JPS6171837A - Catalyst and method for preparing ethylene oxide from ethylene - Google Patents

Catalyst and method for preparing ethylene oxide from ethylene

Info

Publication number
JPS6171837A
JPS6171837A JP59191732A JP19173284A JPS6171837A JP S6171837 A JPS6171837 A JP S6171837A JP 59191732 A JP59191732 A JP 59191732A JP 19173284 A JP19173284 A JP 19173284A JP S6171837 A JPS6171837 A JP S6171837A
Authority
JP
Japan
Prior art keywords
catalyst
silver
carrier
pores
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59191732A
Other languages
Japanese (ja)
Other versions
JPH0529501B2 (en
Inventor
Naohiro Nojiri
野尻 直弘
Yukio Sakai
幸雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP59191732A priority Critical patent/JPS6171837A/en
Priority to EP85110458A priority patent/EP0172565B1/en
Priority to DE8585110458T priority patent/DE3582097D1/en
Priority to US06/767,831 priority patent/US4690913A/en
Publication of JPS6171837A publication Critical patent/JPS6171837A/en
Priority to US07/017,686 priority patent/US4786624A/en
Publication of JPH0529501B2 publication Critical patent/JPH0529501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To enhance the selectivity of reaction, by supporting silver particles by the outer surface of a porous carrier and the inner surfaces of fine pores thereof while adjusting the average particle size of the silver particles on the inner surfaces of the fine pores to 0.05-0.4mum and specifying the silver support ratios thereof. CONSTITUTION:A porous carrier comprising a molded body of a refractory substance is impregnated with an aqueous solution containing a silver salt and amine being a complex forming agent and the impregnated carrier is contacted with overheated steam at 120-500oC to obtain a catalyst for preparing ethylene oxide wherein silver is distributed on the outer surface of the porous carrier and the inner surfaces of fine pores thereof. In the obtained catalyst, silver particles with a particle size of 0.05-0.4mum are distributed on the outer surface of the carrier and the inner surfaces of the fine pores thereof and the relation of I>=0.65S is present between the silver support ratio S of the outer surface of the catalyst and the silver support ratio I of the innermost layer part thereof.

Description

【発明の詳細な説明】 本発明は、エチレンを分子状酸素で酸化してエチレンオ
キシドを製造するための新規な銀触媒およびその製造方
法に関するものでわる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel silver catalyst for producing ethylene oxide by oxidizing ethylene with molecular oxygen and a method for producing the same.

近来上記反応に用いられる銀触媒の調製法としてはアン
モニアも含めたアミンによシ銀塩を錯化した水性溶液を
多孔質耐火性担体に苫浸し、空気などによシ加熱して担
体上に銀を析出させる方法が公知である。アミンを使用
することにより、低温で分解還元される銀塩を該アミン
錯体として均一な水性溶液とすることができ、このため
微細で均一な銀粒子を耐火性物質の成形体からなる多孔
質担体上に析出させることが可能で、優秀な触媒を調製
し得るとされている。特公昭55−22146号公報に
よれば、銀塩含有水溶液から銀を析出させて触媒とする
ためには、100〜37S℃において2〜8時間の加熱
が必要で、加熱媒体として空気が使用されている。本発
明者らによれば上記加熱方式では触媒粒子内において銀
担持量の不均一な分布が生じ、しかも同公報の実施例に
記載されている加熱温度と時間を採用すると銀粒子の凝
集・生長が起ることが観察された。例えば空気中で27
0℃、2時間焼成して調製した、表面積0.4ぜ/9の
担体上にAQを13重量%担持した触媒では、担持され
た銀粒子の多くのものが粒子径0.4μ以上となシ、銀
粒子が大きく、かつ触媒粒子中に不均一に分布している
ことが確認される。この為充分な触媒性能を得ることが
できない。
Recently, as a method for preparing the silver catalyst used in the above reaction, a porous refractory carrier is soaked with an aqueous solution in which a silver salt is complexed with an amine containing ammonia, and then the silver catalyst is heated with air or the like and placed on the carrier. Methods of depositing silver are known. By using an amine, a silver salt that is decomposed and reduced at low temperatures can be made into a homogeneous aqueous solution as the amine complex, and for this reason, fine and uniform silver particles can be transferred to a porous carrier made of a molded body of a refractory material. It is said that it is possible to prepare an excellent catalyst by precipitating it on the surface. According to Japanese Patent Publication No. 55-22146, in order to precipitate silver from a silver salt-containing aqueous solution and use it as a catalyst, heating for 2 to 8 hours at 100 to 37 S°C is required, and air is used as the heating medium. ing. According to the present inventors, the heating method described above causes non-uniform distribution of the amount of silver supported within the catalyst particles, and furthermore, when the heating temperature and time described in the examples of the same publication are adopted, the aggregation and growth of the silver particles occur. was observed to occur. For example, 27 in the air
In a catalyst prepared by baking at 0°C for 2 hours and supporting 13% by weight of AQ on a carrier with a surface area of 0.4/9, most of the supported silver particles had a particle size of 0.4μ or more. It is confirmed that the silver particles are large and non-uniformly distributed in the catalyst particles. For this reason, sufficient catalytic performance cannot be obtained.

本発明によれば、担体上に担持された銀粒子が微小且つ
均一で、このため触媒としての活性が高く、さらに銀粒
子の担持量が触媒の外表層部から内層部にわたって非常
に均一であり、反応に伴なう銀粒子の凝集速度が遅く、
触媒寿命が長いエチレンからエチレンオキシドを製造す
るための新規な触媒、及びその製造方法が提供される。
According to the present invention, the silver particles supported on the carrier are minute and uniform, and therefore have high activity as a catalyst, and furthermore, the amount of silver particles supported is extremely uniform from the outer surface layer to the inner layer of the catalyst. , the rate of aggregation of silver particles accompanying the reaction is slow;
A novel catalyst for producing ethylene oxide from ethylene with a long catalyst life and a method for producing the same are provided.

本発明の触媒は、その上、反応活性種である銀を修飾し
反応の選択性を改善する効果のあるカチオン成分及びア
ニオン成分の担持量の触媒粒子内分布が均一であり、銀
を均一に修飾するので生成するエチレンオキシドの選択
性が向上する。
Furthermore, the catalyst of the present invention has a uniform distribution within the catalyst particles of the supported amounts of cationic components and anionic components, which have the effect of modifying silver, which is a reaction active species, and improving the selectivity of the reaction. The modification improves the selectivity of the ethylene oxide produced.

さらに、本発明の製造方法によれば、従来技術の欠点を
克服した上記特徴を有する触媒を、殊に低温、短時間で
作り得ることができる利点がある。
Furthermore, the production method of the present invention has the advantage that a catalyst having the above-mentioned characteristics that overcomes the drawbacks of the prior art can be produced particularly at low temperatures and in a short time.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明によれば、銀塩及び錯体形成剤としてのアミンを
含有する水性溶液を耐火性物質の成形体からなる多孔質
担体に含浸し、該担体を過熱水蒸気で加熱して該担体上
に銀を析出させることにより上述した特徴及び利点を有
するエチレンからエチレンオキシド製造用の触媒を製造
することができる。
According to the present invention, an aqueous solution containing a silver salt and an amine as a complexing agent is impregnated into a porous carrier made of a shaped body of a refractory material, and the carrier is heated with superheated steam to deposit silver onto the carrier. A catalyst for the production of ethylene oxide can be produced from ethylene having the above-mentioned characteristics and advantages by precipitating it.

本発明の製造方法においては、銀塩及び錯体形成剤とし
てのアミンを含有する水性溶液を含浸した該多孔質担体
が、該水性溶液の少くとも一部を含有する状態で、12
0℃以上の温度の過熱水蒸気と接触させることによシ該
担体上に銀を析出させることが好ましい。特に、銀塩及
び錯体形成剤としてのアミンを含有する水性溶液を含浸
した該多孔質担体が、該水性溶液中の水性媒体の乾燥率
(除去率)が0〜70重量%、好ましくは0〜50重量
%の状態で、該多孔質担体を120〜500℃、好まし
くは120〜300°C1就中150〜260℃の温度
の過熱水蒸気と接触させることによシ該担体上に銀を析
出させることが有利である。
In the production method of the present invention, the porous carrier impregnated with an aqueous solution containing a silver salt and an amine as a complex forming agent contains at least a part of the aqueous solution for 12
Preferably, silver is deposited on the support by contacting it with superheated steam at a temperature of 0° C. or higher. In particular, the porous carrier impregnated with an aqueous solution containing a silver salt and an amine as a complex forming agent has a drying rate (removal rate) of the aqueous medium in the aqueous solution of 0 to 70% by weight, preferably 0 to 70% by weight. Silver is precipitated on the carrier by contacting the porous carrier with superheated steam at a temperature of 120 to 500°C, preferably 120 to 300°C, particularly 150 to 260°C, in a state of 50% by weight. That is advantageous.

本発明の上記製造方法で用いる銀塩としては、アミン(
アンモニアを含む)と水性媒体に可溶の錯体を形成した
場合に、500℃以下、好ましくは300℃以下、特に
好ましくは260℃以下の温度で分解して銀を析出しう
るような銀塩でろれば如何なるものでもよい。かような
銀塩としては例えば酸化銀、硝酸銀及び炭酸銀、シ ュウ酸銀、酢酸銀などのカルボン酸銀などがめげられる
が、殊にカルボン酸銀が好ましい。
As the silver salt used in the above production method of the present invention, amine (
A silver salt that can decompose and precipitate silver at a temperature of 500°C or lower, preferably 300°C or lower, particularly preferably 260°C or lower, when it forms a soluble complex in an aqueous medium with ammonia (including ammonia). It can be anything. Examples of such silver salts include silver oxide, silver nitrate, and silver carboxylates such as silver carbonate, silver oxalate, and silver acetate, and silver carboxylates are particularly preferred.

