般に、モノラル通信用反響消去回路14は、第2図に
示すように、遠隔地より伝送路9を介して受信した受信
信号X (tlを記憶する受信信号記憶回路15と、ス
ピーカー1から反響径路12を介してマイク1に入力さ
れる反響信号Y (t)と、近似反響信号?(L)との
差信号E (tlを求める減算回路16と、残差信号E
 (t)と受信信号X (tlとから修正量を求める修
正量算出回路17と、修正量信号を入力とし反響特性パ
ラメータ旧(t)(ただし、i = 0 、  I 、
 −−−−−−−。
In general, as shown in FIG. 2, the monaural communication echo cancellation circuit 14 includes a reception signal storage circuit 15 that stores a reception signal X (tl) received from a remote location via a transmission path 9, and a reception signal storage circuit 15 that stores a reception signal A subtraction circuit 16 for calculating the difference signal E (tl) between the echo signal Y(t) input to the microphone 1 via the microphone 12 and the approximate echo signal ?(L), and the residual signal E
(t) and the received signal
−−−−−−−.

M−1)を修正し記憶する反響特性パラメータ記・[@
回路18と、受信信号X (tlと反響特性パラメータ
旧(1)から近似反響信号?(t)を生成する重畳積分
回路19とからなっている。すなわち、反響消去回路の
適応時の動作式は次式で表され、一般に学習同定法のア
ルゴリズム(J、 Nagumo and Noaa 
:  Alearning Method for S
ystem Identification”づ [EEE Trans、 AC−12,3P282. 
June、1976 )として知られている。ただし、
tは時間を表す。
M-1) Reverberation characteristic parameters to be corrected and memorized・[@
It consists of a circuit 18 and a convolution integrating circuit 19 that generates an approximate echo signal (t) from the received signal It is expressed by the following formula, and is generally used as a learning identification method algorithm (J, Nagumo and Noaa
: Learning Method for S
system Identification” [EEE Trans, AC-12, 3P282.
June, 1976). however,
t represents time.

E (U = Y ft) −? (t)      
      ・−・・・・・・・・・(1)Δ旧(t)
=α・E (t)・X(t−i) /旧(t)=旧(t
−1)十Δ旧(tl     −−−−一・・・−・−
(3)ここでαは修正係数を示す。
E (U = Y ft) -? (t)
・−・・・・・・・・・(1) Δold (t)
=α・E (t)・X(t-i) /Old(t)=Old(t
−1) Ten Δ old (tl −−−−1・・・−・−
(3) Here α indicates a correction coefficient.

このように、近似反響信号?(t)は受信信号X (t
lから作成し、反響信号Y (t)から近似反響信号♀
(tlを差し引くことによって反響信号を消去すること
ができる。
In this way, approximate echo signal? (t) is the received signal X (t
An approximate echo signal ♀ is created from l and is approximated from the echo signal Y (t).
(The echo signal can be canceled by subtracting tl.

いま、反響径路12にX (t)とは相関のない外部雑
音信号N1n(例えば室内騒音、外部の音声など)が挿
入されたとき、反響消去の伝送特性評価に用いられる定
常状態のエコー消去! (ERLE)はERLE (d
B) =101og  ((2−α) /α〕+110
1o  ((反響信号Yの電力M)/(外部雑音信号N
inの電力量)〕 −−−〕一−−−・・・−(5) となる(野田:「学習同定法における雑音信号およびパ
ラメータ変動の影言」計測と制御vo1.8゜No、 
 5.  P2O3〜P312 、昭和44年5月)。
Now, when an external noise signal N1n (for example, indoor noise, external voice, etc.) that has no correlation with X (t) is inserted into the echo path 12, steady-state echo cancellation is used to evaluate the transmission characteristics of echo cancellation! (ERLE) is ERLE (d
B) =101og ((2-α) /α]+110
1o ((power M of echo signal Y)/(external noise signal N
(Electric energy of in)] −−−]1−−−・・・−(5)
5. P2O3-P312, May 1960).

このように外部雑音信号Ninが反響径路に存在しその
量が大きいと、式(5)の右辺第2項より明らかなよう
に、エコー消去l (IERLE)が低下し、通話品質
上から要求される所望エコー消去量を得ることができな
くなる。
If the external noise signal Nin is present in the echo path and its amount is large, as is clear from the second term on the right side of equation (5), the echo cancellation l (IERLE) decreases, which is required from the viewpoint of speech quality. It becomes impossible to obtain the desired amount of echo cancellation.

また修正係数αに関して、α=1において最も速く定常
値に収束し、lより小さくすることによりエコー消去f
fi (ERLE)がさらにとれることが知られている
。つまり、修正係数αを変化させることにより、収束時
間、エコー消去量の値が変化する。これは、前述した野
田の論文にも記載されている。
Regarding the correction coefficient α, it converges to a steady value fastest when α = 1, and by making it smaller than l, the echo cancellation f
It is known that fi (ERLE) can be further increased. That is, by changing the correction coefficient α, the values of the convergence time and the amount of echo cancellation change. This is also stated in Noda's paper mentioned above.

一方、音声会議通信′においては、一般会議室と同様な
臨場感が望まれるため、ステレオ通信が用いられるよう
になった。この場合には、スピーカ、マイクとも2系統
のものが必要である。また3以上の会議室をひとつに接
続する多対地音声会議通話が行われるようになった。こ
のときは対地を識別するために対地と同じ数だけのスピ
ーカの設置が望まれる。ところがこれらの装置では、2
個以上のスピーカからの複数の反響信号の廻り込みが生
じることになり、複数の反響信号を同時に消去する技術
が必要となる。
On the other hand, in audio conference communication, stereo communication has come to be used because it is desired to have a sense of realism similar to that of a general conference room. In this case, two systems of speakers and microphones are required. Multi-point audio conference calls, which connect three or more conference rooms into one, have also become available. In this case, it is desirable to install as many speakers as the number of speakers to identify the ground. However, with these devices, 2
This results in multiple echo signals coming from more than one speaker, and a technique for simultaneously canceling the multiple echo signals is required.

このように、複数のスピーカからの反響信号の廻り込み
が存在する場合に、従来の第8図に示したモノラル用反
響消去回路を単純に適用し、対地Aの片端のみについて
みると、そのモデルは第3図に示すようになる。すなわ
ち、マイク20に入力された音声送話信号Sinは増幅
回路21を介して送信伝送路22へ送出される。第1チ
ヤネルで受信伝送路23.より受信された信号R11n
は、増幅回路24、を介してスピーカ25.を駆動する
。第2チヤネルでも受信伝送路23□より受信された信
号R21nは、増幅回路24□を介してスピーカ25□
を駆動する。以下すべてのチャネルで同様に構成され、
第Nチャネルでは受信伝送路23.より受信された信号
RNinは、増幅回路24Nを介してスピーカ25゜を
駆動する。したがって、マイク20には第1チャネル用
スピーカ25.より反響径路26.を介する反響信号T
lと、第2チヤネル用スピーカ25□より反響径路26
□を介する反響信号T2と、さらに第Nチャネル用スピ
ーカ25.より反響径路26.を介する反響信号TNま
での合計N種類の反響信号が人力される。このため各チ
ャネルごとに対応した合計N種類の反響信号(T I 
、 T 2 、−−−−−−−、 TN )を消去する
反響消去回路27..27□、・−−−−一・、27、
がそれぞれ必要となる。ただし、反響消去回路272.
27□、−・−・、27.は第8図に示した反響消去回
路と同様の構成のものである。
In this way, when there is echo signals coming from multiple speakers, if we simply apply the conventional monaural echo cancellation circuit shown in Figure 8 and look at only one end of the ground A, we can see that the model is as shown in Figure 3. That is, the audio transmission signal Sin input to the microphone 20 is sent to the transmission transmission line 22 via the amplifier circuit 21. Receive transmission line 23 on the first channel. The signal R11n received from
are connected to the speaker 25 . via the amplifier circuit 24 . to drive. Also in the second channel, the signal R21n received from the receiving transmission line 23□ is sent to the speaker 25□ via the amplifier circuit 24□.
to drive. All channels below are configured similarly,
In the Nth channel, the receiving transmission line 23. The signal RNin received by the amplifier circuit 24N drives the speaker 25°. Therefore, the microphone 20 is connected to the first channel speaker 25. More echo path 26. The echo signal T
l, and a reverberation path 26 from the second channel speaker 25□.
□, and further the N-th channel speaker 25. More echo path 26. A total of N types of echo signals up to the echo signal TN are manually generated. Therefore, a total of N types of echo signals (T I
, T 2 , --------, TN ) 27. .. 27□,・----1・,27,
are required respectively. However, the echo cancellation circuit 272.
27□, -・-・, 27. has the same configuration as the echo cancellation circuit shown in FIG.

