JPS6172403A - Antenna system - Google Patents

Antenna system

Info

Publication number
JPS6172403A
JPS6172403A JP19615684A JP19615684A JPS6172403A JP S6172403 A JPS6172403 A JP S6172403A JP 19615684 A JP19615684 A JP 19615684A JP 19615684 A JP19615684 A JP 19615684A JP S6172403 A JPS6172403 A JP S6172403A
Authority
JP
Japan
Prior art keywords
frequency
reflection mirror
radio wave
antenna
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19615684A
Other languages
Japanese (ja)
Inventor
Shigeru Sato
滋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19615684A priority Critical patent/JPS6172403A/en
Publication of JPS6172403A publication Critical patent/JPS6172403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective

Abstract

PURPOSE:To reduce the deterioration in a radiation pattern by adopting a part of a sub reflection mirror as a frequency selective reflection mirror so as to make the beam width of each frequency band nearly equal to each other. CONSTITUTION:The frequency selecting reflection mirror FSR11 acts like reflecting a radio wave in frequency f1 and transmitting that in frequency f2, and a radio wave irradiated to the sub reflection mirror 2 from a primary radiator 3 with an apparent angle of thetam0 of a main reflection mirror 1. The radio wave irradiated with an apparent angle of thetam1 is irradiated in the main reflection mirror Dm1 in an angular range smaller than the angle thetam1 and transmitted through without being reflected on the FSR11 in an angular range larger than the thetam1. Further, the radio wave reflected from the mirror 1 is blocked by the mirror 2 and since the FSR11 shows transmittivity to the f2, the equivalent blocking area is Ds1. Then the relation of Ds0/Dm0approx.=Ds1/Dm1 with respect to the f1, f2 is established. Thus, the relation of lambda1/Dm0approx.=lambda2/Dm1 is obtained, the lambda/D is made nearly equal in the common frequency and the deterioration in the radiation pattern is reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は周波数を共用するアンテナ1こ関するものであ
り、さらIこ詳しくは共用する周波数におけるアンテナ
ビーム幅をほぼ等しくするよう身こする装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an antenna 1 that shares a frequency, and more particularly, to a device that makes antenna beam widths approximately equal at a shared frequency. It is something.

〔従来の技術〕[Conventional technology]

従来より衛星通信、あるいは、ロケット、移動衛星など
の追尾には、カセグレンアンテナ(又はグレゴリアンテ
ナ)が用いられている。これらのアンテナは通常、2つ
以上の周波数(例えば、6/4GHz、 80/20G
Hz )で使用されている。
Conventionally, Cassegrain antennas (or Gregorian antennas) have been used for satellite communications or for tracking rockets, mobile satellites, and the like. These antennas typically operate at two or more frequencies (e.g. 6/4GHz, 80/20G
Hz) is used.

一方、これらのアンテナは、通常、非常に微弱な電波を
受信するために、G/Tの高い・ものが要求される。
On the other hand, these antennas usually require a high G/T in order to receive very weak radio waves.

ここで、Gはアンテナ利得、Tはアンテナシステム雑音
温度である。従ってG/Tを高くする1こは、アンテナ
利4Gを高(するか、アンテナシステムの雑音温度Tを
低くするかである。アンテナシステム雑音Tは、アンテ
ナ単体の雑音だけでなく、接続される受信機(例えばL
NA=Low NoiseAmp、)の雑音温度にも関
係する。ここでは、アンテナ利得G、1こついて考える
Here, G is the antenna gain and T is the antenna system noise temperature. Therefore, the first way to increase G/T is to increase the antenna gain (4G) or to lower the noise temperature T of the antenna system.The antenna system noise T is not only the noise of the antenna itself, but also the receiver (e.g. L
It is also related to the noise temperature of NA=Low NoiseAmp, ). Here, consider the antenna gain G, 1.

一般普ζアンテナ利PJGは次式のように与えられる。The general general ζ antenna profit PJG is given as follows.

ここで、π= 8.1415 (円周率)、D=アンテ
ナ直径、 λ:波長、η:アンテナ開口能率 である。
Here, π=8.1415 (pi), D=antenna diameter, λ: wavelength, η: antenna aperture efficiency.