錯体形成剤としてのアミンとしては、銀を溶液状に維持
する配位子として作用するものであれば如何なるもので
もよく、例えばピリジン、アセトニトリル、炭素原子数
1〜6の第−級又は第二級アミン又はアンモニアがめげ
られる。好ましいアミンとしては、アンモニア、ピリジ
ン、ブチルアミンなどのモノアミン、アルカノールアミ
ンたとえばエタノールアミン、炭素数2〜4のアルキレ
ンジアミン、ポリアミンなどが挙げられるが、殊に炭素
数2〜4のジアミンが好ましく、エチレンジアミン、1
,3−プロパンジアミンが好適である。就中エチレンジ
アミンと、1,3−プロパンジアミンの併用が最も好ま
しい。勿論他のアミンとの併用、更には他の化合物、例
えばジメチルホルムアミドの微量の添加も効果がある。
The amine as a complex forming agent may be any amine that acts as a ligand to maintain the silver in solution, such as pyridine, acetonitrile, or secondary or secondary amines having 1 to 6 carbon atoms. Amines or ammonia are destroyed. Preferred amines include monoamines such as ammonia, pyridine and butylamine, alkanolamines such as ethanolamine, alkylene diamines having 2 to 4 carbon atoms, and polyamines, with diamines having 2 to 4 carbon atoms being particularly preferred, such as ethylene diamine, 1
, 3-propanediamine is preferred. Among these, the combination of ethylenediamine and 1,3-propanediamine is most preferred. Of course, combination use with other amines and addition of a trace amount of other compounds, such as dimethylformamide, are also effective.

上記銀塩とアミンを、好ましくは水溶液として均一な溶
液とする。水以外にアルコール等の水可溶性有機溶媒と
水との混合溶媒も勿論使用できる。これを多孔質耐火性
担体に含浸する。
The above silver salt and amine are preferably made into a uniform aqueous solution. In addition to water, a mixed solvent of water and a water-soluble organic solvent such as alcohol can also be used. This is impregnated into a porous refractory carrier.

多孔質耐火性担体としてはα−アルミナ、炭化硅素、チ
タニア、ジルコニア、マグネシアなどがあるが、特に表
面積が0.01〜27FL′/i、、好ましくは0.2
〜0.7 d/iで、細孔容積が0.2〜0.5ml/
I、平均細孔径が0.1〜20μのα−アルミナ担体が
好ましい。その形状は球状、リング状、円筒状などで4
〜15u程度の成形物である。
Porous refractory carriers include α-alumina, silicon carbide, titania, zirconia, magnesia, etc., and in particular, those having a surface area of 0.01 to 27 FL'/i, preferably 0.2
~0.7 d/i with a pore volume of 0.2-0.5 ml/
I, an α-alumina support having an average pore diameter of 0.1 to 20 μm is preferred. Its shape is spherical, ring-shaped, cylindrical, etc.
It is a molded product of about ~15u.

含浸は当業者には公知の方法で行ない必要に応じ減圧、
加温、回転噴霧などの操作、装置を使用する。銀の担持
量が、でき上シの触媒で5〜15重量パーセントになる
ように含浸液の銀濃度及びアミ・重量を加減する。銀塩
を錯化(通常銀1モルに2個のアミン基が対応する)し
得るに充分(通常、当量よシも1〜3割過剰にアミンを
加える)な量のアミンを加える。
Impregnation is carried out by methods known to those skilled in the art, and if necessary, under reduced pressure or
Use operations and equipment such as heating and rotary spraying. The silver concentration and weight of the impregnating solution are adjusted so that the amount of silver supported on the finished catalyst is 5 to 15 percent by weight. An amount of amine sufficient to complex the silver salt (usually 2 amine groups correspond to 1 mole of silver) is added (usually the amine is added in an excess of 10 to 30% rather than the equivalent amount).

本発明の製造方法においては、上記の如き銀塩と錯体形
成剤としてのアミンを含有する水性溶液を耐火性物質の
成形体からなる多孔質担体に含浸し、この担体を過熱水
蒸気で好ましくは120℃以上の温度に加熱しなから該
担体上に銀の析出を実質的に完了させるのである。
In the production method of the present invention, a porous carrier made of a molded body of a refractory material is impregnated with an aqueous solution containing a silver salt as described above and an amine as a complex forming agent, and the carrier is heated with superheated steam to preferably 120% The precipitation of silver onto the support is substantially completed without heating to a temperature above .degree.

それ故、特開昭53−1191号公開公報には、熱分解
可能な銀錯化合物、ナトリウム化合物及び重アルカリ金
属化合物の水溶液を担体に含浸させ、含浸された担体の
水分損失が起らないように水蒸気、特に飽和水蒸気によ
シ銀化合物が分解を開始するまで処理し、次いでCo、
、N、又は空気等のガス中で150〜300℃の温度で
一定重量となるまで加熱するエチレンオキシド製造用触
媒の製造法が開示されているが、本発明の製造方法はか
ような方法とは明瞭に相違するものである。
Therefore, JP-A-53-1191 discloses that a carrier is impregnated with an aqueous solution of a thermally decomposable silver complex compound, a sodium compound, and a heavy alkali metal compound to prevent water loss from occurring in the impregnated carrier. is treated with steam, especially saturated steam, until the silver compound starts to decompose, and then Co,
, N, or air, etc., at a temperature of 150 to 300°C until it reaches a constant weight. However, the production method of the present invention is different from such a method. They are clearly different.

本発明においては、例えばシュウ酸銀を1,3−プロパ
ンジアミンで錯化した含浸水溶液からの銀の析出反応は
120°C付近で起り、それが完了するに必要な熱量を
過熱水蒸気によシ供給しさえすれば、その温度での過熱
水蒸気による加熱で触媒を調製できる。
In the present invention, for example, the precipitation reaction of silver from an impregnated aqueous solution in which silver oxalate is complexed with 1,3-propanediamine occurs at around 120°C, and the amount of heat required to complete the reaction is absorbed by superheated steam. Once supplied, the catalyst can be prepared by heating with superheated steam at that temperature.

担体上に析出した銀の凝集は空気中で殊に200℃以上
の高温で加熱した場合に著るしく起るが、本発明におけ
るように過熱水蒸気中で加熱すると析出した銀粒子の凝
集が極めて効果的に抑制される利点がある。
Agglomeration of silver particles precipitated on a carrier occurs significantly when heated in air, especially at a high temperature of 200°C or higher, but when heated in superheated steam as in the present invention, aggregation of silver particles precipitated on a carrier is extremely likely to occur. It has the advantage of being effectively suppressed.

しかしながら、過熱水蒸気による加熱においても、例え
ば過熱水蒸気の温度が260℃以上の高温となればなる
程、また加熱時間が長くなればなる程、銀粒子の凝集が
増大する傾向が犬となるので、なるべく凝集が起らない
ように条件を制御するのが好ましい。
However, even in heating with superheated steam, the higher the temperature of the superheated steam is, for example, 260°C or higher, or the longer the heating time, the more agglomeration of silver particles tends to increase. It is preferable to control the conditions so that aggregation does not occur as much as possible.

触媒担体に対する銀の担持量は、触媒全体をベースにし
て、銀粒子が5〜20重量%、好ましくは8〜15重量
%担持させるのが有利である。
The amount of silver supported on the catalyst carrier is advantageously 5 to 20% by weight, preferably 8 to 15% by weight of silver particles, based on the entire catalyst.

本発明の方法によると、担体上に析出する典型的な銀粒
子の直径(球状でない場合は短かい方の直径)d(μ)
は、主としてAQ担持率と担体表面積に左右されること
が見出された。本発明において好ましい範囲、すなわち
A(E)担持率8〜15チ、担体表面積0.2〜0.6
 rr? / Iの範囲ではその関係は上記銀粒子の直
径をd(μ)とすると、dαCArt担持量〕0″2〔
担体表面積)−1jという式で近似できるようでおる。
According to the method of the present invention, the typical diameter of silver particles deposited on a support (if not spherical, the shorter diameter) d(μ)
was found to be mainly influenced by the AQ loading rate and the carrier surface area. In the present invention, the preferred range is A(E) loading rate of 8 to 15 cm, carrier surface area of 0.2 to 0.6
rr? / I range, the relationship is: If the diameter of the silver particle is d (μ), then the supported amount of dαCArt]0″2[
It seems that it can be approximated by the formula: carrier surface area) - 1j.

特公昭53−33565号公告公報には、α)熱分解性
の銀塩を不活性支持体粒子に含浸し、b)160℃を超
えない温度で乾燥し、”)温度を270〜350℃の選
定された値になるように過熱水蒸気を流し、d)同温で
少くとも1時間をかけて空気と置換し、’)同温で少な
くとも30分間加熱空気を流して触媒を調製する方法が
開示されている。この方法は触媒調製時において非常に
複雑で長時間の加熱処理を必要とし、これによってはじ
めて良好な触媒を得ることができる。
Japanese Patent Publication No. 53-33565 discloses that α) impregnating inert support particles with a thermally decomposable silver salt, b) drying at a temperature not exceeding 160°C, and ") maintaining the temperature at 270 to 350°C. Discloses a method for preparing a catalyst by flowing superheated steam to a selected value, d) replacing the catalyst with air at the same temperature for at least 1 hour, and ') flowing heated air at the same temperature for at least 30 minutes. This method requires a very complicated and long heat treatment during catalyst preparation, and a good catalyst can only be obtained by this method.

また同公報には、熱分解性の銀塩としてアミンによシ錯
化された状態の銀塩を使用することについては記載され
ていない。それ故、本発明者らのアミン錯塩を使用する
立場がらすると、同公報の方法では、好ましくない高温
かつ長時間での加熱処理を採用している。例えば、本発
明の好ましい温度範囲150〜260’C115分程度
という短時間に対し、同公報の方法では270〜350
’C,、好ましくは290〜320’Cにおける過熱メ
チーム処理と更に少くとも1.5時間以上の加熱空気処
理とを要する。本発明で用いる銀塩のアミン錯体に対し
てこのような処理を行うと、析出した銀粒子の著しい凝
集と、激しい粒子内不均−分布がもたらされる。前者は
高温空気処理に、後者は水蒸発時の含浸担体の温度(I
00℃付近)と、過熱スチームとの間の大きな温度差(
この為水の蒸発が激しく起りすぎる)に主に由来す本と
思われる。
Further, the publication does not describe the use of a silver salt complexed with an amine as a thermally decomposable silver salt. Therefore, from the viewpoint of the present inventors who use the amine complex salt, the method disclosed in the publication employs heat treatment at a high temperature and for a long time, which is undesirable. For example, while the preferred temperature range of the present invention is 150-260'C for a short time of about 115 minutes, the method of the publication uses 270-350'C.
'C, preferably 290 to 320'C, and a heated air treatment for at least 1.5 hours are required. When the amine complex of the silver salt used in the present invention is subjected to such a treatment, significant agglomeration of the precipitated silver particles and severe intra-particle non-uniform distribution are brought about. The former is used for high temperature air treatment, and the latter is used for the temperature of the impregnated carrier during water evaporation (I
00℃) and the superheated steam (
This book is thought to be mainly derived from the book "For this reason, water evaporates too rapidly".