ここで、2チヤネル(N=2)の場合について考えると
、まず、第1チヤネル受信信号R11nをX 1 (t
)、第2チ中ネル受信信号R2inをX 2 (t)、
マイク20に入力された信号SinをY (t)、反響
消去回路271 の出力をE 1 (tl、反響消去回
路27□の出づ      力をE 2 (tl、送信
信号S0をE(1)と四き表す。反響消去回路271に
おける反響特性推定パラメータをHli(tl (ただ
し、i =0.1.−−−−−−、Ml−1:Mlはイ
ンパルス応答長)とし、反響消去回路27□における反
響特性推定パラメータをH2j(t) (ただし、j=
0.1.−−−−−−、M2−1:M2はインパルス応
答長)する。反響信号Tlの近似信号を?1(11とし
、反響信号T2の近似信号を?2(1)とする。
Here, considering the case of two channels (N=2), first, the first channel received signal R11n is converted to X 1 (t
), the second channel received signal R2in is X 2 (t),
Let the signal Sin input to the microphone 20 be Y(t), the output of the echo canceling circuit 271 be E1(tl), the output power of the echo canceling circuit 27□ be E2(tl, and the transmitted signal S0 be E(1)). Let the echo characteristic estimation parameter in the echo cancellation circuit 271 be Hli (tl (where, i = 0.1.----, Ml-1: Ml is the impulse response length), and the echo characteristic estimation parameter in the echo cancellation circuit 27 □ The reverberation characteristic estimation parameters in H2j(t) (where j=
0.1. --------, M2-1: M2 is impulse response length). Approximate signal of echo signal Tl? 1(11), and the approximate signal of the echo signal T2 is ?2(1).

このときモノラル通信用反響消去回路を単純に応用した
2 (N=2)チャネル反響消去回路の適応時の動作式
は以下のように表される。
In this case, the operational formula for a two (N=2) channel echo cancellation circuit, which is a simple application of the echo cancellation circuit for monaural communication, is expressed as follows.

E 1 (tl= Y(t)−tl (tl     
  ・−・−−−一−−−(61ΔH1i(tl=α・
E 1 (t)・X 1 (t−1) /H1i(tl
 = )I li (t−1)  +ΔH1i (tl
    −−−−−−−(8)(ただし、i = 0 
、 1 、−−−−−−−、 M 1 1 )E 2 
(t) = E 1 (tl−?2 (t)     
 −−−−−・−・−00)ΔH2i(tl=α・E 
2 (tl・X 2 (t−i) /H2i(t)−H
2i(t−1)  +ΔH2i (tl     −−
−−−03(ただし、i=o、1.・・−・・−、Mz
−t)E(t)= E 1 (t)         
        ・・・−・・・・−(2)前述したよ
うに、反響径路に外部信号が挿入されると、その信号と
受信信号との間に相関がない場合にはこれを消去できな
い。したがって式(6)において、Y (tlに混入し
ているX l (Elとは無相関な第2チヤネル受信信
号からの反響信号T2を反響消去回路271では取り除
くことはできず、外部雑音信号と同様の作用を反を消去
回路27.に対して行う。したがって弐(5)から明ら
かなように、第2チヤネル受信信号からの反響信号T2
により、反宕弐回路27.における適応制御時のエコー
消去量が低下し、所要のエコー消去量を得ることができ
なくなる。このように、他のチャネルの受信信号からの
反響信号により、初段に位置する反響消去回路27.で
上述したような反場1消去特性の劣化を生じてしまう。
E 1 (tl= Y(t)-tl (tl
・−・−−−1−−−(61ΔH1i(tl=α・
E 1 (t)・X 1 (t-1) /H1i(tl
= )I li (t-1) +ΔH1i (tl
−−−−−−−(8) (However, i = 0
, 1 , --------, M 1 1 )E 2
(t) = E 1 (tl-?2 (t)
−−−−−・−・−00)ΔH2i(tl=α・E
2 (tl・X 2 (t-i) /H2i(t)-H
2i (t-1) +ΔH2i (tl −-
---03 (however, i=o, 1.・・・・・−, Mz
-t)E(t)=E1(t)
(2) As mentioned above, when an external signal is inserted into the echo path, it cannot be erased if there is no correlation between that signal and the received signal. Therefore, in equation (6), the echo canceling circuit 271 cannot remove the echo signal T2 from the second channel received signal, which is uncorrelated with A similar action is performed on the cancellation circuit 27. Therefore, as is clear from 2(5), the echo signal T2 from the second channel received signal is
Accordingly, the anti-go two circuit 27. The amount of echo cancellation during adaptive control decreases, making it impossible to obtain the required amount of echo cancellation. In this way, echo signals from received signals of other channels cause echo cancellation circuit 27 located at the first stage. In this case, the deterioration of the anti-field 1 cancellation characteristic as described above occurs.

これはチャネルの数が3以上に増えた場合にも同様であ
り、式(6)においてY (t)に混入してくるX 1
 (tlとは無相関な他のチャネルからの反響信号の数
が増加するため、さらに初段に位置する反響消去回路の
特性が劣化することになる。
This also applies when the number of channels increases to 3 or more, and in equation (6), X 1 mixed into Y (t)
(Since the number of echo signals from other channels uncorrelated with tl increases, the characteristics of the echo cancellation circuit located at the first stage will further deteriorate.

一般に反響消去装置の適応動作は話者の音声送話信号が
なく、受信信号があるときにだけ適応動作させる。すな
わち、第9図に示すように、マイク20に話者の音声送
話信号が入力される場合(ダブルトーク状態)には、反
響消去回路27..27□、・・・・・−227,の適
応動作を停止し、適応動作を停止する直前の状態を保持
する。したがって、適応動作時に所要のエコー消去量を
より速く得ることが一層重要になる。
In general, the adaptive operation of the echo canceller is performed only when there is no voice transmission signal from the speaker and there is a received signal. That is, as shown in FIG. 9, when the speaker's voice transmission signal is input to the microphone 20 (double talk state), the echo cancellation circuit 27. .. The adaptive operation of 27□, . . . -227, is stopped, and the state immediately before the adaptive operation is stopped is maintained. Therefore, it becomes even more important to obtain the required amount of echo cancellation faster during adaptive operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のことから、モノラル通信用反響消去回路27、.
27□、−・・〜 、21Nを単に組合せただけの多チ
ヤネル反響消去装置では、複数のスピーカのように多通
路から廻り込む反響信号の和を消去することはできない
From the above, the monaural communication echo cancellation circuit 27, .
A multi-channel echo canceler simply combining 27□, -..., 21N cannot cancel the sum of echo signals circulating from multiple channels like a plurality of speakers.

本発明はこれを解決するもので、多通路で生じる反響信
号の和を消去する反響消去方式を提供することを目的と
する。
The present invention solves this problem, and aims to provide an echo cancellation method that cancels the sum of echo signals generated in multiple paths.

