JPS6171356A - Nitrogen analysis method of coal - Google Patents

Nitrogen analysis method of coal

Info

Publication number
JPS6171356A
JPS6171356A JP19262984A JP19262984A JPS6171356A JP S6171356 A JPS6171356 A JP S6171356A JP 19262984 A JP19262984 A JP 19262984A JP 19262984 A JP19262984 A JP 19262984A JP S6171356 A JPS6171356 A JP S6171356A
Authority
JP
Japan
Prior art keywords
quartz
board
coal
heating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19262984A
Other languages
Japanese (ja)
Other versions
JPH0360389B2 (en
Inventor
Akira Saito
陽 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19262984A priority Critical patent/JPS6171356A/en
Publication of JPS6171356A publication Critical patent/JPS6171356A/en
Publication of JPH0360389B2 publication Critical patent/JPH0360389B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To analyze nitrogen in a stable state, by mixing a specified amount of mixed agent of soda lime, alumina and iron oxide including water with a coal sample, heating the mixture at 430+ or -20 deg.C for a specified time period, decomposing the mixture at 950-1,000 deg.C, cooling and condensing the yielded gas, and performing titration of the absorbed liquid. CONSTITUTION:A sample of 1g is put on a porcelain board. Soda lime of 1g and the mixed agent of 0.5g of Al2O3+Fe2O3.H2O are added and mixed. The surface is evenly coated by 1g of said mixed agent. The surface is further coated by 1g of quartz cotton. The porcelain board is mounted on a quartz board. The board is inserted to a position of a pre-heater furnace 1 of a quartz reacting tube 3, whose temperature is kept at 430+ or -20 deg.C. He or Ar gas accompanying steam is introduced. After the heating for 10min, the board is moved into a decomposing furnace 2, which is kept at 1,000 deg.C. Complete decomposition is performed by heating. The decomposed gas is introduced into alkali bath in a steam storing mechanism 4. Ammonia component and steam are cooled and condensed by a condenser 8 and absorbed into an absorbing liquid. Then the ammonia component is determined. Thus nitrogen in coal can be efficiently analyzed in a stable state.

Description

【発明の詳細な説明】 「発明の目的」 本発明は石炭の窒素分析法に係シ、石炭中の窒素を安定
状態に分析せしめ、又能率的に実施1、得ると共に石英
管の損傷をなから1−め、更には有害物質を用いること
なしに適切な分析をなすことのできる方法を提供しよう
とするものである。
[Detailed Description of the Invention] ``Object of the Invention'' The present invention relates to a method for analyzing nitrogen in coal. First, we aim to provide a method that can perform appropriate analysis without using harmful substances.

産業上の利用分野 石炭の窒素分析技術。Industrial applications Coal nitrogen analysis technology.