さらに同公報の方法においては充分長い時間(I〜10
時間)の乾式加熱による乾燥操作が、過熱水蒸気による
加熱処理の前に必須であり、本発明におけるように含浸
担体中に水分が残った状態での過熱スチームによる加熱
とは、処理方式が全く異なっている。
Furthermore, the method disclosed in the same publication takes a sufficiently long time (I~10
Drying operation by dry heating (time) is essential before heat treatment with superheated steam, and the treatment method is completely different from heating with superheated steam with moisture remaining in the impregnated carrier as in the present invention. ing.

本発明の製造方法においては、耐火性物質の成形体の多
孔質担体に、銀粒子の他に、 (D)  カチオン成分として、 (7)’−1)   リチウム、ナトリウム、カリウム
、ルビジウム及びセシウム(アルカリ金属元素)、(D
−2)  カルシウム及びバリウム(アルカリ土類金属
元素)、及び (D−a)  タリウム、スズ及びアンチモンから成る
群から選ばれる少くとも1つの元素、を担持させること
が好適である。
In the production method of the present invention, in addition to silver particles, (D) cation components (7)'-1) lithium, sodium, potassium, rubidium, and cesium ( alkali metal elements), (D
-2) It is preferable to support at least one element selected from the group consisting of calcium and barium (alkaline earth metal elements), and (D-a) thallium, tin, and antimony.

上記(D)のカチオン成分としては、 1) リチウム、ナトリウム、カリウム、ルビジウム及
びセシウムから成る群から選ばれる少くとも一種のアル
カリ金属元素、 又は、 11)  上記i)で述べた少くとも1種のアルカリ金
属元素とバリウムとの組合わせ が好適である。
The cation component in (D) above is: 1) at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, or 11) at least one of the above i) A combination of an alkali metal element and barium is preferred.

上記i)のグループのカチオン成分としては、特にナト
リウム−セシウムの組合わせ、ナトリウム−カリウムの
組合わせ、ナトリウム−ルビジウムの組合わせ、カリウ
ム−セシウムの組合わせ、リチウム−セシウムの組合わ
せが好適でアシ、上記11)のグループとしてはグルー
プ;)の上記2元素の組合わせにさらにバリウムを組合
わせたもの、殊にナトリウム−セシウム−バリウムの組
合わせは好適である。
As the cation component of group i) above, particularly preferred are sodium-cesium combination, sodium-potassium combination, sodium-rubidium combination, potassium-cesium combination, and lithium-cesium combination. As the group 11) above, a combination of the above two elements of group ;) further combined with barium, particularly a combination of sodium-cesium-barium, is preferable.

また、本発明の製造方法においては、耐火性物質の成形
体の多孔質担体に、銀粒子の他に、(D)  カチオン
成分として (D−1)   リチウム、ナトリウム、カリウム、ル
ビジウム及びセシウムから成る群から選ばれる少くとも
1種のアルカリ金属元素、(D−2)  カルシウム及
びバリウムから選ばれる少くとも1種のアルカリ土類金
属元素、及び (D−3)  タリウム、スズ及びアンチモンの少くと
も1種の元素、と (E)  アニオン成分として 弗素、塩素及び臭素からなる群から選ばれる少くとも1
sの元素 とを担持させることがよシ好適である。
In addition, in the production method of the present invention, in addition to silver particles, (D) a cationic component (D-1) consisting of lithium, sodium, potassium, rubidium, and cesium is added to the porous carrier of the molded body of the refractory material. at least one alkali metal element selected from the group, (D-2) at least one alkaline earth metal element selected from calcium and barium, and (D-3) at least one of thallium, tin, and antimony. (E) at least one selected from the group consisting of fluorine, chlorine and bromine as an anion component;
It is more preferable to support the element s.

カチオン成分を多孔質担体に担持させるには、一般に水
溶性の化合物の形で添加するのが望ましく殊に硝酸塩、
ハロゲン化物、水酸化物、炭酸塩、重炭酸塩、カルボン
酸塩などが一般的である。酸化物も使用できる。例えば
、炭酸リチウム、炭酸ナトリウム、重炭酸ナトリウム、
酢酸ナトリウム、硝酸カリウム、硝酸セシウム、塩化セ
シウム、硝酸ルビジウム、硝酸バリウム、水酸化バリウ
ム、水酸化カルシウム、酸化カルシウム、塩化タリウム
、臭化スズ、塩化アンチモンなどが挙げられる。
In order to support a cationic component on a porous carrier, it is generally desirable to add it in the form of a water-soluble compound, especially nitrate,
Common examples include halides, hydroxides, carbonates, bicarbonates, and carboxylates. Oxides can also be used. For example, lithium carbonate, sodium carbonate, sodium bicarbonate,
Examples include sodium acetate, potassium nitrate, cesium nitrate, cesium chloride, rubidium nitrate, barium nitrate, barium hydroxide, calcium hydroxide, calcium oxide, thallium chloride, tin bromide, and antimony chloride.

上記化合物のそれぞれの適当量を、同時に又は個別に含
浸液中に加えて多孔質担体に担持させることができる。
Appropriate amounts of each of the above compounds can be added simultaneously or separately to the impregnating liquid and supported on the porous carrier.

又はこれらの添加物を銀よりも前に又は後に担体上に担
持することも可能で、これらの加熱担持は公知の方法に
よっても行なえるが、過熱スチームを使用すると特に上
記カチオン成分の触媒粒子内の分布が均一となシ、性能
上好ましい。
Alternatively, it is also possible to support these additives on the carrier before or after the silver, and these additives can be heated and supported by a known method, but when superheated steam is used, the cationic components are particularly absorbed in the catalyst particles. It is preferable in terms of performance that the distribution of

アニオン成分の添加も上記カチオン成分の添加と同様に
行なうことができる。アニオン成分は、一般に水溶性の
化合物の形で添加するのが望ましく、殊に添加すると好
ましい上記カチオン成分すなわちリチウム、ナトリウム
、カリウム、ルビジウム、セシウムなどのアルカリ金属
元素、バリウム、カルシウムなどのアルカリ土類金属元
素、タリウム、スズ、アンチモンとの塩の形で添加する
のが好ましい。アンモニウム塩も使用できる。−例をめ
げれば、臭化リチウム、塩化す) IJウム、弗化カリ
ウム、塩化セシウム、塩化タリウム、塩化アンモニウム
などである。
Addition of the anionic component can also be carried out in the same manner as the addition of the cationic component. The anionic component is generally preferably added in the form of a water-soluble compound, and the above cationic components are particularly preferably added, such as alkali metal elements such as lithium, sodium, potassium, rubidium, and cesium, and alkaline earth elements such as barium and calcium. Preferably, it is added in the form of a salt with the metal elements thallium, tin, and antimony. Ammonium salts can also be used. - Examples include lithium bromide, IJium chloride, potassium fluoride, cesium chloride, thallium chloride, and ammonium chloride.

上記化合物の適当量を含浸液中に加えて銀と同時に多孔
質担体に担持させることができる。
An appropriate amount of the above compound can be added to the impregnating solution so that it can be supported on the porous carrier at the same time as silver.

又はこれらの添加物を銀よりも前に又は後に担体上に担
持することも可能で、これらの加熱担持は公知の方法に
よっても行なえるが、過熱スチームを使用すると特に上
記アニオン成分の触媒粒子内の分布が均一となり、性能
上好ましい。
Alternatively, it is also possible to support these additives on the carrier before or after the silver, and these additives can be heated and supported by a known method, but if superheated steam is used, the anionic components may be particularly absorbed in the catalyst particles. distribution becomes uniform, which is favorable in terms of performance.

本発明によれば、以上述べた製造方法によシ、耐火性物
質の成形体からなる多孔質担体に少くとも銀粒子が担持
された触媒であって、 (A)  銀が該担体の外表面及び細孔内表面上に分布
されており、 (B)  該担体の細孔内表面上に分布された銀粒子の
平均直径は0.05ないし0.4ミクロンの範囲内、好
ましくは0.1ないし0.3ミクロンの範囲内であり、 <C>  該触媒の外表層部の銀担持率(S)と、該敵
媒の最内層部の銀担持率(I)との間に下記式、 I≧0.65.5.好ましくはI≧0・7Sが充足され
る ことを特徴とするエチレンからエチレンオキシドを製造
するための触媒が得られる。
According to the present invention, there is provided a catalyst in which at least silver particles are supported on a porous carrier made of a molded body of a refractory material, which is produced by the above-described production method, and (A) the silver is on the outer surface of the carrier. and distributed on the inner surface of the pores, and (B) the average diameter of the silver particles distributed on the inner surface of the pores of the carrier is within the range of 0.05 to 0.4 microns, preferably 0.1 micron. and <C> between the silver support rate (S) in the outer surface layer of the catalyst and the silver support rate (I) in the innermost layer of the enemy medium according to the following formula, I≧0.65.5. A catalyst for producing ethylene oxide from ethylene is obtained, which preferably satisfies I≧0.7S.

上記(E)の担体細孔内表面に分布されている銀粒子の
平均直径は、触媒粒子断面に対する走査電子顕微鏡法に
よって測定することができる。
The average diameter of the silver particles distributed on the inner surface of the carrier pores in (E) above can be measured by scanning electron microscopy on a cross section of the catalyst particles.

本発明においては、例えば走査電子顕微鏡写真(例えば
倍率t o、 o o o倍)に明瞭に観察される銀粒
子について、銀粒子の大きなもの約30個及び銀粒子の
小さなもの約30個の各粒子の直径(球形でない場合は
短かい方の直径)を読みとシ、その総和を粒子の総数(
60)で割る(平均する)ことによって求めることがで
きる。
In the present invention, for example, regarding silver particles clearly observed in a scanning electron micrograph (e.g., magnification t o, o o o times), about 30 large silver particles and about 30 small silver particles are selected. Read the diameter of the particle (or the shorter diameter if it is not spherical) and calculate the sum as the total number of particles (
60) (average).