〔問題点を解決するための手段〕[Means for solving problems]

本発明第一の発明は、2以上の受信信号により、2以上
の反響径路を介する反響信号が発生し、この反響信号の
和が送信信号に入力される通信系で、送信信号に生成す
る近似反響信号を減算する反響消去方式において、1以
上の遠隔地より伝送路を介して受信した2以上の各受信
信号をそれぞれ記憶する手段と、前記各受信信号ごとに
、各修正量を入力し、前記各受信信号から前記送信信号
に廻り込む各反響信号の各反響特性パラメータの修正と
記憶をそれぞれ行う手段と、前記各受信信号ごとに、前
記の各反響特性パラメータと前記の各受信信号から各近
似反響信号それぞれ生成する手段と、前記送信信号から
前記の各近似反響信号の和を差し引いた残差信号を出力
する残差算出手段と、前記残差信号、前記のすべての受
信信号および各′□1    修正係数を用いて前記各
修正量を前記各受信信号ごとに求める修正量算出手段と
を備えたことを特徴とする。
The first aspect of the present invention is a communication system in which two or more received signals generate echo signals passing through two or more echo paths, and the sum of these echo signals is input to the transmission signal, and an approximation is generated to the transmission signal. In an echo cancellation method for subtracting an echo signal, means for storing each of two or more received signals received from one or more remote locations via a transmission line, and inputting each correction amount for each of the received signals, means for respectively modifying and storing each echo characteristic parameter of each echo signal that goes around from each of the received signals to the transmitted signal; means for generating respective approximate echo signals; residual calculating means for outputting a residual signal obtained by subtracting the sum of the respective approximate echo signals from the transmitting signal; □1 The apparatus is characterized by comprising a correction amount calculating means for calculating each of the correction amounts for each of the received signals using a correction coefficient.

本発明第二の発明は、上記第一の発明の構成に加えて、
通信を開始する前にあらかじめトレーニング信号を発生
する手段と、前記トレーニング信号を前記各受信信号と
して順次反響径路に送出する切り替え手段と、前記トレ
ーニング信号を受信信号として反響径路に送出している
間に、伝送路への送出信号の送出を阻止する手段と、前
記トレーニング信号による前記各反響信号特性パラメー
タを算出後に、前記切り替え手段により伝送路と受信信
号を接続し、また前記阻止手段を開放して伝送路に送信
信号を送出する制御手段とを備えたことを特徴とする。
The second invention of the present invention includes, in addition to the configuration of the first invention,
means for generating a training signal in advance before starting communication; switching means for sequentially transmitting the training signal to the echo path as each of the received signals; and while transmitting the training signal to the echo path as the received signal; , means for blocking transmission of the transmission signal to the transmission path; and after calculating the respective echo signal characteristic parameters based on the training signal, connecting the transmission path and the received signal by the switching means, and opening the blocking means. The present invention is characterized by comprising a control means for sending a transmission signal to a transmission path.

。 〔作 用〕 各反響径路ごとの専用反響特性パラメータ記憶回路を有
し、共通の残差信号を用い、各チャネルごとに制御され
た修正係数および修正量算出回路を用い、各反響特性パ
ラメータを求めることにより多チヤネル反響消去を実現
する。
. [Function] Has a dedicated echo characteristic parameter storage circuit for each echo path, uses a common residual signal, and uses a correction coefficient and correction amount calculation circuit controlled for each channel to calculate each echo characteristic parameter. This realizes multi-channel echo cancellation.

〔実施例〕〔Example〕

第1図は本発明の一実施例のブロック構成図である。こ
の回路は多チヤネル反響消去回路28の構成に特徴があ
る。
FIG. 1 is a block diagram of an embodiment of the present invention. This circuit is characterized by the configuration of the multi-channel echo cancellation circuit 28.

まず第1チヤネルについて見ると、符号29.は受信信
号記憶回路、符号30.は修正係数制御回路、符号31
.は反響信号TIの反響特性パラメータ記憶回路、符号
32.は反響信号TIの推定を行うための修正量算出回
路、符号331は反響信号T1の近似反響信号を得る重
畳積分回路である。次に第2チヤネルについて見ると、
符号29□ば受信信号記憶回路、符号30.は修正係数
制御回路、符号31□は反響信号T2の反響特性パラメ
ータ記憶回路、符号32□は反響信号T2の推定を行う
ための修正量算出回路、符号33□の反響信号T2の近
似反響信号を得る重畳積分回路である。以下すべてのチ
ャネルについて同様に構成され、第Nチャネルについて
も、符号298は受信信号記憶回路、符号30゜は修正
係数制御回路、符号31.は反響信号TNの反響特性パ
ラメータ記憶回路、符号32.4は反響信号TNの推定
を行うための修正量算出回路、符号33Nは反響信号T
Nの近似反響信号を得る重畳積分回路である。
First, looking at the first channel, the code 29. 30. is a received signal storage circuit; is a correction coefficient control circuit, code 31
.. 32. is a reverberation characteristic parameter storage circuit for the reverberation signal TI; Reference numeral 331 indicates a correction amount calculation circuit for estimating the echo signal TI, and a superimposition integrating circuit 331 obtains an approximate echo signal of the echo signal T1. Next, looking at the second channel,
Reference numeral 29□ represents a received signal storage circuit, and reference numeral 30. 31□ is a correction coefficient control circuit, 31□ is an echo characteristic parameter storage circuit for the echo signal T2, 32□ is a correction amount calculation circuit for estimating the echo signal T2, and 33□ is an approximate echo signal of the echo signal T2. This is the convolution integrator circuit obtained. All the channels below are constructed in the same way, and for the Nth channel as well, reference numeral 298 is a received signal storage circuit, reference numeral 30 is a correction coefficient control circuit, reference numeral 31. 32.4 is a correction amount calculation circuit for estimating the echo signal TN, and 33N is the echo characteristic parameter storage circuit for the echo signal TN.
This is a superimposed integration circuit that obtains N approximate echo signals.

さらに、符号34はすべての受信信号の電力算出回路、
符号35は各チャネルにおける近似反響信号のすべての
和を求める回路、符号36は近似反響信号の和をSin
より差し引く減算回路である。
Further, reference numeral 34 denotes a power calculation circuit for all received signals;
Reference numeral 35 is a circuit that calculates the sum of all approximate echo signals in each channel, and reference numeral 36 is a circuit that calculates the sum of approximate echo signals in each channel.
This is a subtraction circuit that subtracts from

次にこの回路の動作を説明すると、まず、第k(ただし
、k=1.2.−・−、N)チャネルの受信信号をX 
k (t)とし、第にチャネルに対応する反響信号Tk
の近似信号を?k (tlとし、第にチャネルの反響特
性パラメータをHk i (t)とし、そのインパルス
応答長をMkとする。添字(i−=0.1゜−−−−−
−・、Mk−1)は反響特性パラメータの要素を表すも
のとする。マイク20の入力信号SinをY (t)と
し、送信信号S0をE(【)とする。
Next, to explain the operation of this circuit, first, the received signal of the k-th (k=1.2.-.-, N) channel is
k (t), and the echo signal Tk corresponding to the channel
approximating the signal? Let k (tl be the first channel reverberation characteristic parameter Hk i (t), and let its impulse response length be Mk. Subscript (i-=0.1゜----
-., Mk-1) represents an element of the echo characteristic parameter. The input signal Sin of the microphone 20 is assumed to be Y (t), and the transmitted signal S0 is assumed to be E ([).

このとき、Nチャネル反響消去回路の適応時の動作式は
、 ΔHki(t)=α・ E(tl ・ Xk(L−i)
/HkHtl = Hki (t−1)  +ΔHk 
i (t)    −−−−−−−−・−面ただし、k
=1.2.・−・・−・−1N1i  = 0. 1 
、 −−−−−−、  Mk−1となる。
At this time, the operational formula for the N-channel echo cancellation circuit when applied is ΔHki(t)=α・E(tl・Xk(L−i)
/HkHtl = Hki (t-1) +ΔHk
i (t) −−−−−−−・− surface, where k
=1.2.・−・・−・−1N1i = 0. 1
, -------, becomes Mk-1.