従来の技術 石炭やコークス中の窒素を分析する方法としては、JI
S M8813においてケルダール法或いはセミミクロ
ケルダール法或いはセミミクロガス化法が規定されてい
る。即ちケルゾール法で   □は水銀又は酸化第2水
銀を、またセミミクロケ   、 −ルダール法では硫
酸第2水銀およびセレン粉末などの合剤を夫々分割剤と
して濃硫酸に加えるものである。又セミミクロガス化法
においては第3図と第4図に示す通りであって、第3図
に示すように磁性、l=”−)11に試料0.IPとソ
ーダ石灰粉末1tをよく混合して装入し、?−ト11を
加熱炉20で950〜1000℃に加熱した反応管12
内に装入し、該反応管12の一方の入口に水蒸気蒸溜機
構13を連結して水蒸気を毎分2〜3ttになるように
約25分間導入し、分解発生したアンモニア分を反応管
12の他方の↓ 口部に2個の容器14連続させて連結した2NH,S 
O4溶液に吸収させる。この吸収液は別に第4図として
示した水蒸気蒸溜装置の蒸溜フラスコ15に移し、これ
にアルカリ供給源16から濃厚アルカリを加え水蒸気発
生器17からの水蒸気を導入して水蒸気蒸溜を行い、ア
ンモニア分を含む水蒸気を冷却器18の下方に連結され
た容器19に導き、即ち該容器19中の硼酸飽和溶液2
−に前記アンモニア分含有水蒸気を吸収させ、このもの
をメチルレッドとメチレンブルーの混合指示薬を用贋、
N/100 H2S 04標準液で滴定し、緑色から略
無色になる点(plI5.4)を終点としてアンモニア
分を求めるものである。
Conventional technology JI is a method for analyzing nitrogen in coal and coke.
SM8813 stipulates the Kjeldahl process, semi-micro Kjeldahl process or semi-micro gasification process. That is, in the Kelsol method, mercury or mercuric oxide is added to concentrated sulfuric acid, and in the semi-microscopic and Rudahl methods, a mixture of mercuric sulfate and selenium powder is added as a dividing agent to concentrated sulfuric acid. In addition, in the semi-micro gasification method, as shown in Figs. 3 and 4, as shown in Fig. 3, sample 0.IP and 1 ton of soda lime powder are thoroughly mixed in magnetic, l = "-) 11. The reactor tube 12 is heated to 950 to 1000°C in the heating furnace 20.
A steam distillation mechanism 13 is connected to one inlet of the reaction tube 12 to introduce steam at a rate of 2 to 3 tt per minute for about 25 minutes, and the decomposed ammonia is transferred to the reaction tube 12. 2NH,S with two containers 14 connected in succession to the other ↓ mouth
Absorb in O4 solution. This absorbed liquid is transferred to the distillation flask 15 of the steam distillation apparatus shown separately in FIG. into a container 19 connected below the cooler 18, i.e., the boric acid saturated solution 2 in the container 19.
- to absorb the ammonia-containing water vapor, and use this as a mixed indicator of methyl red and methylene blue,
The ammonia content is determined by titration with a N/100 H2S 04 standard solution, with the end point at which the color changes from green to almost colorless (plI 5.4).

然してこのセミミクロガス化法においては試料の湿式分
解操作を例えば10試料まとめて実施でき、又湿式分解
で生成したアンモニアを含む分解液について短時間で水
蒸気蒸溜によシアンモニア分を回収できる装置などが開
発されている。
However, in this semi-micro gasification method, the wet decomposition operation can be carried out for 10 samples at a time, and there is a device that can recover the cyanmonium content by steam distillation in a short time from the ammonia-containing decomposition liquid produced by the wet decomposition. being developed.

なお燃料路会誌、Q 377(1980)および分析化
学30.290’(1981)においては野村明等によ
シガス化法で石炭や重油などの窒素を分析することに成
功した旨が報告されており、その方法は試料にソーダ石
灰の粉末を加えて混合し、アルミナ(90A)に塩化第
2鉄を加えた合剤を積層した状態で被覆し、直ちに90
0〜1000℃の高温部に装入して水蒸気導入下で加熱
分解しアンモニア分を発生させ、これを稀硫酸溶液に吸
収させて捕集したのち、吸収液中のアンモニア分を水蒸
気蒸溜で回収し、N/100 HヨSO,で滴定してN
 (@を求める。或いは水蒸気導入下で発生したガスを
ソーダ石灰のスクラバーを通してHαを除去したのちN
H,分を回収し分析する方法である。
Furthermore, in the Journal of the Japan Fuel Road Association, Q 377 (1980) and Analytical Chemistry 30.290' (1981), Akira Nomura et al. reported that they succeeded in analyzing nitrogen in coal, heavy oil, etc. using the sigasification method. The method is to add soda lime powder to the sample, mix it, coat it with a layered mixture of alumina (90A) and ferric chloride, and immediately apply 90A powder to the sample.
It is charged into a high temperature section of 0 to 1000℃ and thermally decomposed under the introduction of steam to generate ammonia, which is absorbed and collected in a dilute sulfuric acid solution, and then the ammonia in the absorption liquid is recovered by steam distillation. Then, titrate with N/100 H and SO.
(Determine @.Alternatively, the gas generated when water vapor is introduced is passed through a soda lime scrubber to remove Hα, and then N
This method collects and analyzes H.