上記(C)で規定した本発明の触媒の外表層部の銀担持
率(S)と、該触媒の最内層部の銀担持率(I)とは、
本発明触媒の外表面から内層に向って触媒を漸次削り取
ってゆき、その削シ取った触媒の単位型f!c(例えば
1 gram、 )当りの鋼の含量(重量)を定量する
ことによって求めることができる。
The silver support rate (S) in the outer surface layer of the catalyst of the present invention defined in (C) above and the silver support rate (I) in the innermost layer of the catalyst are:
The catalyst of the present invention is gradually scraped away from the outer surface toward the inner layer, and the unit type f! It can be determined by quantifying the content (weight) of steel per c (for example, 1 gram, ).

本発明においては、触媒の外表層部とは、触媒粒子1個
の重量を100チとしたときの、該触媒(担体)の外表
面からその内層に向ってなるべく均一に平均的5重景チ
(はぼ4〜6%の範囲)を削り取った部分を示す。また
、触媒の最内層部とは、上記触媒粒子(担体)の外表面
からその内層に向ってなるべく均一に平均約60重量%
(はぼ50〜70%、好ましくは55〜65%の範囲)
を削り取った後に残る触媒の内層部(最内層部)を意味
する。
In the present invention, the outer surface layer of a catalyst is defined as an average 5-fold layer distributed as uniformly as possible from the outer surface of the catalyst (carrier) toward the inner layer, assuming that the weight of one catalyst particle is 100 inches. (range of 4-6%) is shown. In addition, the innermost layer of the catalyst is about 60% by weight on average as uniformly as possible from the outer surface of the catalyst particles (carrier) toward the inner layer.
(Range of 50-70%, preferably 55-65%)
It means the inner layer (innermost layer) of the catalyst that remains after scraping off.

上記SとIの簡便測定法としては、例えば触媒粒子30
〜50個をとり(その全重量を測定する)、それを回転
容器中で回転して各触媒粒子の表面から内層に向って削
シとり、上述した方法に従って触媒粒子全部の平均値と
してのS及びIを求めることができる。
As a simple method for measuring S and I, for example, catalyst particles 30
Take ~50 catalyst particles (measure their total weight), rotate them in a rotating container, scrape off from the surface of each catalyst particle toward the inner layer, and calculate S as the average value of all catalyst particles according to the method described above. and I can be obtained.

本発明の触媒は、以上に述べた触媒の外表層部の銀担持
率(S)及び触媒の最内層部の銀担持率(I)との間に
、下記式 I≧0.655.より好ましくは I≧0.7S の関係が満足される。なお上記式I≧0.655におい
て、Iが0.655よりも大きい程好適でめる。
The catalyst of the present invention has the following formula I≧0.655 between the silver support rate (S) in the outer surface layer of the catalyst and the silver support rate (I) in the innermost layer of the catalyst described above. More preferably, the relationship I≧0.7S is satisfied. In the above formula I≧0.655, it is preferable that I is larger than 0.655.

これにより、本発明の触媒においては、触媒粒子の表層
部から、その最内層部にわたって、銀粒子が極めて均一
に担持されていることが明らかである。
It is clear from this that in the catalyst of the present invention, silver particles are extremely uniformly supported from the surface layer of the catalyst particles to the innermost layer thereof.

さ゛らに、前記(B)の平均直径から明らかなように、
本発明の触媒においては触媒担体の細孔内表面上に分布
される銀粒子は、硬めて微細且つ均一で、大きな凝集塊
を実質的に含んでいないことが明らかである。
Furthermore, as is clear from the average diameter of (B),
It is clear that in the catalyst of the present invention, the silver particles distributed on the inner surface of the pores of the catalyst carrier are hard, fine and uniform, and do not substantially contain large aggregates.

本発明によれば担体上に析出した銀粒子の平均直径は好
ましくは0.3μ以下、特に0.2μ以下と微小でこの
為触媒としての活性が高く、さらに触媒粒子内の銀粒子
の分布は、代表的にはI≧0.7S1好ましくはI≧0
.7S5というように非常に均一であシ、反応に伴なう
銀粒子の凝集速度が遅く触媒の寿命が長くなる。その上
、好適な態様としては、反応活性種である銀を修飾し反
応の選択性を改善する効果のあるカチオン成分及びアニ
オン成分が使用される。
According to the present invention, the average diameter of the silver particles deposited on the carrier is preferably as small as 0.3μ or less, particularly 0.2μ or less, so that the activity as a catalyst is high, and furthermore, the distribution of silver particles within the catalyst particles is , typically I≧0.7S1 preferably I≧0
.. 7S5 is very uniform, and the rate of aggregation of silver particles during the reaction is slow, resulting in a long catalyst life. Moreover, in a preferred embodiment, a cation component and an anion component are used which have the effect of modifying silver, which is a reactive species, and improving the selectivity of the reaction.

かくして、本発明によれば、よシ好ましい触媒として、
耐火性物質の成形体からなる多孔質担体に、少くとも銀
粒子が担持されている他に、(D) カチオン成分とし
て、 (D−1)   リチウム、ナトリウム、カリウム、ル
ビジウム及びセシウムから成る群から選ばれる少くとも
1種のアルカリ金属元素、(D−2)  カルシウム及
びバリウムから成る少くとも1種のアルカリ土類金属元
素、及び(D−3)  タリウム、スズ及びアンチモン
の少くとも1種の元素 が担持されている触媒が得られる。
Thus, according to the invention, highly preferred catalysts include:
In addition to supporting at least silver particles on a porous carrier made of a molded body of a refractory material, (D) as a cation component, (D-1) selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium. At least one selected alkali metal element, (D-2) at least one alkaline earth metal element consisting of calcium and barium, and (D-3) at least one element selected from thallium, tin, and antimony. A catalyst on which is supported is obtained.

上記(D)のカチオン成分としては、特K、i)   
(D−1)リチウム、ナトリウム、カリウム、ルビジウ
ム及びセシウム、から成る群から選ばれる少くとも1種
のアルカリ金属元素、又は 11)  上記CD−1)の少くとも1種のアルカリ金
属元素と(D−2)のバリウム が好適である。
As the cationic component of (D) above, special K, i)
(D-1) At least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, or 11) At least one alkali metal element of the above CD-1) and (D -2) barium is preferred.

本発明のさらに好適な触媒は、耐火性物質の成形体から
なる多孔質担体に、少くとも銀粒子が担持されている他
に、 CD>  カチオン成分として (D−1)   リチウム、ナトリウム、カリウム、ル
ビジウム及びセシウムから成る群から選ばれる少くとも
1種のアルカリ金属元素、(D−2)  カルシウム及
びバリウムの少くとも1種のアルカリ土類金属元素、及
び (D−3)  タリウム、スズ及びアンチモンの少くと
も1種の元素と、 (E) アニオン成分として 弗素、塩素及び臭素からなる群から選ばれる少くとも1
種の元素 が担持されているものである。
A more preferable catalyst of the present invention has at least silver particles supported on a porous carrier made of a molded body of a refractory material, and in addition, as a cationic component (D-1) lithium, sodium, potassium, At least one alkali metal element selected from the group consisting of rubidium and cesium, (D-2) at least one alkaline earth metal element of calcium and barium, and (D-3) thallium, tin, and antimony. (E) at least one element selected from the group consisting of fluorine, chlorine, and bromine as an anion component;
It carries seed elements.

上記カチオン成分としては、リチウム、ナトリウム及び
バリウムの1s又は2種以上及び/又はカリウム、ルビ
ジウム又はセシウムの少くとも1種が好ましい。
The cation component is preferably one or more of lithium, sodium, and barium, and/or at least one of potassium, rubidium, and cesium.

特に、該担体の外表面及び細孔内表面上にカチオン成分
が担持されており、該細孔内表面の触媒外表層部におけ
る該カチオン成分としてのアルカリ金属元素の担持率(
Sc)と該細孔内表面の触媒最内層部におけるカチオン
成分としてのアルカリ金属元素の担持率(Ic)との間
に下記式、Ic≧0.3 S a が満足されるものは、本発明の好ましい触媒である。上
記のSc及びIcの測定は、既に述べた銀粒子の触媒内
分布に関するS及びIの測定と同じ測定法によって行う
ことができる。
In particular, a cation component is supported on the outer surface and the inner surface of the pores, and the supporting ratio of the alkali metal element as the cation component in the outer surface layer of the catalyst on the inner surface of the pores (
Sc) and the supporting ratio (Ic) of the alkali metal element as a cation component in the innermost layer of the catalyst on the inner surface of the pores, which satisfies the following formula, Ic≧0.3 S a , according to the present invention. is a preferred catalyst. The above-mentioned measurements of Sc and Ic can be performed by the same measuring method as the measurement of S and I regarding the distribution of silver particles in the catalyst described above.

本発明の触媒は、該担体の外表面及び細孔内表面上にリ
チウム、ナトリウム及びバリウムの少くとも1種のカチ
オン成分が担持されている場合は、該細孔内表面の触媒
外表層部における該リチウム及び/又はナトリウムの担
持率(、Sc)と、該細孔内表面の触媒最内層部におけ
るリチウム及び/又はナトリウムの担持率(Ic)との
間に下記式1式% が充足され、また、該担体の外表面及び細孔内表面上に
カリウム、ルビジウム及びセシウムの少くとも1種のア
ルカリ金属元素が担持されている場合は、該細孔内表面
の触媒外表層部における該アルカリ金属元素の担持率(
Sc)と、該細孔内表面の触媒最内層部における該アル
カリ金属元素の担持率(Ic)との間に下記式 %式% が充足されるものが特に有利である。
In the catalyst of the present invention, when at least one cation component of lithium, sodium, and barium is supported on the outer surface of the carrier and the inner surface of the pores, the outer surface layer of the catalyst on the inner surface of the pores is The following formula 1 formula % is satisfied between the lithium and/or sodium loading rate (Sc) and the lithium and/or sodium loading rate (Ic) in the innermost layer of the catalyst on the inner surface of the pores, In addition, when at least one alkali metal element of potassium, rubidium, and cesium is supported on the outer surface and the inner surface of the pores, the alkali metal element in the outer surface layer of the catalyst on the inner surface of the pores. Element loading rate (
It is particularly advantageous that the following formula % is satisfied between Sc) and the supporting ratio (Ic) of the alkali metal element in the innermost layer of the catalyst on the inner surface of the pores.