一方、このときのアンテナ主ビームの8dB低下点幅θ
→は次式のよう1こなる。
On the other hand, the 8 dB drop point width θ of the antenna main beam at this time
→ becomes one cycle as shown in the following equation.

λ θ−3= k −(2J 仁こで、kは定数である。λ θ−3= k −(2J In this case, k is a constant.

式(1) 、 <21から分るように、アンテナ利得G
を高くすると必然的にアンテナビーム幅は狭くなる。
As can be seen from equation (1), <21, the antenna gain G
If the antenna beam width is increased, the antenna beam width will inevitably become narrower.

アンテナビーム幅が狭くなるとこれIζ従って、アンテ
ナを目標(例えば衛星、ロケットなど)に指向させる精
度も非常に厳しくする必要が生じて(る。しかしながら
、この精度には限界があり、また2つ以上の周波数で共
用するアンテナにおいては、一方の一周波数帯で使用精
度を満足しても、もう一方の周波数帯では、使用精度を
満足しない場合が生じてくるという問題がでてくる。
As the antenna beam width becomes narrower, the precision with which the antenna is pointed toward the target (e.g., satellite, rocket, etc.) must be very strict. However, there is a limit to this precision, and In an antenna that is shared by two frequencies, a problem arises in that even if the usage accuracy is satisfied in one frequency band, the usage accuracy may not be satisfied in the other frequency band.

かかる問題は特に大口径(Dの大きいもの)アンテナで
、周波数の高い(人の短いもの)所で共用しようとする
場合1ζ生じてくる。
This problem arises especially when a large-diameter (large D) antenna is used in a place where the frequency is high (where people are short).

・d    第1図は従来用いられているカセグレンア
ンテナの一般的な概念図を示す。
・d Figure 1 shows a general conceptual diagram of a conventionally used Cassegrain antenna.

図において(1)は主反射鏡%(2)は副反射鏡、(3
)は−次放射器、(4)は給電装置、(6) 、 (6
)は−次放射器位相中心より見込角θm、θmlで副反
射鏡に向う電波、(7) 、 (8)は電波(s) 、
 (a)が副反射鏡で反射され、主反射鏡に向う電波、
(9) 、 QOは、電波(7) 、 (8)が主反射
鏡で反射され、空間へ放射される電波である。
In the figure, (1) is the main reflector% (2) is the sub-reflector, (3
) is the -order radiator, (4) is the power supply device, (6), (6
) is the radio wave heading towards the sub-reflector at line-of-sight angles θm and θml from the -order radiator phase center, (7) and (8) are the radio waves (s),
(a) is a radio wave reflected by the sub-reflector and directed towards the main reflector,
(9) and QO are radio waves (7) and (8) that are reflected by the main reflecting mirror and radiated into space.

通常のアンテナの設計においては、前述のようにアンテ
ナ利得Gを大きくするため、第2図の振幅特性に示すよ
うに一次放射器から放射されるパターンを共用している
周波数Iこよって出来るだけ変らないようにすることに
すると、最終的にアンテナから放射される電波(9)、
αQは、周波数によって変化しないので、どの周波数に
対してもアンテナ開口Dm、 Dmlを同じように使用
されることになる。
In the design of a normal antenna, in order to increase the antenna gain G as mentioned above, the frequency I, which shares the pattern radiated from the primary radiator, is changed as much as possible, as shown in the amplitude characteristics of Figure 2. If we decide to avoid this, the radio waves radiated from the antenna (9),
Since αQ does not change depending on the frequency, the antenna apertures Dm and Dml are used in the same way for any frequency.

所で、アンテナ利4GはDm/λに、アンテナビーム幅
はλ/Dmに比例するので、前述のようにビーム幅は使
用している周波数に比例して狭くなり、従って指向精度
も周波数に比例して厳しくなってくるという問題がでて
くる。一方、この問題を解決する一方策として、−次放
射器の放射パターンを第8図の振幅特性」ζ示すように
、使用する周波数で周波数特性を大きくして、周波数f
2においては実際1ζ主反射鏡を有効に使用する範囲を
Dm1相当にして、波長対生反射鏡の比を等価的にλ/
D m 1としてビーム幅を広くする方法が考えられる
By the way, the antenna gain 4G is proportional to Dm/λ and the antenna beam width is proportional to λ/Dm, so as mentioned above, the beam width becomes narrower in proportion to the frequency used, and therefore the pointing accuracy is also proportional to the frequency. The problem arises that it becomes more difficult. On the other hand, as a way to solve this problem, the radiation pattern of the -order radiator is increased by increasing the frequency characteristic at the frequency to be used, as shown in Figure 8, "amplitude characteristic" ζ.
2, the range in which the 1ζ main reflector is effectively used is equivalent to Dm1, and the ratio of the wavelength to the live reflector is equivalently λ/
One possible method is to widen the beam width as D m 1.