発明が解決しようとする問題点 ところが上記し念ようなJIS M8813で規定され
た方法では水銀、酸化第2水銀、硫酸第2水銀、セレン
粉末のような有害物質を用いるものでおることから後処
理に問題を残し公害上好ましい方法となし得なi0又セ
ミミクロがス化法でコークス中の窒素を分析する際には
操作時にアルカリ分の一部が溢出して石英反応管のガラ
ス化を惹起し、′#L回の使用で破損するなど材料費が
高価なものとなる。又このセミミクロ、ガス化法では多
段の行程でちゃ、分析に長時間を必要とし、しかも石炭
および重油などの窒素分析に適用できないもので、これ
は試料の高温加熱に伴−試料中の揮発分が未反応のまま
気散するからである。
Problems to be Solved by the Invention However, as mentioned above, the method specified in JIS M8813 uses harmful substances such as mercury, mercuric oxide, mercuric sulfate, and selenium powder, so post-treatment is required. When analyzing nitrogen in coke using the iO or semi-micro oxidation method, which is not a desirable method due to pollution problems, some of the alkali content spills out during operation and causes vitrification of the quartz reaction tube. , '#L times of use results in breakage, resulting in high material costs. In addition, this semi-micro gasification method requires a long time for analysis due to the multi-stage process, and it cannot be applied to nitrogen analysis of coal and heavy oil.This is due to the high temperature heating of the sample. This is because the body is distracted without reacting.

更に野村氏等による方法では、水蒸気の導入下における
塩化第2鉄の熱分解で塩化水素ガスが発生する友めその
除去が必要であ夛、又塩化水素とアンモニアで塩化アン
モンのフユームを生成し次場合、吸収液に吸収されなわ
恐れがあシ、更に塩化第2鉄(FhCl、 )の水蒸気
導入下における熱分解でFhx04 を生成する際にこ
れによってアンモニア分が酸化される恐れも大きい。
Furthermore, the method by Mr. Nomura et al. requires the removal of hydrogen chloride gas generated by thermal decomposition of ferric chloride under the introduction of steam, and also requires the removal of hydrogen chloride gas and the generation of ammonium chloride fume with hydrogen chloride and ammonia. In the following case, there is a risk that the ammonia content will not be absorbed by the absorption liquid, and that the ammonia content will be oxidized when Fhx04 is produced by thermal decomposition of ferric chloride (FhCl) under the introduction of steam.

「発明の構成」 問題点を解決するための手段 本発明は上記したような従来のものの問題点を解消する
ように検討して創案されたもので、所定量の石炭試料を
ボートに秤取し、ソーダ石灰、アルミナおよび゛含水酸
化鉄による合剤の所定量を加えて混合した後に前記?−
トを430±20℃に保持し九反応管中に装入し、水蒸
気を含んだ不活性ガス雰囲気で所定時間加熱し、次いで
前記反応管中のボートを950〜1000℃に保持した
条件下で所定時間加熱し、発生したNH。
"Structure of the Invention" Means for Solving the Problems The present invention was developed after consideration to solve the problems of the conventional products as described above. After adding and mixing a predetermined amount of a mixture of soda lime, alumina, and hydrated iron oxide, the above-mentioned ? −
The boat was maintained at 430 ± 20°C and charged into a nine reaction tube, heated in an inert gas atmosphere containing water vapor for a predetermined time, and then the boat in the reaction tube was maintained at 950 to 1000°C. NH generated by heating for a predetermined period of time.

ガスを前記反応管に連結した水蒸気蒸溜機構を経由して
吸収液に吸収せしめ、アンモニア分を定量することを特
徴とする石炭の窒素分析法である。
This coal nitrogen analysis method is characterized in that gas is absorbed into an absorption liquid via a steam distillation mechanism connected to the reaction tube, and the ammonia content is determined quantitatively.

作用 石炭試料にソーダ石灰、アルミナおよび含水酸化鉄を混
合した合剤の所定量を加えて混合し430±20℃で一
定時間加熱することによって揮発分の分解反応を行わせ
、アンモニア分を発生させることができる。次いで前記
試料を950〜1000℃に保持した反応分解雰囲気に
移すこと ・によシ完全分解せしめられる。これらの加
熱分解反応によって得られたガスは冷却、凝縮して吸収
液に吸収せしめられ、該吸収液を滴定してN量を求める
ことができる。
A predetermined amount of a mixture of soda lime, alumina, and hydrated iron oxide is added to a working coal sample, mixed, and heated at 430±20°C for a certain period of time to cause a decomposition reaction of volatile components and generate ammonia. be able to. The sample is then transferred to a reactive decomposition atmosphere maintained at 950 to 1000° C. - The sample is completely decomposed. The gas obtained by these thermal decomposition reactions is cooled, condensed, and absorbed into an absorption liquid, and the amount of N can be determined by titrating the absorption liquid.