カチオン成分の担持量としては、触媒全体をペースにし
て、 1) ナトリウム及びリチウムの場合は0.1〜1重量
%、 2) カリウム、ルビジウム、セシウム及びタリウムの
場合は0.1重量%以下、 3) バリウムの場合は1重量%以下 が好ましく、アニオン成分の担持量としては0.05重
量−以下が好適である。
The supported amount of the cation component is based on the entire catalyst: 1) 0.1 to 1% by weight in the case of sodium and lithium, 2) 0.1% by weight or less in the case of potassium, rubidium, cesium, and thallium. 3) In the case of barium, it is preferably 1% by weight or less, and the amount of anion component supported is preferably 0.05% by weight or less.

本発明によれば、第1図に示すように過熱スチームは、
含浸担体が低温の状態にある場合に速かにその温度を上
昇させかつ担体層全体を均一に加熱する。通常本発明の
触媒製造法においては、水の蒸発および銀錯塩の分解に
よる銀の析出反応が加熱過程において起るが、過熱スチ
ームはこの水の蒸発および銀の析出反応を同時又は別々
に均一に行わせる点で従来法よりも勝れておシ、このた
め第2−A図に示すように析出した銀粒子が微細で、か
つ第3図に示すように銀及び他の添加成分が均一な分布
をしている。本発明によシ製造した触媒は、従がって、
高活性で、選択性も勝れかつ長寿命である。
According to the present invention, as shown in FIG.
When the impregnated carrier is in a low temperature state, its temperature is rapidly raised and the entire carrier layer is heated uniformly. Normally, in the catalyst production method of the present invention, the evaporation of water and the precipitation of silver by decomposition of the silver complex occur during the heating process, but the superheated steam uniformly performs the evaporation of water and the precipitation of silver simultaneously or separately. This method is superior to the conventional method in that the silver particles deposited are fine as shown in Figure 2-A, and the silver and other additive components are uniform as shown in Figure 3. It has a distribution. The catalyst produced according to the invention therefore has the following characteristics:
It has high activity, excellent selectivity, and long life.

本発明で使用する過熱スチームは触媒の工業的調製法に
おいては常圧付近の圧力を持つものが実用的でらυ、そ
の温度が120〜500℃、特に120〜300℃が好
ましい。特に好ましくは150〜260℃である。加熱
時間は1分〜3時間の程度が好ましく、殊に実用的な見
地及び触媒の性能の面から短かい方が望ましく、通常3
分〜15分が最も好適である。勿論加熱すべき含浸担体
の量、スチームの温度及びその流速により最低必要な時
間が決定される。スチームの流速は0.3m/秒〜5m
/秒が生成した触媒の性能面および実用的な見地から好
適である。
It is practical for the superheated steam used in the present invention to have a pressure near normal pressure in the industrial preparation method of the catalyst, and its temperature is preferably 120 to 500°C, particularly 120 to 300°C. Particularly preferably the temperature is 150 to 260°C. The heating time is preferably about 1 minute to 3 hours, and from a practical standpoint and the performance of the catalyst, the shorter the better, and usually about 3 hours.
minutes to 15 minutes is most preferred. Of course, the amount of impregnated carrier to be heated, the temperature of the steam and its flow rate will determine the minimum time required. Steam flow velocity is 0.3m/sec ~ 5m
/second is preferable from the performance and practical standpoints of the produced catalyst.

本発明における過熱スチームによる加熱の方法として、
含浸担体は固定床又は移動床の形で、単層又は多層に積
まれ、上方又は下方、又は側方から過熱スチームを流通
することができる。過熱スチームは層全体を均一な温度
で加熱できるので層間の鉄分布の不均一性がなく、実用
的見地からは多層焼成が経済的でおる。過熱スチーム中
に窒素、空気などをめる程度混入させることも可能であ
る。
As a heating method using superheated steam in the present invention,
The impregnated support can be stacked in single or multilayer form in the form of a fixed bed or a moving bed and can be passed through superheated steam from above or below or from the side. Since superheated steam can heat the entire layer at a uniform temperature, there is no non-uniform distribution of iron between the layers, and multi-layer firing is economical from a practical standpoint. It is also possible to mix a certain amount of nitrogen, air, etc. into the superheated steam.

また出口スチーム中には銀塩の分解により生成するアミ
ン及び他の分解物が含まれ、その蓄積を防止する為にあ
る量のパージは必要でめるが、基本的には過熱スチーム
のリサイクルが可能であり経済的である。スチーム景と
含浸担体量によシ異なるが例えば90%のリサイクルが
可能である。
Additionally, the exit steam contains amines and other decomposition products produced by the decomposition of silver salts, and although a certain amount of purging may be necessary to prevent their accumulation, it is generally recommended that the superheated steam be recycled. It is possible and economical. For example, 90% recycling is possible, although it varies depending on the steam environment and the amount of impregnated carrier.

本発明の方法においては、銀塩及び錯体形成剤としての
アミンを含有する水性溶液又はこれとカチオン及び/又
はアニオン成分の水性溶液を含浸した多孔性担体が、該
水性溶液中の水性媒体の乾燥率(除去率)が0〜70重
量%、好ましくは0〜50重量%の状態となるように、
含浸した担体をそのまま又は過剰の含浸液を液切シした
後過熱水蒸気で加熱するか、或は100℃以下の温度で
、例えば流通空気中で乾燥した後、上述した方法に従っ
て過熱水蒸気で加熱し、担体上に銀を析出させるのが好
適でらる。
In the method of the present invention, a porous carrier impregnated with an aqueous solution containing a silver salt and an amine as a complexing agent or an aqueous solution of a cation and/or anion component therein is used to dry the aqueous medium in the aqueous solution. so that the removal rate (removal rate) is 0 to 70% by weight, preferably 0 to 50% by weight.
The impregnated carrier may be heated with superheated steam as it is or after draining off the excess impregnating liquid, or it may be dried at a temperature of 100° C. or lower, for example in circulating air, and then heated with superheated steam according to the method described above. Preferably, silver is deposited on a carrier.

本発明の触媒を用いてエチレンをエチレンオキシドに転
換する反応は慣用操作法で実施できる。
The reaction of converting ethylene to ethylene oxide using the catalyst of the present invention can be carried out using conventional procedures.

例えば、圧力は1〜35に9/crl、温度は180〜
300℃、好ましくは200〜260°Cである。
For example, the pressure is 9/crl from 1 to 35, and the temperature is from 180 to 9/crl.
The temperature is 300°C, preferably 200-260°C.

エチレンは1〜40〆o1%、酸素は1〜20Vo1%
で、一般に希釈剤例えばメタンを一定割合例えば20〜
’l0Vo1%で存在させることが好ましい。酸素は空
気の形態でまたは工業用酸素として供給してよい。反応
改変剤として例えば2塩化エチレンを加えることにより
触媒中にホットスポットの形成が防止できかつ触媒の性
能殊に選択性が大1]に改善される。添加量としては数
ppfrL(重i)〜数10pptn程度が好ましい。
Ethylene is 1-40Vo1%, oxygen is 1-20Vo1%
In general, a diluent such as methane is added in a certain proportion, for example 20~
It is preferable to make it exist at 1% of 10Vo. Oxygen may be supplied in the form of air or as industrial oxygen. By adding, for example, ethylene dichloride as a reaction modifier, the formation of hot spots in the catalyst can be prevented and the performance of the catalyst, particularly the selectivity, can be greatly improved. The amount added is preferably about several ppfrL (weight i) to several tens of pptn.

次に実施例及び比較例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

実施例I Nα、CO326,9flを水11に溶解し、α−アル
ミナ担体(8φx3φ×8謡のリング状。表面積0、5
 m / l N細孔容積0.4mg/P ) Ilg
を浸漬した。余分の液をしたたり落して、切った後14
0℃の過熱スチームで15分乾燥した。
Example I Nα, CO326.9fl was dissolved in 11 parts of water, and α-alumina carrier (8φ x 3φ x 8 ring shape. Surface area 0,5
m/l N pore volume 0.4 mg/P) Ilg
Soaked. After dripping off the excess liquid and cutting 14
It was dried with superheated steam at 0° C. for 15 minutes.

一方AQNO8248Nと蓚酸カリウム(:KtCtO
*・Hρ)148.?を各々11の水に溶解した後混合
し、水浴中で60°Cに加熱して蓚酸銀の白色沈殿を得
た。濾過後蒸留水により沈殿を洗浄して沈殿物中のカリ
ウムを除いた。別に1,3−プロノくンジアミン21.
7gとエチレンジアミン79.11を水に溶解して水溶
液200−を調製し、氷冷しながら上甑蓚酸銀沈殿に少
量ずつ添加して蓚酸銀−アミン錯体溶液を調製した。こ
れに、硝酸バリウム1.49#、塩化セシウム0.23
4 Iiを溶解した水溶液40−を混合した後ロータリ
ーエバポレーター中に移し、Nα、Ca9を含浸後乾燥
した前記のα−アルミナ担体を加えて回転下50℃にて
含浸操作を実施した。含浸操作の初期に減圧しく101
00fiH、常圧に戻して5分後に取出した。取出した
含浸α−アルミナ担体を、200℃の過熱スチームにて
10分間、2m/秒の流速で加熱して本発明の触媒を調
製した。AQ、Nα、Bα、Cs及びCtの担持率はそ
れぞれ13.5チ、0.4俤、6TOY)7)m、 1
58ppm及び42ppmであった。第1図(実線)に
そのときの加熱曲線を示す。
On the other hand, AQNO8248N and potassium oxalate (:KtCtO
*・Hρ)148. ? After dissolving each of 11 in water, they were mixed and heated to 60°C in a water bath to obtain a white precipitate of silver oxalate. After filtration, the precipitate was washed with distilled water to remove potassium in the precipitate. Separately, 1,3-pronochlorodiamine 21.
7 g of ethylenediamine and 79.11 g of ethylenediamine were dissolved in water to prepare an aqueous solution 200-, which was added little by little to the silver oxalate precipitate while cooling on ice to prepare a silver oxalate-amine complex solution. To this, barium nitrate 1.49#, cesium chloride 0.23
After mixing the aqueous solution 40- in which Ii was dissolved, it was transferred to a rotary evaporator, and the above-mentioned α-alumina carrier, which had been impregnated with Na and Ca9 and dried, was added thereto, and an impregnation operation was carried out at 50° C. under rotation. Reduce the pressure at the beginning of the impregnation operation101
00fiH, the pressure was returned to normal, and the sample was taken out after 5 minutes. The impregnated α-alumina carrier taken out was heated in superheated steam at 200° C. for 10 minutes at a flow rate of 2 m/sec to prepare the catalyst of the present invention. The loading rates of AQ, Nα, Bα, Cs and Ct are respectively 13.5 cm, 0.4 k, 6 TOY)7) m, 1
They were 58 ppm and 42 ppm. FIG. 1 (solid line) shows the heating curve at that time.