本発明では、モノラル通信用反響消去装置を単に組合せ
ただけの多チヤネル反響消去装置の欠点を克服するため
に、弐(6)および弐aφの代わりに弐09を用いて減
算回路35および36により残差信号を求めている。こ
の残差信号を共通に用いて、各チャネルごとの反響消去
回路を制御することにより、弐(6)において混入して
いるX 1 (t)とは無相関な他のチャネルの受信信
号からの反響信号T 2 、−−−−−・−1、、I 
     TNを同時に取り除くことを可能としている
。これにより、通話品質上必要な反響消去量が確保され
る。
In the present invention, in order to overcome the drawbacks of a multi-channel echo canceler that is simply a combination of monaural communication echo cancelers, 209 is used in place of 2 (6) and 2 aφ, and subtraction circuits 35 and 36 are used. I am looking for the residual signal. By using this residual signal in common and controlling the echo cancellation circuit for each channel, the received signal from the other channel that is uncorrelated with the mixed X 1 (t) in 2 (6) is Echo signal T 2 , -------・-1,, I
This makes it possible to remove TN at the same time. As a result, the amount of echo cancellation necessary for improving speech quality is ensured.

第1図の回路ではまず各チャネルの反響信号T1、T2
.  ・−・−、TNに対する各反響特性パラメータを
求めるため、弐αGに示したように受信信号と残差信号
とから、修正量算出回路32および受信電力算出回路3
4を用いて修正量の算出を行う。次に、弐面に示したよ
うに各反響特性パラメータ記憶回路31で、それぞれの
修正量から逐次反響特性パラメータHki(t)を各チ
ャネルごとに求め、その内容を記憶する。さらに弐OB
に従い、重畳積分回路33で反響特性パラメータ記憶回
路31の出力信号と各チャネルごとの受信信号記憶回路
29の出力信号との重畳積分を行い、近似反響信号’?
 k (tlをそれぞれ得ることができる。ここで、’
9 k (t)はにチャネル用スピーカ25からマイク
20への反響信号Tkを消去するために用いる。
In the circuit shown in Figure 1, first, the echo signals T1 and T2 of each channel are
..・・・In order to obtain each echo characteristic parameter for TN, the correction amount calculation circuit 32 and the reception power calculation circuit 3 are used from the received signal and the residual signal as shown in 2αG.
4 to calculate the correction amount. Next, as shown on the second side, each reverberation characteristic parameter storage circuit 31 sequentially obtains the reverberation characteristic parameter Hki(t) for each channel from the respective correction amounts and stores its contents. Further 2 OB
Accordingly, the superposition integration circuit 33 performs superposition integration of the output signal of the echo characteristic parameter storage circuit 31 and the output signal of the received signal storage circuit 29 for each channel, and obtains an approximate echo signal '?
k (tl can be obtained respectively, where '
9 k (t) is used to cancel the echo signal Tk from the channel speaker 25 to the microphone 20.

この第1図の実施例回路では、修正量算出回路32は回
路34を通して線形結合されており、学習同定法を用い
て各反響特性パラメータの算出を行っている。したがっ
て、式(7)および式αυの代わりに式αGを用いてい
る。これにより収束の安定性が得られる。修正係数αは
学習同定法と同様に、0 < cX< 1.0    
’       −−−−−−−−−(11となる。
In the embodiment circuit shown in FIG. 1, the correction amount calculation circuit 32 is linearly coupled through the circuit 34, and each reverberation characteristic parameter is calculated using a learning identification method. Therefore, formula αG is used in place of formula (7) and formula αυ. This provides convergence stability. The correction coefficient α is 0 < cX < 1.0 as in the learning identification method.
' -----------(It becomes 11.

第2図に、この実施例回路を用いてシミュレーションを
行った結果の一例を示す。これは2  (N=2)チャ
ネルの反響消去回路の例である。同図には比較のために
、第3図に示す従来例回路を用いて同じ条件の下にシミ
ュレーションを行った結果も示しである。ただし、修正
係数は共に0.5である。同図より明らかなように、第
9図の従来例回路では、10dB程度の不十分な反響消
去量しか得られないのに対し、本発明の実施例の回路で
は、35dB前後の通話品質上十分な反響消去量が得ら
れている。このシミュレーションにより本発明の有効性
を確認することができる。
FIG. 2 shows an example of the results of a simulation using this example circuit. This is an example of a two (N=2) channel echo cancellation circuit. For comparison, the figure also shows the results of a simulation conducted under the same conditions using the conventional circuit shown in FIG. However, the correction coefficients are both 0.5. As is clear from the figure, the conventional circuit shown in FIG. 9 can only obtain an insufficient amount of echo cancellation of about 10 dB, whereas the circuit according to the embodiment of the present invention has a sufficient amount of approximately 35 dB for speech quality. The amount of echo cancellation obtained is obtained. The effectiveness of the present invention can be confirmed through this simulation.

第3図は本発明の別の実施例構成図である。前述の第4
図の回路構成の多チヤネル反響消去装置では、各チャネ
ル受信信号Rkinの電力の間に差がある場合には、R
kinを線形結合し入力信号した相関行列の最大固を値
と最小固有値の比が1.0以上になる。このように固有
値の比が1.0以上になる場合には収束速度が遅くなり
、所要の反響消去量が得られるまでの時間が長くなる(
この理論については、Widrow、B、、et at
、:^dapttvenoisecancelling
 : pr、1nciples and applic
atications’+Proc、IEEE、63.
12.pp、1692.Dec 1975を参照)。
FIG. 3 is a block diagram of another embodiment of the present invention. The fourth mentioned above
In the multi-channel echo cancellation device having the circuit configuration shown in the figure, if there is a difference in power between the received signals Rkin of each channel, R
The ratio of the maximum eigenvalue to the minimum eigenvalue of the correlation matrix which is an input signal obtained by linearly combining kin becomes 1.0 or more. In this way, when the ratio of eigenvalues becomes 1.0 or more, the convergence speed slows down and it takes a long time to obtain the required amount of echo cancellation (
Regarding this theory, see Widrow, B., et at
, :^dapttvenoise cancelling
: pr, 1nciples and applic
cations'+Proc, IEEE, 63.
12. pp, 1692. See Dec 1975).

この電力の差による収束速度の劣化を改善した手法が第
3図の回路構成である。
The circuit configuration shown in FIG. 3 is a method for improving the deterioration of the convergence speed due to the power difference.

本発明では、各チャネルの受信信号ごとの電力を用いて
、各チャネルごとに受信信号X k (t)を正規化す
ることにより、上述の固有値の比を取り除き収束速度を
改善している。この正規化に伴い、反響特性パラメータ
のインパルス応答長に応じて修正係数に制約条件が付随
する。
In the present invention, by normalizing the received signal X k (t) for each channel using the power of each received signal of each channel, the above-mentioned eigenvalue ratio is removed and the convergence speed is improved. Along with this normalization, a constraint condition is attached to the correction coefficient depending on the impulse response length of the echo characteristic parameter.

第3図の回路構成が前述の第1図の回路構成と異なると
ころは、各チャネルごとに電力算出回路39を有するこ
と、反響特性パラメータを求めるために、必要な修正量
算出回路38、および修正係数を発生する修正係数制御
回路30の動作が異なることにある。
The circuit configuration shown in FIG. 3 differs from the circuit configuration shown in FIG. The difference lies in the operation of the correction coefficient control circuit 30 that generates the coefficients.