実施例 本発明によるものを前記したJIS法によるものと対比
して説明すると、前記した第3,4図のJIS法による
ガス化法における前記したような不利および野村氏等の
発表によるものの問題点を解消するように本発明者等は
第1図に示すような装置を用いて有利な分析を行わしめ
る。
EXAMPLE To explain the method according to the present invention in comparison with the method according to the JIS method described above, the above-mentioned disadvantages in the gasification method according to the JIS method shown in FIGS. 3 and 4 and the problems presented by Mr. Nomura et al. In order to solve this problem, the present inventors conducted an advantageous analysis using an apparatus as shown in FIG.

即ちこの装置は予備加熱炉1と反応分解炉2に石英反応
管3が挿通され、該反応管3の出側(図示左側)には水
蒸気蒸溜機構4が接続されている。該蒸溜機構4におけ
る蒸溜フラスコ41中には濃厚苛性ソーダ溶液を収容し
)しかも該フラスコ41の外側をオイル浴(ポリエチレ
ングリコール400或いは600 )42で加熱するが
、苛性ソーダ濃度40%では135℃、20%では13
0℃に夫々オイル浴42の温度を一定に保てば苛性ソー
ダ溶液の液量増減なしに一定濃度に保つことができる。
That is, in this apparatus, a quartz reaction tube 3 is inserted into a preheating furnace 1 and a reaction decomposition furnace 2, and a steam distillation mechanism 4 is connected to the outlet side (left side in the figure) of the reaction tube 3. The distillation flask 41 in the distillation mechanism 4 contains a concentrated caustic soda solution, and the outside of the flask 41 is heated in an oil bath (polyethylene glycol 400 or 600) 42, and when the caustic soda concentration is 40%, the temperature is 135°C and 20%. So 13
By keeping the temperature of each oil bath 42 constant at 0° C., the concentration of the caustic soda solution can be maintained at a constant level without increasing or decreasing the volume.

前記した反応管3の入口(図示右側)からは水蒸気を含
有させたHe又すArのようなガスケ水蒸気蒸溜機構5
を導入するもので、このようにHe又はArガス導入の
方式を採用したならば、従来の第3,4図のもののよう
に試料の分解上   ′程と吸収液におけるアンモニア
分の水蒸気蒸溜という2段階の工程でなく、本発明では
試料の加熱処理分解と水蒸気蒸溜によるアンモニア分の
回収を1工程で処理させるために導入ガスに一定以上の
圧力が必要となるためである。
From the inlet of the reaction tube 3 (on the right side in the figure), a gas vapor distillation mechanism 5 containing water vapor, such as He or Ar, is introduced.
If this method of introducing He or Ar gas is adopted, two processes will occur: one is the decomposition process of the sample, and the other is the steam distillation of the ammonia in the absorption liquid, as in the conventional method shown in Figures 3 and 4. This is because the present invention requires a pressure above a certain level for the introduced gas in order to perform heat treatment decomposition of the sample and recovery of the ammonia component by steam distillation in one step, rather than a step process.

このために、第1図のように7ラスコヒータ51で98
℃に保持した熱水中にHeガス(10〇−/鳳りを導入
して水蒸気を同伴させるとJIS法で規定された水分量
として2〜3C−・の水蒸気を導入することができる。
For this purpose, as shown in FIG.
If He gas (100-/-) is introduced into hot water maintained at a temperature of 0.degree. C. and water vapor is entrained, it is possible to introduce 2 to 3 C. water vapor as the moisture content specified by the JIS method.

この部分については別に第2図に示すように、反応石英
管3にローラポンプ(チュービングポンプ)6で水を2
〜3吟−3の割合で導入し、該導入箇所の石英管をヒー
タ7で略200℃に加熱して水蒸気を発生させ、入口か
ら同時に導入するHe又はArガスで発生した水蒸気を
同伴させてもよい。
Regarding this part, as shown in Fig. 2 separately, water is pumped into the reaction quartz tube 3 using a roller pump (tubing pump) 6.
The quartz tube at the introduction point is heated to approximately 200°C by the heater 7 to generate water vapor, and the water vapor generated by the He or Ar gas introduced from the inlet at the same time is entrained. Good too.