この加熱曲線により、過熱スチームにより含浸担体が速
やかに加熱され水の沸騰温度になっていることがわかる
。このため担体全表面から水が蒸発し、触媒成分の均一
分布を得ることができるものと考えられる。その後20
0℃に加熱されるまでに水の蒸発と銀錯塩の分解が連続
して起る。第2−A図は調製した触媒の走査型電子顕微
鏡写真(倍率10.000倍)である。担体の細孔内表
面上に銀粒子が、均一な微粒状態で析出している。
This heating curve shows that the impregnated carrier was rapidly heated by the superheated steam to the boiling temperature of water. It is thought that for this reason, water evaporates from the entire surface of the carrier, making it possible to obtain a uniform distribution of catalyst components. then 20
Evaporation of water and decomposition of the silver complex occur continuously until heating to 0°C. Figure 2-A is a scanning electron micrograph (10.000x magnification) of the prepared catalyst. Silver particles are precipitated in the form of uniform fine particles on the inner surface of the pores of the carrier.

触媒粒子内金体にわたり第2−A図に示される銀の分布
が保たれておりその平均直径は0.15μであり、銀粒
子の殆んどすべてが0.05〜0.3μの範囲にあった
。触媒のBET表面積は0.95m’/9でおった。第
3図(実線)に触媒粒子内の銀の担持率分布を示す。該
触媒粒子の外表層面から内部に向って6重量%までのA
g、Ca、Nhの触媒当シの各担持率、S、Sc8 、
SNαはそれぞれ15.0 %、177ppm、435
0ppmであり、外表層面から内部に向って60重量−
以上の内部における各担持率、I、IC8,INcL 
 はそれぞれ110%、134ppm、3500ppm
でめった。従って、Iキ0.87S、Io、中0.76
5C1l”N(L中0.835NcL  と算出され、
各成分が触媒粒子の外表層部から最内層部にわたって均
一に分布していることを示している。
The distribution of silver shown in Figure 2-A is maintained throughout the metal bodies within the catalyst particles, and the average diameter thereof is 0.15μ, and almost all the silver particles are in the range of 0.05 to 0.3μ. there were. The BET surface area of the catalyst was 0.95 m'/9. FIG. 3 (solid line) shows the distribution of silver support within the catalyst particles. Up to 6% by weight of A from the outer surface of the catalyst particles toward the inside
g, Ca, Nh catalyst support ratio, S, Sc8,
SNα is 15.0%, 177ppm, and 435, respectively.
0ppm, and 60% by weight from the outer surface to the inside.
Each loading rate in the above, I, IC8, INcL
are 110%, 134ppm, and 3500ppm, respectively.
I failed. Therefore, Iki 0.87S, Io, medium 0.76
5C1l”N (calculated as 0.835NcL in L,
It is shown that each component is uniformly distributed from the outer surface layer to the innermost layer of the catalyst particles.

上記触媒を4〜9メツシユに砕きその5−を内径20襲
の鋼製反応管に充填し反応ガス(エチレン30Vo1%
、酸素8Vo 1%、塩化ビニル2ppm、残9窒素)
を18klI/crIGの加圧下5V4000h  で
通過させた。通過開始直後に活性が発現する。浴温21
2℃で1週間反応後酸素転化率40%、エチレンオキシ
ドの選択率81.7チを得た。反応後の触媒のBET表
面積は0.84rl / iであった。1.5チ月の連
続運転中に酸素転化率40チを保持するためには浴温を
2℃上昇させたが、選択率には変化は無かった。
The above catalyst was crushed into 4 to 9 meshes, and the 5 meshes were filled into a steel reaction tube with an inner diameter of 20 mesh, and the reaction gas (ethylene 30V1%
, oxygen 8Vo 1%, vinyl chloride 2ppm, balance 9 nitrogen)
was passed under a pressure of 18klI/crIG at 5V for 4000h. Activity is expressed immediately after passage begins. Bath temperature 21
After one week of reaction at 2°C, an oxygen conversion rate of 40% and an ethylene oxide selectivity of 81.7% were obtained. The BET surface area of the catalyst after reaction was 0.84 rl/i. In order to maintain an oxygen conversion rate of 40 cm during continuous operation for 1.5 months, the bath temperature was increased by 2°C, but there was no change in selectivity.

実施例2〜6 硝酸バリウムを添加しなかった以外は、実施例1と全く
同様にして触媒を調製した。但し最終の加熱時の過熱ス
チームの温度、通過時間などを変化させた。これらの触
媒の過熱水蒸気による処理条件と、得られた各触媒のI
とSの比、実施例1と同様に反応を行なった場合の結果
を第1表に示す。なおAに1.Nα、Cs、Clの担持
率はそれぞれ、13.5 ’u) e %z  O−4
we 1.158 pp”%42ppmであった。表中
の140 + 540は酸素転化率40%を示すときの
浴温(℃)、選択率(チ)を示す。
Examples 2-6 Catalysts were prepared in exactly the same manner as in Example 1, except that barium nitrate was not added. However, the temperature and passage time of the superheated steam during the final heating were changed. Conditions for treating these catalysts with superheated steam and I of each catalyst obtained
Table 1 shows the ratio of S and S, and the results when the reaction was carried out in the same manner as in Example 1. Note that A has 1. The supporting rates of Nα, Cs, and Cl are each 13.5'u) e %z O-4
1.158 pp''% was 42 ppm. 140 + 540 in the table indicates the bath temperature (°C) and selectivity (ch) when the oxygen conversion rate was 40%.

第1表 実施例2の触媒の3チ月連続運転後の740は218°
G、540は80.8 %であった。
Table 1 740 of the catalyst of Example 2 after three months of continuous operation is 218°
G, 540 was 80.8%.

実施例7〜8 担体としてNa2CO3を担持していないものを使用し
又硝酸バリウムを添加しなかった以外は実施例1と全く
同様にして銀−CsC1含有触媒を調製した。それぞれ
の担持量は13.5 w t %および200ppmで
めった。但し加熱時の過熱スチームの通過時間を変化さ
せ2種類の触媒を作った。
Examples 7-8 A silver-CsC1-containing catalyst was prepared in exactly the same manner as in Example 1, except that a carrier not carrying Na2CO3 was used and barium nitrate was not added. The respective loadings were determined to be 13.5 wt % and 200 ppm. However, two types of catalysts were created by changing the passage time of superheated steam during heating.

反応の結果も併せて第2表に示す。The reaction results are also shown in Table 2.

第2表 比較例1 この比較例1は、含浸担体の従来公知の空気加熱方式に
よるものではなく、本発明者らの発明による短時間空気
加熱方式によって調製された触媒と本発明触媒との相違
を明らかにするものでめる。
Table 2 Comparative Example 1 This Comparative Example 1 shows the differences between the catalyst of the present invention and the catalyst prepared by the short-time air heating method according to the invention of the present inventors, rather than by the conventionally known air heating method of the impregnated carrier. It is filled with things that make it clear.

最終の加熱を200℃の過熱スチームで行なう代りに、
200℃の加熱空気を2m/秒の流速で10分間流して
行なった以外は実施例2と全く同様にして触媒を調製し
た。組成も実施例2と同一である。第1図の破線にその
加熱曲線(対照触媒)を示す。第1図の破線に示すとお
り、過熱スチームを用いた場合(第1図の実線)に比較
して、加熱初期においては昇温速度が遅く沸騰温度以下
での恒率乾燥が進行する。この状態では担体粒子の外表
面で主として乾燥が起るので触媒成分は粒子外表面に移
動すると思われる。その後銀塩錯体の分解が進行する。
Instead of performing the final heating with superheated steam at 200℃,
A catalyst was prepared in exactly the same manner as in Example 2, except that heated air at 200° C. was flowed at a flow rate of 2 m/sec for 10 minutes. The composition is also the same as in Example 2. The heating curve (control catalyst) is shown by the dashed line in FIG. As shown by the broken line in FIG. 1, compared to the case where superheated steam is used (solid line in FIG. 1), the temperature rise rate is slow in the early stage of heating, and constant rate drying progresses below the boiling temperature. In this state, drying mainly occurs on the outer surface of the carrier particles, so that the catalyst components are thought to migrate to the outer surface of the particles. Thereafter, decomposition of the silver salt complex proceeds.

第2−B図および第2−C図に得られた触媒の走査型電
子顕微鏡写真を示す。第2−B図は外表面近くの細孔内
表面、第2−C図は内部の細孔内表面の状態を示し、触
媒粒子内にAQ粒子の不均一分布がおることが明らかで
ある。
FIG. 2-B and FIG. 2-C show scanning electron micrographs of the obtained catalyst. Figure 2-B shows the inner surface of the pore near the outer surface, and Figure 2-C shows the inner surface of the pore, and it is clear that the AQ particles are unevenly distributed within the catalyst particles.

第3図(破線)にA(Jの粒子内分布を示す。該触媒粒
子の外表層から内部に向って6重量%までのAQのSは
18.8%、そして外表層から内部に向って60重量%
以上内部におけるIは12チでI/Sキ0,64であっ
た。以上よシ過熱スチーム焼成に比し空気焼成では担体
上に析出したAQは、不均一に分布していることがわか
る。
Figure 3 (dashed line) shows the intraparticle distribution of A(J).S of AQ up to 6% by weight from the outer surface layer to the inside of the catalyst particle is 18.8%, and from the outer surface layer to the inside 60% by weight
The internal I was 12 inches and the I/S key was 0.64. From the above, it can be seen that AQ precipitated on the carrier is distributed non-uniformly in air firing compared to superheated steam firing.