しかし、この方法では周波数ftlζおける副反射鏡対
生反射鏡の比= Ds/Dm Gζ対して周波数12(
fl<fl)における副反射鏡対主反射鏡の比はDs/
Dm二Ds/I)ml となる。この比DS/Dmは通
常110周波数で最適となるように選定される。このよ
うにするとflの周波数では等価的にDs/Dmlとな
り、例えば2:h=f2の関係にあるflの周波数で、
ビーム幅を同じにするには、Dm=20mlとなり、D
 s/Dml = 2 D s/Dmとなる。
However, in this method, the ratio of the sub-reflector to the main reflector at frequency ftlζ = Ds/Dm For Gζ, the frequency 12 (
The ratio of the sub-reflector to the main reflector when fl<fl) is Ds/
Dm2Ds/I)ml. This ratio DS/Dm is usually selected to be optimal at 110 frequencies. In this way, at the frequency of fl, it becomes equivalently Ds/Dml, for example, at the frequency of fl with the relationship 2:h=f2,
To make the beam width the same, Dm = 20ml, and D
s/Dml = 2D s/Dm.

従って、flの周波数では、Ds /Dm1は最適な値
Ds/Dmの2倍もの値1ζなり、利得、所軸、広角放
射パターンの劣化を生じる原因となる。
Therefore, at the frequency fl, Ds/Dm1 becomes 1ζ, which is twice the optimum value Ds/Dm, causing deterioration of the gain, axis, and wide-angle radiation pattern.

〔発明の概要〕[Summary of the invention]

本発明は、以上のような欠点にかんがみ、副反射鏡の一
部を周波数選択性反射鏡(以下FSRと略す)として、
共用する2つの周波数でビーム幅をほぼ同じとし、かつ
等価的な主反射鏡対副反射鏡の比もできる限シ最適iζ
近づけるよう1こして、利得放射パターンの劣化をなく
そうとするものである。
In view of the above drawbacks, the present invention uses a part of the sub-reflector as a frequency selective reflector (hereinafter abbreviated as FSR),
Optimal iζ as long as the beam widths are almost the same for the two shared frequencies and the ratio of the main reflector to the sub-reflector is equivalent.
This is an attempt to eliminate deterioration of the gain radiation pattern by making the gain radiation pattern closer.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を第4図、第5図に基すいて説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 4 and 5.

第4図は、この発明の一実施例における一次放射器の放
射パターンの説明図である。
FIG. 4 is an explanatory diagram of the radiation pattern of the primary radiator in one embodiment of the present invention.

第6図はこの発明の実施例である。FIG. 6 shows an embodiment of this invention.

第6図1ζおいて、(1)は主反射鏡、(2)は副反射
鏡、(3)は−次放射器、(4)は給電部、(5) 、
 (6)は各々−次放射器の位相中心からの見込角θm
0.θm1で放射される電波、(7) 、 (8)は電
波(5) 、 (6)が副反射鏡で反射され、主反射鏡
に向う電波、(9) 、 013は電波(7)。
In Fig. 6 1ζ, (1) is the main reflecting mirror, (2) is the sub-reflecting mirror, (3) is the -order radiator, (4) is the power feeding section, (5),
(6) is the angle of view θm from the phase center of the −order radiator, respectively.
0. The radio waves radiated at θm1 (7) and (8) are the radio waves (5) and (6) that are reflected by the sub-reflector and head towards the main reflector, and (9) and 013 are the radio waves (7).