このローラポンプ6による石英管3内への給水は石英管
自体に取付けた供給管によるか、或いは第2図に点線で
示すようにアダプターの供給口よ)ステンレスのパイプ
によって供給してもよい。又ローラポンプの場合におい
て調節によシ供給水量を一定に保持することは容易であ
る。
Water may be supplied into the quartz tube 3 by the roller pump 6 through a supply pipe attached to the quartz tube itself, or through a stainless steel pipe (from the supply port of the adapter as shown by the dotted line in FIG. 2). Also, in the case of roller pumps, it is easy to keep the water supply constant by adjustment.

なお、第1図では反応石英管3が1本の場合を例示して
いるが、反応石英管3を2本又はそれ以上の複数本掛け
とした炉を用いれば試料の熱分解工程でN/1001i
t S 04による滴定を終了できるから分析時間を半
減又はそれ以上に縮減させることができる。
Although FIG. 1 shows the case where there is only one reaction quartz tube 3, if a furnace with two or more reaction quartz tubes 3 is used, the N/N/N ratio will be reduced in the sample thermal decomposition process. 1001i
Since the titration can be completed at t S 04, the analysis time can be reduced by half or more.

上記したような装置による分析操作を説明すると、試料
0.1rを磁製ボート11に秤取し、これに粉状のソー
ダ石灰12と粉状の(AltOa+ Ftb@ O@・
H!O)合剤α5fを加えて混合し、さらにこの上に前
記合剤1tで均一に積層し被覆する。この被覆層の上を
さらに約19の石英綿で被覆して準備をなす。
To explain the analysis operation using the above-mentioned apparatus, 0.1r of sample is weighed into a porcelain boat 11, and powdered soda lime 12 and powdered (AltOa + Ftb@O@・
H! O) Mixture α5f is added and mixed, and the mixture 1t is evenly layered and coated thereon. This coating layer is further coated with about 19 quartz wool to prepare.

この磁製ボート11をさらに石英製ボートに載せ第1図
の石英反応管3の430±20℃に保持した予備加熱炉
1の位置に装入し、これに水蒸気(水当量で2〜36.
)を同伴させたHe又はArガス(100v/()を導
入する。予備加熱炉1の炉内で10分間加熱したのち1
000℃に保持した反応分解炉2内の位置にボートを移
し、ここにおいて20分間加熱し、完全分解させる。予
備加熱炉1及び反応分解炉2の加熱分解で発生したアン
モニア分を含む導入He又はAr  ガスは水蒸気蒸溜
機構4のアルカリ浴に導入され、試料の熱分解で発生し
た硫化水素はここで除去され、アンモニア分と水蒸気は
コンテ−8で冷却、凝縮したのち、硼酸飽和液2ゴ十N
/100 H2SO4一定量の吸収液によって吸収され
る。捕集した吸収液にN/100 NH4OH溶液一定
量を加えてpH値を高めたのちpIiスタットを用いて
N/100 HeSO4を滴下LテpH5,41テ滴定
し、下記の計算式でN(%9を求める。
This porcelain boat 11 was further placed on a quartz boat and placed in the preheating furnace 1 maintained at 430±20°C in the quartz reaction tube 3 shown in FIG.
) is introduced into He or Ar gas (100v/(). After heating for 10 minutes in the preheating furnace 1,
The boat was moved to a position in the reaction decomposition furnace 2 maintained at 000° C., and heated there for 20 minutes to completely decompose it. The introduced He or Ar gas containing ammonia generated by the thermal decomposition in the preheating furnace 1 and the reaction decomposition furnace 2 is introduced into the alkaline bath of the steam distillation mechanism 4, where the hydrogen sulfide generated by the thermal decomposition of the sample is removed. After cooling and condensing the ammonia and water vapor in Conte-8, 2 g of saturated boric acid solution was added.
/100 H2SO4 is absorbed by a certain amount of absorption liquid. After adding a certain amount of N/100 NH4OH solution to the collected absorption liquid to increase the pH value, using a pIistat, dropwise add N/100 HeSO4 and titrate to pH5.41. Find 9.

但し上式において、 f : N/100H2SO4の係数、xl:滴定N/
100 He S o、 ml、x2=添加N/100
 H,So、 m、χ、:添加N/ 100 NH4O
H−相当N/100 H雪So、 ag、bニブランク
値−数、 W:試料を数 である。
However, in the above formula, f: coefficient of N/100H2SO4, xl: titration N/
100 He So, ml, x2 = Added N/100
H, So, m, χ,: Added N/100 NH4O
H-equivalent N/100 H snow So, ag, b blank value-number, W: sample number.