第3図に示されたNチャネル反響消去回路37の応答の
動作式は E (tl = Y (11−Σ’9 k ftl  
    −・−(20)ΔHki(t)=αに−E(t
l・Xk(t−i)/Hki(tl = Hki (t
−1)  +ΔHki[tl   −・−・−(22)
ただし、k = 1 、 2 、−−−−−−、 N、
i = 0 、 1 、−−−−−−、 M k4とな
る。この適応時における動作式が、第1図の回路の動作
式と異なるところは式(21)である。これは修正量算
出回路38におよび電力算出回路39にの動作が異なっ
ていることを意味している。すなわち、弐(21)にお
ける乗数 により各チャネルごとに受信信号X k (t)が正規
化されている。、なお、収束係数αには、α1 :α2
 ニー・・−:αN =M1  ;M2  :・−−−
−−−・−・・・−:MN           −・
−・−・・−(25)と各チャネルの反響特性パラメー
タのインパルス応答長に比例して設定する。これにより
みかけ上、各チャネルの受信信号RkinO間に電力の
差がなくなる。したがって相関行列の固有値の比が取り
除かれ収束速度が改善される。なお、αには修正係数制
御回路30kにより制御され、収束の安定性を保証する
ために両者の和が1.0以下となるように設定する。
The operational formula for the response of the N-channel echo cancellation circuit 37 shown in FIG. 3 is E (tl = Y (11-Σ'9 k ftl
−・−(20) ΔHki(t) = α to −E(t
l・Xk(t-i)/Hki(tl = Hki (t
−1) +ΔHki[tl −・−・−(22)
However, k = 1, 2, --------, N,
i = 0, 1, -----, M k4. The operating equation at this time of adaptation differs from the operating equation of the circuit in FIG. 1 in equation (21). This means that the operations of the correction amount calculation circuit 38 and the power calculation circuit 39 are different. That is, the received signal X k (t) is normalized for each channel by the multiplier in (21). , and the convergence coefficient α is α1 :α2
Knee...-:αN=M1;M2:・---
−−・−・・:MN −・
--(25) and is set in proportion to the impulse response length of the reverberation characteristic parameter of each channel. As a result, there appears to be no difference in power between the received signals RkinO of each channel. Therefore, the ratio of the eigenvalues of the correlation matrix is removed and the convergence speed is improved. Note that α is controlled by a correction coefficient control circuit 30k, and is set so that the sum of both is 1.0 or less in order to guarantee stability of convergence.

0くΣαk<1.0        ・−・・・−・−
・(26)−に軍1     − これらの設定法は人力信号の大きさに応じた正規化に伴
う修正係数の設定条件より導かれる(藤井、原品、宮用
、「周波数サンプリングフィルタを用いた伝送路適応等
他界」、電子通信学会論文誌B、 J 65−8,9.
p、1172.昭和57年9月)。なお、電力算出回路
34の代わりに振幅値等を用いて各チャネルの信号の大
きさを求めてもよい。
0kuΣαk<1.0 ・−・−・−
・(26) - to military 1 - These setting methods are derived from the setting conditions of the correction coefficient associated with normalization according to the magnitude of the human signal (Fujii, Haragi, Miyayo, ``Frequency sampling filter “Transmission path adaptation, etc.”, Transactions of the Institute of Electronics and Communication Engineers B, J 65-8, 9.
p, 1172. (September 1982). Note that instead of using the power calculation circuit 34, the magnitude of the signal of each channel may be determined using an amplitude value or the like.

第4図に第3図の実施例回路を用いて計算機シミュレー
ションを行った結果の一例を示す、これは2 (N=2
)チャネルの反響消去回路の例である。同図において第
1チヤネルと第2チヤネルの平均受信信号電力の比は1
0;1に設定しである。
FIG. 4 shows an example of the results of a computer simulation using the example circuit of FIG. 3, which is 2 (N=2
) is an example of a channel echo cancellation circuit. In the figure, the ratio of the average received signal power of the first channel and the second channel is 1.
0: Set to 1.

ただし、反響特性パラメータのインパルス応答長は等し
く設定してあり、MlとM2の比は1:1である。した
がって、α1およびα2も同じ比になるように α1=α2=0.5 と設定している。同図には比較のために第1図の・回路
を用いて同じ条件のもとにシミュレーションを行った結
果を併せて示しである。
However, the impulse response lengths of the echo characteristic parameters are set equal, and the ratio of Ml and M2 is 1:1. Therefore, α1=α2=0.5 is set so that α1 and α2 have the same ratio. For comparison, the figure also shows the results of a simulation conducted under the same conditions using the circuit shown in Figure 1.

第4図より明らかなように、各チャネルの受信信号X 
k (t)をそれぞれの電力を用いて正規化することに
より収束速度が改善されている様子がわかる。これによ
り本発明の有効性が確認できる。
As is clear from Fig. 4, the received signal X of each channel
It can be seen that the convergence speed is improved by normalizing k (t) using each power. This confirms the effectiveness of the present invention.

第5図に本発明のステレオ反響消去装置における一実施
例構成図を示す。第5図において、マイク40に人力さ
れた複数の音声信号はミキシング装置41によりステレ
オ用に編集され、左音声送話信号Loiおよび右音声送
話信号Rotとして、左チヤネル送信伝送路421およ
び右チヤネル送信伝送路42rに送出される。左チヤネ
ル受信伝送路437!より受信された信号Linは増幅
回路44Nを介して左スピーカ45βへ供給され、右チ
ヤネル受信伝送路43rより受信された信号Rinは増
幅回路44rを介して右スピーカ45rへ供給される。
FIG. 5 shows a configuration diagram of an embodiment of the stereo echo canceling device of the present invention. In FIG. 5, a plurality of audio signals manually inputted to the microphone 40 are edited into stereo by a mixing device 41, and are sent to the left channel transmission transmission line 421 and the right channel as a left audio transmission signal Loi and a right audio transmission signal Rot. It is sent out to the transmission transmission path 42r. Left channel reception transmission line 437! The signal Lin received from the right channel receiving transmission line 43r is supplied to the left speaker 45β via the amplifier circuit 44N, and the signal Rin received from the right channel reception transmission line 43r is supplied to the right speaker 45r via the amplifier circuit 44r.

左チヤネル送話信号Loiには左スピーカ451と右ス
ピーカ45rからの2種類の反響径路4611!、46
βrを介した反響信号LNとLrが、右チヤネル送信信
号Roiにも同様に2種類の反響径路46rf、46r
rを介した反響信号R1とRrが入力される。したがっ
て、それぞれの反響径路に対応した合計4種類の反響信
号を消去する反響消去回路47が必要となる。
The left channel transmission signal Loi has two types of echo paths 4611 from the left speaker 451 and the right speaker 45r! , 46
Similarly, the echo signals LN and Lr via βr are transmitted to the right channel transmission signal Roi via two types of echo paths 46rf and 46r.
Reverberation signals R1 and Rr are input via r. Therefore, an echo canceling circuit 47 is required to cancel a total of four types of echo signals corresponding to the respective echo paths.

ステレオ反響消去回路47において、481は左受信信
号記憶回路、48rは右受信信号記憶回路、491は反
響信号Lffの反響特性パラメータ記憶回路、49rは
反響信号Rrの反響特性パラメータ記憶回路、50gは
反響信号Lrの反響特性パラメータ記憶回路、50rは
反響信号Rffの反響特性パラメータ記憶回路、51は
反響信号L1の推定を行うための修正量算出回路、52
Aは反響信号Lrの推定を行うための修正量算出回路、
52rは反響信号R1の推定を行うための修正量算出回
路、51rは反響信号Rrの推定を行うための修正量算
出回路、532は反響信号L1の近似反響信号を得る重
畳積分回路、53rはRrの近似反響信号を得る重畳積
分回路、51はLrの近似反響信号を得る重畳積分回路
、54rはR7!の近似反響信号を得る重畳積分回路、
55では送話信号Loiから反響信号11およびLrの
近似反響信号を差し引く減算回路、55rは送話信号R
oiから反響信号RNおよびRrの近似反響信号を差し
引く減算回路、56.57は修正係数を発生する修正係
数制御回路である。
In the stereo echo cancellation circuit 47, 481 is a left received signal storage circuit, 48r is a right received signal storage circuit, 491 is a reverberation characteristic parameter storage circuit for the echo signal Lff, 49r is a reverberation characteristic parameter storage circuit for the echo signal Rr, and 50g is an echo. 50r is a reverberation characteristic parameter storage circuit for the signal Lr; 50r is a reverberation characteristic parameter storage circuit for the reverberation signal Rff; 51 is a correction amount calculation circuit for estimating the reverberation signal L1; 52
A is a correction amount calculation circuit for estimating the echo signal Lr;
52r is a correction amount calculation circuit for estimating the echo signal R1, 51r is a correction amount calculation circuit for estimating the echo signal Rr, 532 is a superposition integration circuit for obtaining an approximate echo signal of the echo signal L1, and 53r is Rr. 51 is a superimposition integration circuit that obtains an approximate echo signal of Lr, 54r is a superimposition integration circuit that obtains an approximate echo signal of Lr, and 54r is R7! A convolution integrator circuit that obtains an approximate echo signal of
55 is a subtraction circuit that subtracts the echo signal 11 and the approximate echo signal Lr from the transmission signal Loi, and 55r is the transmission signal R.
A subtraction circuit subtracts approximate echo signals of the echo signals RN and Rr from oi, and 56.57 is a modification coefficient control circuit that generates a modification coefficient.