(8)が主反射鏡で反射され空間へ放射される電波、(
ロ)はFSRである。なお、FSRとしては例えば周波
数flの信号は反射し周波数f2の信号は通過させる所
定の大きさのメツシュを有する金網をあげることができ
る(ただしfI<hとする)。
(8) is a radio wave reflected by the main reflector and radiated into space, (
b) is FSR. Note that the FSR may be, for example, a wire mesh having a mesh of a predetermined size that reflects the signal of frequency fl and allows the signal of frequency f2 to pass (provided that fI<h).

次に動作を説明する。今、第5図において、−次放射器
(3)から、第4図のような放射パターンが放射される
ものとする。なおこの放射パターンは一次放射器(3)
の位相中心からの見込角θm6 +θmlに対応する放
射パターンとする。
Next, the operation will be explained. Now, in FIG. 5, it is assumed that a radiation pattern as shown in FIG. 4 is radiated from the -order radiator (3). Note that this radiation pattern is the primary radiator (3)
The radiation pattern corresponds to the angle of view θm6 +θml from the phase center of .

FSR(ロ)は、flの周波数1こ対しては、反射し、
f2の周波数着こ対しては、透過するように作用すると
一次放射器(3)からの見込角θm6で副反射鏡(2)
に吹き付けられた電波は有効−こ主反射鏡(1)のDm
、)に照射される。
FSR (b) reflects the frequency 1 of fl,
For the frequency of f2, when it acts to transmit, the sub-reflector (2) has a line of sight angle θm6 from the primary radiator (3).
The radio waves blown onto the main reflector (1) are effective - the Dm of the main reflector (1)
,) is irradiated.

一方、見込角θm、で吹き付けられた電波は、見込角θ
m1より小さい角度範囲内については有効に主反射鏡D
m1円に照射され、θmlより大きい角度範囲について
はFSR(6)により反射されずに透過する。
On the other hand, the radio waves blown at the line-of-sight angle θm are
Within the angle range smaller than m1, the main reflector D is effectively
The light is irradiated onto a circle m1, and the angle range larger than θml is transmitted without being reflected by the FSR (6).

また、主反射鏡(1)から反射され、空間へ向う電イ 
 波も副反射鏡(2月ζよってプロキングされるが、F
SR(ロ)は、fオの周波数に対しては透過性であるの
で等価的なブロッキング面積はDslとなり主反射鏡対
、副反射鏡比は、1s−hの周波数に対してDs/Dm
6 = Dsl 70m1 1こできる。
In addition, the electric current reflected from the main reflector (1) and directed toward space.
The waves are also proking by the secondary reflector (February ζ, but F
Since SR (b) is transparent to the frequency of fo, the equivalent blocking area is Dsl, and the ratio of the main reflector pair to the sub-reflector is Ds/Dm for the frequency of 1s-h.
6 = Dsl 70m1 1 can be done.

従って、周波数fl−ftとDmt / Dm6をft
 / j”2 = Dm 1/Dm6のように選べば、 ^t/Dm6;λz/Dmt  となり、共用する周波
数でλ/Dをほぼ同じIζでき、かつt述のように、D
s/Dmoz Dsl/Dml lζな名よう1ζFS
Rの大きさを決定すれば利得の低下、放射パターンの劣
化も小さくできる。
Therefore, let the frequency fl-ft and Dmt/Dm6 be ft
/ j”2 = Dm 1/Dm6, it becomes ^t/Dm6;λz/Dmt, and λ/D can be almost the same Iζ at the shared frequency, and as mentioned in t, D
s/Dmoz Dsl/Dml lζ name 1ζFS
By determining the magnitude of R, the decrease in gain and the deterioration of the radiation pattern can be reduced.

以上は2つの周波数の共用について説明したが、多数の
周波数についても同様の考えが適用できる。
Although the above explanation has been about sharing two frequencies, the same idea can be applied to a large number of frequencies.

また−次放射器としてホーン給電を例に取って説明した
が、集束ビーム給電方式■ζ対しても適用できる。
Furthermore, although the explanation has been given using a horn feeding system as an example of a -order radiator, the present invention can also be applied to a focused beam feeding system ■ζ.