上記したような装置による分析操作について説明すると
、本発明では添加合剤としてアルミナと含水酸化鉄(r
−タイト)の合剤を用いる。
To explain the analysis operation using the above-mentioned apparatus, in the present invention, alumina and hydrated iron oxide (r
-Tight) is used.

この合剤は1例として含水酸化鉄(Fiz 0B・H,
0)10gとアルミナ(90Aの細孔のもの)150?
を混合し調製するが、この配合割合は適宜に° 変えて
もよい。
An example of this mixture is hydrated iron oxide (Fiz 0B/H,
0) 10g and alumina (90A pore) 150?
The mixture is prepared by mixing the ingredients, but the mixing ratio may be changed as appropriate.

前記含水酸化鉄< 2 FaOOH= Ft203・H
2O)に熱分解でH,0分を発生するが、このH,0分
はアルカリ存在下の熱分解反応に寄与する。またH2O
が抜けたあとのり、0.結晶は格子欠陥を生ずるため、
活性を生じ触媒的な作用を期待することができる。しρ
為しhα、+H,0の熱分解に伴う石炭中の揮発分との
急激な反応にみられるような作用を期待することはでき
ないから、石炭試料を一定の加熱条件のもとに封じ込め
、反応させる必要がある。その条件としては上記分析操
作で述べたように、試料0.19と粉末ソーダ石灰1 
t 、 オヨU (AltOn +F4*Os ”He
O)合剤0.5tをよく混合し、斯うして得られた混合
物を更に前記した合剤の粉体12を用いて均一に積層せ
しめて被覆し、さらに約0.12の石英綿で被覆し水蒸
気同伴のHe又はArガスの導入下、例えば430±2
0℃ で10分間加熱することが適当である。
Said hydrated iron oxide < 2 FaOOH= Ft203・H
2O) is thermally decomposed to generate H,0 min, which contributes to the thermal decomposition reaction in the presence of an alkali. Also H2O
The glue after it comes off is 0. Because crystals produce lattice defects,
It can be expected to generate activity and have a catalytic effect. Shirho
Therefore, it is not possible to expect the effect seen in the rapid reaction between hα,+H,0 and volatile matter in the coal due to thermal decomposition, so the coal sample is confined under certain heating conditions and the reaction is carried out. It is necessary to do so. As mentioned in the analysis procedure above, the conditions are as follows: sample 0.19 and powdered soda lime 1
t, Oyo U (AltOn +F4*Os ”He
O) Thoroughly mix 0.5 t of the mixture, further coat the mixture by uniformly layering it with the powder 12 of the mixture described above, and further cover with about 0.12 t of quartz wool. For example, 430±2 while introducing He or Ar gas accompanied by water vapor.
Heating at 0°C for 10 minutes is suitable.

このような条件下で石英の揮発分とソーダ石灰、水蒸気
による熱分解を完結させたのちに、&−ト11を100
0℃の箇所に移し、残炭の熱分解を完結させる。本発明
ではこのように予備加熱温度の幅が430±20℃ と
狭いため、例えば反応分解炉2からの輻射熱を利用する
ことは温度分布の点から困離であシ、予備加熱炉1の設
置は不可決の要素である。
After completing the thermal decomposition of quartz volatile matter, soda lime, and water vapor under these conditions, &-to 11 was heated to 100%.
Transfer to a location at 0°C to complete thermal decomposition of the remaining coal. In the present invention, since the range of the preheating temperature is as narrow as 430±20°C, it is difficult to use the radiant heat from the reaction and decomposition furnace 2, for example, in terms of temperature distribution. is an unreliable element.

さらに本発明では上述のようにHe又はArガスに水蒸
気を同伴させる方法を採用したが、これは試料の熱分解
で発生したアンモニア分を引き続き連結した黒部装置の
アルカリ浴に吹き込ませ、水蒸気蒸溜を行せるために、
一定の圧力を与える必要があることから不可決である。
Furthermore, in the present invention, as mentioned above, we adopted a method in which water vapor is entrained in He or Ar gas, but this method involves blowing the ammonia generated by thermal decomposition of the sample into the alkaline bath of the connected Kurobe apparatus, and then steam distillation. In order to be able to
This cannot be passed because it is necessary to apply a certain amount of pressure.