ここで、右チャネルと左チャネルとは回路の動作が同じ
であるから、以下右チャネルに注目して、4     
  動作説明を行う。まず、右受信信号RinをX r
 (t)、左受信信号LinをX l (t)、右送信
信号R0をEr(tlと書き表すこととする。回路49
rの反響特性推定パラメータをHrri (tl (た
だし、i=o、1゜・−−−−−、M rr−1)とし
、回路50rの反響特性推定パラメータHrlj(t)
(ただし、j = 0 、 1 、−−−−−−−。
Here, since the circuit operation is the same for the right channel and the left channel, we will focus on the right channel below and
Explain the operation. First, the right received signal Rin is
(t), the left received signal Lin is written as X l (t), and the right transmitted signal R0 is written as Er (tl).Circuit 49
Let the reverberation characteristic estimation parameter of r be Hrri (tl (where i=o, 1°·----, M rr-1), and the reverberation characteristic estimation parameter of the circuit 50r Hrlj(t)
(However, j = 0, 1, -----------.

Mrl−1)とする。反響信号Rrの近似信号を?rr
(t)とし、反響信号R1の近似信号を?r II (
tlとする。このときステレオ反響消去回路の右チャネ
ルにおける適応時の動作式は式(20)〜(23)に従
って・ E r(tl=Y r(t) −?r r(tl −9
r II、(t)  −(27)ΔHrr 1(t)=
α2 ・Er(tiXr(t−i)/ΔHrl 1ft
)=α4 ・Er(tiX2(L−i)/Hr r 1
(tl=Hr r i (t−1)  +ΔHr r 
i (t)−・−−−−−−−−−(30”) Hr l 1(t)=Hr l i (L−1)  +
Δ)i r l i (tl・−・−−−−−−−(3
1) と表される。なお、収束係数α2およびα4は、CX 
2 : α4 = N r r : N r 1  −
一−−(29)とし、さらに収束の安定性を保証するた
めに両者の和が1.0以下となるように設定する。この
向路を用いることにより、通話品質上十分な反響消去■
が得られることは、第8図のシミュレーション結果より
明らかである。
Mrl-1). Approximate signal of echo signal Rr? rr
(t) and the approximate signal of the echo signal R1? r II (
Let it be tl. At this time, the operation formula for the right channel of the stereo echo cancellation circuit during adaptation is according to equations (20) to (23).
r II, (t) − (27)ΔHrr 1(t)=
α2 ・Er(tiXr(ti)/ΔHrl 1ft
)=α4 ・Er(tiX2(L-i)/Hr r 1
(tl=Hr r i (t-1) +ΔHr r
i (t)−・−−−−−−−−(30”) Hr l 1(t)=Hr l i (L−1) +
Δ) i r l i (tl・−・−−−−−−(3
1) It is expressed as. Note that the convergence coefficients α2 and α4 are CX
2: α4 = N r r : N r 1 −
(29), and the sum of both is set to be 1.0 or less in order to guarantee stability of convergence. By using this direction, echo cancellation is sufficient for improving call quality■
It is clear from the simulation results shown in FIG. 8 that the following can be obtained.

次に、第6図の回路により本発明第二の発明について説
明する。これはトレーニング1君号の印加回路である。
Next, the second invention of the present invention will be explained using the circuit shown in FIG. This is the application circuit for Training 1.

一般に、反響消去回路において十分な反響消去量を得る
ためには時間を要するので、トレーニング信号(例えば
使用帯域での特性パラメータを容易に求めることができ
る白色雑音)を用いて、反響特性パラメータをあらかじ
め求める手法が用いられている。これは、受信信号とし
てトレーニング信号を送出することにより実現される。
In general, it takes time to obtain a sufficient amount of echo cancellation in an echo cancellation circuit, so a training signal (for example, white noise whose characteristic parameters in the used band can be easily determined) is used to determine the echo characteristic parameters in advance. The required method is used. This is achieved by sending out a training signal as a received signal.

第6図で、反響消去回路58は第4図あるいは第3図に
記載した多ナヤネル反響消去回路と同じもの、符号59
はトレーニング信号発生回路、符号60は各チャネルご
との切り替えスイッチ、符号61はチャネルを選択する
選択スイッチ、符号62は送信伝送路22にトレーニン
グ信号を送出することを阻止するスイッチである。
In FIG. 6, the echo canceling circuit 58 is the same as the multi-nayanel echo canceling circuit shown in FIG. 4 or 3;
Reference numeral 60 indicates a training signal generation circuit, reference numeral 60 indicates a changeover switch for each channel, reference numeral 61 indicates a selection switch for selecting a channel, and reference numeral 62 indicates a switch for preventing transmission of the training signal to the transmission transmission path 22.

これを動作するには、通信を開始する前にトレーニング
信号発生回路59よりトレーニング信号を送出する。ま
ず第1チヤネルのみにトレーニング信号を流すようにス
イッチ61を切り替える。次にスイッチ60.にてトレ
ーニング信号発生回路59か    “らのトレーニン
グ信号を第1チヤネルに流すように接続し、スピーカ2
5.を鳴動させ、反響消去回路58を動作させ特性パラ
メータを求める。以下同様にして、スイッチ61を順次
切り替えてゆくことにより、すべてのチャネルの反響特
性パラメータを求めることができる。
To operate this, a training signal is sent out from the training signal generation circuit 59 before starting communication. First, switch 61 is changed so that the training signal is sent only to the first channel. Next, switch 60. The training signal from the training signal generation circuit 59 is connected to the first channel, and the speaker 2
5. is sounded, the echo cancellation circuit 58 is operated, and characteristic parameters are determined. Thereafter, by sequentially switching the switch 61 in the same manner, the reverberation characteristic parameters of all channels can be obtained.

なお、本図面では反響消去回路はディジタル信号処理回
路により構成されているがAD変換およびDA変換を省
略して表示している。特許請求の範囲第(11項および
第(2)項記載の反響消去回路パラメータの修正と記憶
を行う手段と、近似反響信号を得る手段については、当
実施例では非巡回形フィルタ構成で示したが、巡回形フ
ィルタでも同様に本発明を実施することができる。
In this drawing, the echo cancellation circuit is constituted by a digital signal processing circuit, but AD conversion and DA conversion are omitted. In this embodiment, the means for modifying and storing the echo cancellation circuit parameters and the means for obtaining the approximate echo signal described in Claims (11 and (2)) are shown in an acyclic filter configuration. However, the present invention can be implemented with a recursive filter as well.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の装置は、各反響径路ごと
の専用圧ツ特性パラメータ記憶回路を有し、共通の残差
信号を用い、各チャネルごとに制御された修正係数およ
び修正量算出回路を用いて反響特性パラメータを修正す
る回路構成をとっている。これにより多チヤネル反響消
去における所要の反響消去特性を得ることができる効果
がある。
As explained above, the device of the present invention has a dedicated pressure characteristic parameter storage circuit for each echo path, and a correction coefficient and correction amount calculation circuit controlled for each channel using a common residual signal. The circuit configuration uses the following to modify the reverberation characteristic parameters. This has the effect of making it possible to obtain the required echo cancellation characteristics in multi-channel echo cancellation.