上記触媒(比較例1)を用いて実施例1と同様にして反
応を行わせたところ、反応初期においてはT40=21
7°CI 540=81.3%であったが、3チ月の連
続運転後のT2Oは227℃、S4oは79.8%でめ
った。実施例2の触媒に比較して温度の上昇中が大きく
、かつ選択率の低下が著しいことがわかる。
When the reaction was carried out in the same manner as in Example 1 using the above catalyst (Comparative Example 1), T40=21 at the initial stage of the reaction.
7° CI 540 = 81.3%, but after three months of continuous operation, T2O was 227°C and S4o was 79.8%. It can be seen that compared to the catalyst of Example 2, the increase in temperature was large and the selectivity decreased significantly.

比較例2 担体へのHa2Co、の担持のための加熱を140℃の
過熱スチームの代りに同温の空気を用い、最終の加熱を
300’Cの過熱スチームの代りに300°Cの加熱空
気を用いかつ2時間行なったこと以外は、実施例6の触
媒と同一調製法、同一組成の触媒を調製した。第2−D
図にその走査型電子顕微鏡写真(倍率t o、 o o
 o倍)を示す。Ag粒子の凝集が著しいことが分る。
Comparative Example 2 For supporting Ha2Co on the carrier, the same temperature air was used instead of 140°C superheated steam, and for the final heating, 300°C heated air was used instead of 300°C superheated steam. A catalyst was prepared using the same method and composition as the catalyst of Example 6, except that the test was carried out for 2 hours. 2nd-D
The figure shows scanning electron micrographs (magnifications t o, o o
o times). It can be seen that Ag particles are significantly aggregated.

Ag粒子の平均直径は0.4μでアシ、その分布は0.
15μ〜0.7μにわたった。触媒のBET表面積は0
.53ゴ/Iと小さかった。触媒粒子内のIlS中0.
60、勺、12、ZSNa 中0.22でアシ、触媒粒
子内のAQ及びNαの分布が不均一でおることが確認さ
れた。
The average diameter of Ag particles is 0.4μ, and the distribution is 0.4μ.
It ranged from 15μ to 0.7μ. The BET surface area of the catalyst is 0
.. It was small at 53g/I. 0.0 in IIS within catalyst particles.
It was confirmed that the distribution of AQ and Nα in the catalyst particles was non-uniform at 0.22 in 60, 12, and ZSNa.

この触媒を実施例1と同様に反応させたが250℃にお
いて酸素転化率8チ、選択率72チと、非常に低い性能
しか得られなかった。
This catalyst was reacted in the same manner as in Example 1, but very low performance was obtained at 250° C., with an oxygen conversion rate of 8 cm and a selectivity of 72 cm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明触媒(実施例1)及び空気加熱による対
照触媒(比較価1)の昇温パターンを示す。第2−A図
ないし第2−D図はそれぞれ走査型電子顕微鏡写真(倍
率10.000倍)であって、第2−A図は本発明触媒
(実施例2)の内部の多孔表面を示す。笛2−B図およ
び第2−C図は対照触媒(比較例1)の外表面近くおよ
び内部の細孔内表面をそれぞれ示し、第2−D図は対照
触媒(比較例2)の内部の多孔表面を示す。第3図は本
発明触媒(実施例2)及び空気加熱による対照触媒(比
較例1)の触媒粒子内の銀の分布を示す。 茅2′=A図 、¥・L−BZ 第2C図 第2’−D図 第3図 手続補正書(方式) %式% 1、事件の表示 昭和5情特許II第191732号 2、発明の名称 3、補正をする者 事件との関係    特許出願人 名 称 (605)  三菱油化株式会社4、代理人 
〒107 (ほか1名) 電話585−2256 5、補正命令の日付   昭和60年1月29日(発送
日)6、@正の対象 4、図面の簡単な説明 〈:\ 7、補正の内容 (I)明細書第45頁6〜lO行目に「第2−A図は・
・・・・・・・・多孔表面を示す。」とあるを「第2−
A図は本発明触媒(実施例2)の内部の多孔表面の粒子
構造を示す。第2−D図および第2−C図は対照触媒(
比較例1)の外表面近くおよび内部の細孔内表面の粒子
構造をそれぞれ示し、第2−D図は対照触媒(比較例2
)の内部の多孔表面の粒子構造を示す。」と訂正する。
FIG. 1 shows the temperature increase patterns of the catalyst of the present invention (Example 1) and the control catalyst (Comparative Example 1) by air heating. Figures 2-A to 2-D are scanning electron micrographs (10.000x magnification), and Figure 2-A shows the internal porous surface of the catalyst of the present invention (Example 2). . Figure 2-B and Figure 2-C show the inner surface of the pores near the outer surface and inside the control catalyst (Comparative Example 1), respectively, and Figure 2-D shows the inner surface of the pores in the control catalyst (Comparative Example 2). Shows a porous surface. FIG. 3 shows the distribution of silver within the catalyst particles of the catalyst of the present invention (Example 2) and the control catalyst subjected to air heating (Comparative Example 1). Kaya 2'=Figure A, ¥・L-BZ Figure 2C Figure 2'-D Figure 3 Procedural amendment (method) % formula % 1. Display of the case Showa 5 Information Patent II No. 191732 2. Invention Name 3. Relationship with the person making the amendment Patent applicant name (605) Mitsubishi Yuka Co., Ltd. 4, Agent
107 (and 1 other person) Telephone: 585-2256 5. Date of amendment order: January 29, 1985 (shipment date) 6. @Object of correction 4. Brief explanation of the drawing〈: 7. Contents of amendment ( I) Page 45 of the specification, lines 6 to 10, “Figure 2-A is...
......Indicates a porous surface. ” and “2nd-
Figure A shows the particle structure of the internal porous surface of the catalyst of the present invention (Example 2). Figures 2-D and 2-C show the control catalyst (
Figure 2-D shows the particle structure near the outer surface and on the inner surface of the pores of Comparative Example 1), and Figure 2-D shows the particle structure of the control catalyst (Comparative Example 2).
) shows the particle structure of the internal porous surface. ” he corrected.

Claims (1)