〔発明の効果〕〔Effect of the invention〕

以上のようIζ、本発明Iζよれば、副反射健の一部に
FSRを配置することによって、2つ以上の周波数共用
アンテナにおけるビーム幅をどの周波数lζおいてもほ
ぼ同じにでき、かつ放射特性の劣化も小さくすることが
できる効果を有する。
As described above, according to the present invention Iζ, by arranging the FSR in a part of the sub-reflector, the beam width of two or more frequency sharing antennas can be made almost the same at any frequency lζ, and the radiation characteristics This has the effect of reducing the deterioration of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のカセグレンアンテナの概念図、第2図、
第8図は、−次放射器の放射パターンを説明する図、第
4図は、この発明の実施例における一次放射器の放射パ
ターンを説明する図、第6図は、この発明の実施例に係
るカセグレンアンテナの概念図、を示す。 (1)は主反射鏡、(2目J副反射鏡、(3)は−次放
射器、(4)は給電部、(506)は−次放射詣から放
射される電波、(7) (8)は電波(5) (6)が
副反射鏡で反射される電波、(9)αQは電波<7) 
(8)が主反射鏡で反射される電波、(ロ)はFSRを
示す。 なお、図中、同一符号は同一、又は相当部分を示す。
Figure 1 is a conceptual diagram of a conventional Cassegrain antenna; Figure 2 is a conceptual diagram of a conventional Cassegrain antenna;
FIG. 8 is a diagram for explaining the radiation pattern of the -order radiator, FIG. 4 is a diagram for explaining the radiation pattern of the primary radiator in the embodiment of the invention, and FIG. 6 is a diagram for explaining the radiation pattern of the primary radiator in the embodiment of the invention. A conceptual diagram of such a Cassegrain antenna is shown. (1) is the main reflector, (2nd J sub-reflector, (3) is the -order radiator, (4) is the feeder, (506) is the radio wave radiated from the -order radiator, (7) ( 8) is the radio wave (5) (6) is the radio wave reflected by the sub-reflector, (9) αQ is the radio wave < 7)
(8) shows the radio wave reflected by the main reflecting mirror, and (b) shows the FSR. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 2つ以上の周波数を共用するアンテナにおいて、副反射
鏡の一部を周波数選択性反射鏡とすることにより共用し
ている各周波数帯のビーム幅をほぼ等しくしたことを特
徴とするアンテナ装置。
An antenna device that uses two or more frequencies in common, characterized in that a part of the sub-reflector is a frequency-selective reflector so that the beam widths of the respective frequency bands that are shared are made approximately equal.
JP19615684A 1984-09-17 1984-09-17 Antenna system Pending JPS6172403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19615684A JPS6172403A (en) 1984-09-17 1984-09-17 Antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19615684A JPS6172403A (en) 1984-09-17 1984-09-17 Antenna system

Publications (1)

Publication Number Publication Date
JPS6172403A true JPS6172403A (en) 1986-04-14

Family

ID=16353134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19615684A Pending JPS6172403A (en) 1984-09-17 1984-09-17 Antenna system

Country Status (1)

Country Link
JP (1) JPS6172403A (en)

Similar Documents

Publication Publication Date Title
US4626863A (en) Low side lobe Gregorian antenna
EP3419117B1 (en) Horn antenna
US4376940A (en) Antenna arrangements for suppressing selected sidelobes
JP2000315910A (en) Multimode, multistep antenna power feeding horn
US4525719A (en) Dual-band antenna system of a beam waveguide type
EP0741917B1 (en) Reconfigurable, zoomable, turnable, elliptical-beam antenna
JP3322897B2 (en) Mirror modified antenna
JPS6172403A (en) Antenna system
US4356494A (en) Dual reflector antenna
US4516129A (en) Waveguide with dielectric coated flange antenna feed
JPH0119644B2 (en)
EP0136817A1 (en) Low side lobe gregorian antenna
JP3043768B2 (en) Mirror modified antenna
JP3034262B2 (en) Aperture antenna device
JPH0119641B2 (en)
JP2889084B2 (en) Modification method of double reflector antenna device
JPH0385005A (en) Dual reflection mirror antenna
JPS6324705A (en) Double reflection mirror antenna
JPS58175302A (en) Antenna device
JPS6165606A (en) Antenna system
JPH033504A (en) Dual reflection mirror antenna
JPS5825702A (en) Parabolic antenna device
JP2002135042A (en) Cassegrain antenna
JPS58103204A (en) Antenna device
JPS5944108A (en) Double reflecting mirror antenna commonly used for multi-frequency band