また各チャネルの受信信号間の電力の差による収束速度
の劣化を防ぐために、各信号ごとにその電力を用いて正
規化を行う手段を備えるときには、これにより収束速度
を改善することができる。
Further, in order to prevent deterioration of the convergence speed due to the power difference between the received signals of each channel, when a means for normalizing each signal by using its power is provided, the convergence speed can be improved by this.

さらに、通信開始時にトレーニング信号を発生ピ□  
   し、各チャネルごとに反響径路に流す機能を有し
、反響消去量を速く得ることができる。
Additionally, a training signal is generated at the start of communication.
However, it has a function of directing the flow to the echo path for each channel, and can quickly obtain the amount of echo cancellation.

これらにより、本発明装置は多チヤネル反響消去におい
て、通話品質上から要求される所要エコー消去量を迅速
に得ることを可能とする。
With these features, the device of the present invention can quickly obtain the required amount of echo cancellation required from the viewpoint of speech quality in multi-channel echo cancellation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第一実施例装置のブロック構成図。 第2図はこの実施例回路のシミュレーション結果を示す
図。 第3図は本発明の他の一実施例装置のブロック構成図。 第4図はこの実施例装置のシミュレーションを示す図。 第5図はステレオ反響消去における本発明の一実施例構
成図。 第6図は本発明実施例のトレーニング信号を印加する場
合の構成図。 第7図は対地A、B間のスピーカ・マイク系からなるモ
ノラル通信の従来例反響消去構成図。 第8図はモノラル用反響消去回路の詳細図。 第9図は従来例モノラル通信の反響消去方式を多チヤネ
ル用に拡張した図。 ■・・・マイク、2・・・増幅回路、3・・・伝送路、
4・・・スピーカ、5・・・増幅回路、6・・・反響回
路、7・・・マイク、8・・・増幅回路、9・・・伝送
路、10・・・増幅回路、11・・・スピーカ、12・
・・反響径路、13.14・・・反響消去回路、15・
・・受信信号記憶回路、16・・・減算回路、17・・
・修正量算出回路、18・・・反響特性パラメータ記憶
回路、19・・・重畳積分回路、20・・・マイク、2
1・・・増幅回路、22・・・送信伝送路、23・・・
受信伝送路、24・・・増□幅回路、25・・・スピー
カ、26・・・反響径路、27・・・モノラル用反響消
去回路、28・・・多チヤネル反響消去回路、29・・
・受信信号記憶回路、30・・・修正係数制御回路、3
1・・・反響特性パラメータ記憶回路、32・・・修正
量算出回路、′33・・・重畳積分回路、34・・・電
力算出回路、35・・・加算回路、36・・・減算回路
、37・・・多チヤネル反響消去回路、38−・・修正
量算出回路、39・・・電力算出回路、40・・・マイ
ク、41・・・ミキシング装置、42・・・送信伝送路
、43・・・受信伝送路、44川増幅回路、45・・・
スヒ−カ、46・・・反響径路、47・・・ステレオH
消去回路、48・・・受信信号記憶回路、49.50・
・・反響特性パラメータ記憶回路、51.52・・・修
正量算出回路、53.54・・・重畳積分回路、55・
・・減算回路、56.57・・・修正係数制御回路、5
8・・・多チヤネル反響消去回路、59・・・トレーニ
ング信号発生回路、60・・・切り替えスイッチ、61
・・・選択スイッチ、62・・・阻止スイ・ノチ。
FIG. 1 is a block diagram of an apparatus according to a first embodiment of the present invention. FIG. 2 is a diagram showing simulation results of this example circuit. FIG. 3 is a block diagram of an apparatus according to another embodiment of the present invention. FIG. 4 is a diagram showing a simulation of this example device. FIG. 5 is a block diagram of an embodiment of the present invention in stereo echo cancellation. FIG. 6 is a configuration diagram when applying a training signal according to an embodiment of the present invention. FIG. 7 is a configuration diagram of a conventional example of echo cancellation for monaural communication consisting of a speaker/microphone system between ground A and B. Figure 8 is a detailed diagram of the monaural echo cancellation circuit. FIG. 9 is a diagram showing an extension of the conventional monaural communication echo cancellation method for multi-channel use. ■...Microphone, 2...Amplification circuit, 3...Transmission line,
4...Speaker, 5...Amplification circuit, 6...Reverberation circuit, 7...Microphone, 8...Amplification circuit, 9...Transmission line, 10...Amplification circuit, 11...・Speaker, 12・
...Echo path, 13.14...Echo cancellation circuit, 15.
... Received signal storage circuit, 16... Subtraction circuit, 17...
- Correction amount calculation circuit, 18... Reverberation characteristic parameter storage circuit, 19... Superposition integration circuit, 20... Microphone, 2
1... Amplification circuit, 22... Transmission transmission line, 23...
Reception transmission path, 24... Amplification circuit, 25... Speaker, 26... Echo path, 27... Monaural echo cancellation circuit, 28... Multi-channel echo cancellation circuit, 29...
- Received signal storage circuit, 30... correction coefficient control circuit, 3
DESCRIPTION OF SYMBOLS 1... Echo characteristic parameter memory circuit, 32... Correction amount calculation circuit, '33... Superposition integration circuit, 34... Power calculation circuit, 35... Addition circuit, 36... Subtraction circuit, 37... Multi-channel echo cancellation circuit, 38-... Correction amount calculation circuit, 39... Power calculation circuit, 40... Microphone, 41... Mixing device, 42... Transmission transmission line, 43... ...Reception transmission line, 44 amplifier circuit, 45...
Speaker, 46... Reverberation path, 47... Stereo H
Erasing circuit, 48... Received signal storage circuit, 49.50.
... Reverberation characteristic parameter storage circuit, 51.52 ... Correction amount calculation circuit, 53.54 ... Superposition integration circuit, 55.
... Subtraction circuit, 56.57 ... Correction coefficient control circuit, 5
8... Multi-channel echo cancellation circuit, 59... Training signal generation circuit, 60... Changeover switch, 61
... Selection switch, 62... Blocking switch.

Claims (6)