【特許請求の範囲】 1、耐火性物質の成形体からなる多孔質担体に少くとも
銀粒子が担持された触媒であつて、(A)銀が該担体の
外表面及び細孔内表面上に分布されており、 (B)該担体の細孔内表面上に分布された銀粒子の平均
直径は0.05ないし0.4ミクロンの範囲内であり、 (C)該触媒の外表層部の銀担持率(S)と、該触媒の
最内層部の銀担持率(I)との間に下記式、 I≧0.65S が充足される ことを特徴とするエチレンからエチレンオキシドを製造
するための触媒。 2、上記(B)の担体の細孔内表面上に分布された銀粒
子の平均直径が0.1ないし0.3ミクロンの範囲であ
る特許請求の範囲第1項記載の触媒。 3、上記(C)の触媒の外表層部の銀担持率(S)と、
触媒の最内層部の銀担持率(I)との間に下記式、 1≧0.7S が充足される特許請求の範囲第1項又は第2項のいずれ
かに記載の触媒。 4、耐火性物質の成形体からなる多孔質担体に、少くと
も銀粒子が担持されている他に、 (D)カチオン成分として、 (D−1)リチウム、ナトリウム、カリウム、ルビジウ
ム及びセシウム(アルカリ金属元素)、(D−2)カル
シウム及びバリウム(アルカリ土類金属元素)、及び (D−3)タリウム、スズ及びアンチモン から成る群から選ばれる少くとも1つの元素、が担持さ
れている特許請求の範囲第1項ないし第3項記載の触媒
。 5、耐火性物質の成形体からなる多孔質担体に、少くと
も銀粒子が担持されている他に、 (D)カチオン成分として、 (D−1)リチウム、ナトリウム、カリウム、ルビジウ
ム及びセシウム、から成る群から選ばれる少くとも1種
の元素(アルカリ金属元素)、又は上記(D−1)の少
くとも1種の元素と(D−2)のバリウム が担持されている特許請求の範囲第4項記載の触媒。 6、耐火性物質の成形体からなる多孔質担体に、少くと
も銀粒子が担持されている他に、 (D)カチオン成分として (D−1)リチウム、ナトリウム、カリウム、ルビジウ
ム及びセシウム(アルカリ金属元素)、(D−2)カル
シウム及びバリウム(アルカリ土類金属元素)、及び (D−3)タリウム、スズ及びアンチモン から成る群から選ばれる少くとも1種の元素、と(E)
アニオン成分として 弗素、塩素及び臭素からなる群から選ばれる少くとも1
種の元素 が担持されている特許請求の範囲第1項ないし第5項の
いずれかに記載の触媒。 7、該担体の外表面及び細孔内表面上にカチオン成分が
担持されており、該細孔内表面の触媒外表層部における
該カチオン成分としてのアルカリ金属元素の担持率(S
c)と該細孔内表面の触媒最内層部におけるアルカリ金
属元素の担持率(Ic)との間に下記式、 Ic≧0.3Sc が充足される特許請求の範囲第1項ないし第6項のいず
れかに記載の触媒。 8、該担体の外表面及び細孔内表面上にリチウム、ナト
リウム及びバリウムの少くとも1種のカチオン成分が担
持されており、該細孔内表面の触媒外表層部におけるリ
チウム及び/又はナトリウムの担持率(Sc)と、該細
孔内表面の触媒最内層部におけるリチウム及び/又はナ
トリウムの担持率(Ic)との間に下記式 Ic≧0.3Sc が充足される特許請求の範囲第1項ないし第6項のいず
れかに記載の触媒。 9、該担体の外表面及び細孔内表面上にカリウム、ルビ
ジウム及びセシウムの少くとも1種のカチオン成分(ア
ルカリ金属元素)が担持されており、該細孔内表面の触
媒外表層部における該カチオン成分の担持率(Sc)と
、該細孔内表面の触媒最内層部における該カチオン成分
の担持率(Ic)との間に下記式 Ic≧0.5Sc が充足される特許請求の範囲第1項ないし第6項及び第
8項のいずれかに記載の触媒。 10、該多孔質担体に少くとも銀粒子が担持された触媒
であつて、該触媒全体をベースにして銀粒子が5ないし
20重量%担持されている特許請求の範囲第1ないし第
9項のいずれかに記載の触媒。 11、銀塩及び錯体形成剤としてのアミンを含有する水
性溶液を耐火性物質の成形体からなる多孔質担体に含浸
し、該担体を過熱水蒸気で加熱して該担体上に銀を析出
させることを特徴とするエチレンからエチレンオキシド
製造用触媒の製造方法。 12、銀塩及び錯体形成剤としてのアミンを含有する水
性溶液を含浸した該多孔質担体が、該水性溶液の少くと
も一部を含有する状態で、120℃以上の温度の過熱水
蒸気と接触させることにより該担体上に銀を析出させる
特許請求の範囲第11項記載の製造方法。 13、銀塩及び錯体形成剤としてのアミンを含有する水
性溶液を含浸した該多孔質担体が、該水性溶液中の水性
媒体の乾燥率(除去率)が0〜80重量%の状態で、該
多孔質担体を120〜500℃の過熱水蒸気と接触させ
ることにより該担体上に銀を析出させる特許請求の範囲
第11項記載の方法。
[Scope of Claims] 1. A catalyst in which at least silver particles are supported on a porous carrier made of a molded body of a refractory material, which includes: (A) silver on the outer surface and inner surface of the pores of the carrier; (B) the average diameter of the silver particles distributed on the inner surface of the pores of the carrier is within the range of 0.05 to 0.4 microns, and (C) the outer surface of the catalyst is A method for producing ethylene oxide from ethylene, characterized in that the following formula, I≧0.65S, is satisfied between the silver support rate (S) and the silver support rate (I) in the innermost layer of the catalyst. catalyst. 2. The catalyst according to claim 1, wherein the average diameter of the silver particles distributed on the inner surface of the pores of the support (B) is in the range of 0.1 to 0.3 microns. 3. Silver support rate (S) in the outer surface layer of the catalyst (C) above;
The catalyst according to claim 1 or 2, wherein the following formula, 1≧0.7S, is satisfied between the silver support rate (I) in the innermost layer of the catalyst. 4. In addition to supporting at least silver particles on a porous carrier made of a molded body of a refractory material, (D) cation components include (D-1) lithium, sodium, potassium, rubidium, and cesium (alkali). (D-2) calcium and barium (alkaline earth metal elements); and (D-3) at least one element selected from the group consisting of thallium, tin, and antimony. The catalyst according to items 1 to 3 of the range. 5. In addition to supporting at least silver particles on a porous carrier made of a molded body of a refractory material, (D) as a cation component, (D-1) lithium, sodium, potassium, rubidium, and cesium. At least one element selected from the group consisting of (alkali metal element), or at least one element (D-1) and barium (D-2) are supported. Catalysts as described in section. 6. In addition to supporting at least silver particles on a porous carrier made of a molded body of a refractory material, (D) cation components (D-1) lithium, sodium, potassium, rubidium, and cesium (alkali metal (D-2) calcium and barium (alkaline earth metal elements), and (D-3) at least one element selected from the group consisting of thallium, tin, and antimony; and (E)
At least one selected from the group consisting of fluorine, chlorine and bromine as an anion component
The catalyst according to any one of claims 1 to 5, in which a seed element is supported. 7. A cation component is supported on the outer surface and the inner surface of the pores, and the supporting ratio of the alkali metal element as the cation component (S
Claims 1 to 6, wherein the following formula, Ic≧0.3Sc, is satisfied between c) and the supporting ratio (Ic) of the alkali metal element in the innermost layer of the catalyst on the inner surface of the pores. The catalyst according to any one of. 8. At least one cationic component of lithium, sodium, and barium is supported on the outer surface and the inner surface of the pores, and the cation components of lithium and/or sodium in the outer surface layer of the catalyst on the inner surface of the pores are supported. Claim 1, wherein the following formula Ic≧0.3Sc is satisfied between the loading rate (Sc) and the loading rate (Ic) of lithium and/or sodium in the innermost layer of the catalyst on the inner surface of the pores. The catalyst according to any one of items 6 to 6. 9. At least one cationic component (alkali metal element) of potassium, rubidium, and cesium is supported on the outer surface and the inner surface of the pores, and Claim 1, in which the following formula Ic≧0.5Sc is satisfied between the cation component support rate (Sc) and the cation component support rate (Ic) in the innermost layer of the catalyst on the inner surface of the pores. The catalyst according to any one of Items 1 to 6 and 8. 10. A catalyst in which at least silver particles are supported on the porous carrier, wherein the silver particles are supported in an amount of 5 to 20% by weight based on the entire catalyst. Catalyst according to any one of the above. 11. Impregnating a porous carrier made of a molded body of a refractory material with an aqueous solution containing a silver salt and an amine as a complexing agent, and heating the carrier with superheated steam to precipitate silver on the carrier. A method for producing a catalyst for producing ethylene oxide from ethylene, characterized by: 12. The porous carrier impregnated with an aqueous solution containing a silver salt and an amine as a complex forming agent is brought into contact with superheated steam at a temperature of 120°C or higher while containing at least a part of the aqueous solution. 12. The method according to claim 11, wherein silver is deposited on the carrier. 13. The porous carrier impregnated with an aqueous solution containing a silver salt and an amine as a complex forming agent is prepared in a state where the drying rate (removal rate) of the aqueous medium in the aqueous solution is 0 to 80% by weight. 12. The method according to claim 11, wherein silver is deposited on a porous carrier by contacting the carrier with superheated steam at 120 to 500°C.
JP59191732A 1984-08-21 1984-09-14 Catalyst and method for preparing ethylene oxide from ethylene Granted JPS6171837A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59191732A JPS6171837A (en) 1984-09-14 1984-09-14 Catalyst and method for preparing ethylene oxide from ethylene
EP85110458A EP0172565B1 (en) 1984-08-21 1985-08-20 Silver catalyst for production of ethylene oxide from ethylene, and process for production thereof
DE8585110458T DE3582097D1 (en) 1984-08-21 1985-08-20 SILVER CATALYST FOR THE PRODUCTION OF ETHYLENE OXIDE FROM ETHYLENE AND METHOD FOR THE PRODUCTION THEREOF.
US06/767,831 US4690913A (en) 1984-08-21 1985-08-20 Silver catalyst for production of ethylene oxide from ethylene and process for producing the catalyst
US07/017,686 US4786624A (en) 1984-08-21 1987-02-24 Silver catalyst for production of ethylene oxide from ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191732A JPS6171837A (en) 1984-09-14 1984-09-14 Catalyst and method for preparing ethylene oxide from ethylene

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4280794A Division JPH0677685B2 (en) 1992-09-25 1992-09-25 Method for producing ethylene oxide from ethylene

Publications (2)

Publication Number Publication Date
JPS6171837A true JPS6171837A (en) 1986-04-12
JPH0529501B2 JPH0529501B2 (en) 1993-04-30

Family

ID=16279567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191732A Granted JPS6171837A (en) 1984-08-21 1984-09-14 Catalyst and method for preparing ethylene oxide from ethylene

Country Status (1)

Country Link
JP (1) JPS6171837A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114653A (en) * 1985-11-12 1987-05-26 Nippon Shokubai Kagaku Kogyo Co Ltd Silver catalyst for preparing ethylene oxide and its preparation
JPS6336839A (en) * 1986-07-28 1988-02-17 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of silver-containing catalyst
JP2005052838A (en) * 1997-12-25 2005-03-03 Nippon Shokubai Co Ltd Silver catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2011212614A (en) * 2010-03-31 2011-10-27 Nippon Shokubai Co Ltd Catalyst for production of ethylene oxide and production method of ethylene oxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413485A (en) * 1977-07-01 1979-01-31 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of silver-supported catalyst for production of ethylene oxide
JPS58174238A (en) * 1982-03-24 1983-10-13 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Catalyst for oxidizing ethylene to ethylene oxide in gaseous phase and production and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413485A (en) * 1977-07-01 1979-01-31 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of silver-supported catalyst for production of ethylene oxide
JPS58174238A (en) * 1982-03-24 1983-10-13 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Catalyst for oxidizing ethylene to ethylene oxide in gaseous phase and production and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114653A (en) * 1985-11-12 1987-05-26 Nippon Shokubai Kagaku Kogyo Co Ltd Silver catalyst for preparing ethylene oxide and its preparation
JPH0525547B2 (en) * 1985-11-12 1993-04-13 Nippon Catalytic Chem Ind
JPS6336839A (en) * 1986-07-28 1988-02-17 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of silver-containing catalyst
JP2005052838A (en) * 1997-12-25 2005-03-03 Nippon Shokubai Co Ltd Silver catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2011212614A (en) * 2010-03-31 2011-10-27 Nippon Shokubai Co Ltd Catalyst for production of ethylene oxide and production method of ethylene oxide

Also Published As

Publication number Publication date
JPH0529501B2 (en) 1993-04-30

Similar Documents

Publication Publication Date Title
US4786624A (en) Silver catalyst for production of ethylene oxide from ethylene
JP2561678B2 (en) Silver catalyst for ethylene oxide production
US4010115A (en) Catalyst for the oxidation of ethylene to ethylene oxide
US4012425A (en) Ethylene oxide process
EP0247414B2 (en) Silver-deposited catalyst and its use for production of ethylene oxide
EP0624398B1 (en) Catalyst for production of ethylene oxide and process for producing the catalyst
JP2002510306A (en) Epoxidation of propylene using chloride-containing silver catalyst.
JPH11513305A (en) Production method of epoxidation catalyst
JPH09501606A (en) Ethylene oxide catalyst
JPS58174238A (en) Catalyst for oxidizing ethylene to ethylene oxide in gaseous phase and production and use thereof
JPS6171837A (en) Catalyst and method for preparing ethylene oxide from ethylene
JPH0677685B2 (en) Method for producing ethylene oxide from ethylene
US3887491A (en) Method of preparing silver catalyst
US4837347A (en) Process for oxidation of ethylene to ethylene oxide
US7049451B2 (en) Carrier of catalyst for production of epoxide, catalyst for production of epoxide, and method for production of epoxide
JPS6171838A (en) Preparation of silver catalyst
JP3767251B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3508200B2 (en) Catalyst for producing ethylene oxide and method for producing the same
JP3636911B2 (en) Method for producing silver catalyst for ethylene oxide production
JP2637795B2 (en) Catalyst for ethylene oxide production
JPS6154242A (en) Manufacture of silver catalyst for production of ethylene oxide
JPH0523594A (en) Silver catalyst for producing ethylene oxide
JPS61103545A (en) Silver catalyst for preparing ethylene oxide
JPH06296867A (en) Catalyst for manufacturing ethylene oxide
JP2701240B2 (en) Catalyst for ethylene oxide production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term