【特許請求の範囲】[Claims] (1)2以上の受信信号により、2以上の反響径路を介
する反響信号が発生し、この反響信号の和が送信信号に
入力される通信系で、送信信号に生成する近似反響信号
を減算する反響消去方式において、 1以上の遠隔地より伝送路を介して受信した2以上の各
受信信号をそれぞれ記憶する手段と、前記各受信信号ご
とに、各修正量を入力し、前記各受信信号から前記送信
信号に廻り込む各反響信号の各反響特性パラメータの修
正および記憶をそれぞれ行う手段と、 前記各受信信号ごとに、前記の各反響特性パラメータお
よび前記の各受信信号から各近似反響信号それぞれ生成
する手段と、 前記送信信号から前記の各近似反響信号の和を差し引い
た残差信号を出力する残差算出手段と、前記残差信号、
前記のすべての受信信号および各修正係数を用いて前記
各修正量を前記各受信信号ごとに求める修正量算出手段
と を備えたことを特徴とする多通路反響消去方式。
(1) In a communication system where two or more received signals generate echo signals via two or more echo paths, and the sum of these echo signals is input to the transmission signal, the generated approximate echo signal is subtracted from the transmission signal. In the echo cancellation method, there is provided means for respectively storing two or more received signals received from one or more remote locations via a transmission line, inputting each correction amount for each of the received signals, and inputting each correction amount for each of the received signals, and Means for modifying and storing each echo characteristic parameter of each echo signal that goes around the transmitted signal, and generating each approximate echo signal from each of the echo characteristic parameters and each received signal for each of the received signals. means for outputting a residual signal obtained by subtracting the sum of each of the approximate echo signals from the transmitted signal;
A multi-path echo cancellation system comprising: correction amount calculation means for calculating the correction amounts for each of the received signals using all of the received signals and the correction coefficients.
(2)修正量算出手段には、 残差信号、各受信信号および各修正係数を用いて各修正
量を各受信信号ごとに求める修正量算出手段を含む 特許請求の範囲第(1)項に記載の多通路反響消去方式
(2) The correction amount calculation means includes correction amount calculation means for calculating each correction amount for each received signal using the residual signal, each received signal, and each correction coefficient. Multi-passage echo cancellation method described.
(3)修正量算出手段には、 すべての修正係数の和の値が1以下になるように各修正
係数の値を定める手段を含む 特許請求の範囲第(2)項に記載の多通路反響信号消去
方式。
(3) The multi-path echo according to claim (2), wherein the correction amount calculation means includes means for determining the value of each correction coefficient so that the sum of all correction coefficients is 1 or less. Signal cancellation method.
(4)修正量算出手段には、 受信信号ごとの反響特性パラメータのインパルス応答長
に比例して各修正係数をそれぞれ設定する手段を含む 特許請求の範囲第(3)項に記載の多通路反響信号消去
方式。
(4) The multi-path echo according to claim (3), wherein the correction amount calculation means includes means for setting each correction coefficient in proportion to the impulse response length of the echo characteristic parameter for each received signal. Signal cancellation method.
(5)2以上の受信信号により、2以上の反響径路を介
する反響信号が発生し、この反響信号の和が送信信号に
入力される通信系で、送信信号に生成する近似反響信号
を減算する反響消去方式において、 1以上の遠隔地より伝送路を介して受信した2以上の各
受信信号をそれぞれ記憶する手段と、前記各受信信号ご
とに、各修正量を入力し、前記各受信信号から前記送信
信号に廻り込む各反響信号の各反響特性パラメータの修
正および記憶をそれぞれ行う手段と、 前記各受信信号ごとに、前記の各反響特性パラメータお
よび前記の各受信信号から各近似反響信号それぞれ生成
する手段と、 前記送信信号から前記の各近似反響信号の和を差し引い
た残差信号を出力する残差算出手段と、前記残差信号、
前記のすべての受信信号および各修正係数を用いて前記
各修正量を前記各受信信号ごとに求める修正量算出手段
と、 通信を開始する前にあらかじめトレーニング信号を発生
する手段と、 前記トレーニング信号を前記各受信信号として順次反響
径路に送出する切り替え手段と、 前記トレーニング信号を受信信号として反響径路に送出
している間に、伝送路への送出信号の送出を阻止する手
段と、 前記トレーニング信号による前記各反響信号特性パラメ
ータを算出後に、前記切り替え手段により伝送路と受信
信号を接続し、また前記阻止手段を開放して伝送路に送
信信号を送出する制御手段と を備えたことを特徴とする多通路反響消去方式。
(5) In a communication system where two or more received signals generate echo signals via two or more echo paths, and the sum of these echo signals is input to the transmission signal, the generated approximate echo signal is subtracted from the transmission signal. In the echo cancellation method, there is provided means for respectively storing two or more received signals received from one or more remote locations via a transmission line, inputting each correction amount for each of the received signals, and inputting each correction amount for each of the received signals, and Means for modifying and storing each echo characteristic parameter of each echo signal that goes around the transmitted signal, and generating each approximate echo signal from each of the echo characteristic parameters and each received signal for each of the received signals. means for outputting a residual signal obtained by subtracting the sum of each of the approximate echo signals from the transmitted signal;
correction amount calculation means for calculating the respective correction amounts for each of the received signals using all of the received signals and each correction coefficient; means for generating a training signal in advance before starting communication; switching means for sequentially transmitting each of the received signals to the echo path; means for blocking transmission of the transmission signal to the transmission path while transmitting the training signal to the echo path as the received signal; The apparatus is characterized by comprising a control means for connecting the transmission path and the received signal by the switching means after calculating each of the echo signal characteristic parameters, and for opening the blocking means and sending out the transmission signal to the transmission path. Multi-passage echo cancellation method.
(6)トレーニング信号を発生する手段は、トレーニン
グ信号を反響径路と同じ種類だけ発生する手段を含む 特許請求の範囲第(5)項に記載の多通路反響消去方式
(6) The multi-path echo cancellation system according to claim (5), wherein the means for generating training signals includes means for generating the same types of training signals as there are echo paths.
JP19526884A 1984-09-18 1984-09-18 Multi-path echo erasure system Pending JPS6172420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19526884A JPS6172420A (en) 1984-09-18 1984-09-18 Multi-path echo erasure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19526884A JPS6172420A (en) 1984-09-18 1984-09-18 Multi-path echo erasure system

Publications (1)

Publication Number Publication Date
JPS6172420A true JPS6172420A (en) 1986-04-14

Family

ID=16338325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19526884A Pending JPS6172420A (en) 1984-09-18 1984-09-18 Multi-path echo erasure system

Country Status (1)

Country Link
JP (1) JPS6172420A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114552A (en) * 2008-11-05 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Echo cancellation device, method, program, and recording medium thereof
JP2011114696A (en) * 2009-11-27 2011-06-09 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for echo cancellation
JP2011114695A (en) * 2009-11-27 2011-06-09 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for echo cancellation
JP2015028639A (en) * 2008-11-20 2015-02-12 アップル インコーポレイテッド System for active noise control with audio signal compensation
WO2016024345A1 (en) * 2014-08-13 2016-02-18 三菱電機株式会社 Echo canceler device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114552A (en) * 2008-11-05 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Echo cancellation device, method, program, and recording medium thereof
JP2015028639A (en) * 2008-11-20 2015-02-12 アップル インコーポレイテッド System for active noise control with audio signal compensation
JP2011114696A (en) * 2009-11-27 2011-06-09 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for echo cancellation
JP2011114695A (en) * 2009-11-27 2011-06-09 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for echo cancellation
WO2016024345A1 (en) * 2014-08-13 2016-02-18 三菱電機株式会社 Echo canceler device
CN106576205A (en) * 2014-08-13 2017-04-19 三菱电机株式会社 Echo canceler device
JPWO2016024345A1 (en) * 2014-08-13 2017-04-27 三菱電機株式会社 Echo canceller
US9818426B2 (en) 2014-08-13 2017-11-14 Mitsubishi Electric Corporation Echo canceller
CN106576205B (en) * 2014-08-13 2019-06-21 三菱电机株式会社 Echo cancelling device
DE112014006865B4 (en) 2014-08-13 2022-06-09 Mitsubishi Electric Corporation echo canceller

Similar Documents

Publication Publication Date Title
US6885750B2 (en) Asymmetric multichannel filter
JP3199155B2 (en) Echo canceller
JP3654470B2 (en) Echo canceling method for subband multi-channel audio communication conference
US7925008B2 (en) Multi-channel echo cancel method, multi-channel sound transfer method, stereo echo canceller, stereo sound transfer apparatus and transfer function calculation apparatus
JP5177820B2 (en) System and method for enhanced subjective stereo audio
US7477735B2 (en) System and method for enhanced stereo audio
ES2269137T3 (en) CANCELLATION OF THE ACOUSTIC ECO.
JPH10190848A (en) Method and system for canceling acoustic echo
JPH04123621A (en) Echo eraser
JP3753996B2 (en) Echo suppression device, echo suppression method and program
JPS6172420A (en) Multi-path echo erasure system
JPH0813012B2 (en) Echo canceller for pseudo stereo sound
JPH09116613A (en) Echo canceller
JP2005286796A (en) Loudspeaker call device
JP3268572B2 (en) Apparatus and method for canceling echo
JP2002223182A (en) Echo canceling method, its device, its program and its recording medium
JP2938076B2 (en) Echo canceller device
JP3486140B2 (en) Multi-channel acoustic coupling gain reduction device
JP3403655B2 (en) Method and apparatus for identifying unknown system using subband adaptive filter
Buchner et al. An acoustic human-machine interface with multi-channel sound reproduction
JPH09204195A (en) Transmission system for correlation signal
JP2585279B2 (en) Eco-Cancer
JP3707572B2 (en) Subband echo cancellation method
JP3355594B2 (en) Echo canceller device
JP2002252577A (en) Method and system for canceling multichannel acoustic echo, its program and its recording medium