又本発明の分析法では、吸収液にJIS法で規定された
硼酸飽和液2tatのほかN/100 H,So、溶液
を一定量(例えば10d)加える。これは、JIS法に
よる水蒸気蒸溜の場合と異なシ、水蒸気を同伴したHe
又はArガスが高温帯を経由しCともの9、コア1/ア
ー1C工ゐ償却か尤かとな)アンモニア分が完全に捕集
されないか、あるいは吸収液のpH値の上昇に伴なって
アンモニア分の一部が逸失する恐れがあるからで、上記
のように硼酸飽和液2−にN/100山S04溶液を一
定量(例えば10m)加えてアンモニア分捕集後のpH
値が4以下になるようにして吸収後の溶液のNH,分圧
が殆んどないようにする。さらに滴定前のN/100 
NH4OH溶液を例えば5TRt加えて溶液のpH値を
高めてからpflスタットを用いてp■s、 4まで微
分法で滴定するという方法をとる。
In addition, in the analysis method of the present invention, in addition to 2 tat of a boric acid saturated solution specified by the JIS method, a certain amount (for example, 10 d) of N/100 H, So solution is added to the absorption liquid. This is different from the case of steam distillation according to the JIS method.
Or the Ar gas passes through the high temperature zone and the ammonia content is not completely collected, or the ammonia content increases as the pH value of the absorption liquid increases. This is because there is a possibility that some of the ammonia content may be lost, so as mentioned above, add a certain amount (for example, 10 m) of N/100 mountain S04 solution to the boric acid saturated solution 2- to adjust the pH after collecting the ammonia content.
The value should be 4 or less so that there is almost no NH, partial pressure in the solution after absorption. Furthermore, N/100 before titration
The method is to increase the pH value of the solution by adding, for example, 5 TRt of NH4OH solution, and then titrate using a pflstat to 4 ps by the differential method.

本発明による具体的な分析例について説明すると以下の
如くである。
A specific analysis example according to the present invention will be explained as follows.

分析例1゜ 瀝青炭で揮発分の含量が33%と扁い試料〔銘柄レミン
トン(水分;a25%) :I O,0812fを磁製
&−トに正確に秤取し、これに粉状のソーダ石灰1tと
粉状の(#、 O,+ V、C)、・H,0)合剤0.
51を加えてよく混合し、さらにこの上にこの合剤1?
を用いて均一に積層し被覆する。
Analysis Example 1 A flat sample of bituminous coal with a volatile content of 33% [brand Remington (water content: 25% a): IO, 0812f was accurately weighed into a porcelain container, and powdered soda was added to it. 1 ton of lime and powdered (#, O, + V, C), H, 0) mixture 0.
Add 51 and mix well, then add this mixture 1?
Laminate and cover uniformly using

この被覆層の上をさらに約0.12の石英綿で被覆する
This coating layer is further coated with about 0.12 quartz wool.

この磁製ボートをさらに石英製のボートに載せ、第1図
の石英反応管の430±20℃に保持した予備加熱炉1
の位置に装入し、これに水蒸気(水分量で2〜3 、j
/―、 )  を導入する。予備加熱炉1内で10分間
加熱したのち、1000℃に保持した炉2内の位置にセ
ードを移し、ここで20分間加熱し、完全分解させる。
This porcelain boat was further placed on a quartz boat, and the preheating furnace 1 was maintained at 430±20°C in the quartz reaction tube shown in Figure 1.
It is charged at the position of
/―, ) will be introduced. After heating in the preheating furnace 1 for 10 minutes, the shade is transferred to a position in the furnace 2 maintained at 1000° C. and heated there for 20 minutes to completely decompose it.

予備加熱炉1および反応分解炉2内の加勢分解で発生し
たアンモニア分を含む導入He がスは水蒸気蒸溜装置
のアルカリ浴に導入され、試料の熱分解で発生した硫化
水素はここで除去され、アンモニア分と水蒸気はコンデ
ンサーで冷却、凝縮したのち(硼酸飽和液2 m −)
−N/100H!80.10 tri )の吸収液に吸
収させ、吸収液の入ったビーカーを取シ除いた。吸収後
の吸収液におけるpH値は3.85でちり、これにN/
100NH40H5m  (N/100H,So、  
4.95m相当)を加えたところ、pH値は7.43 
に上昇した。p■スタットを用いてN/100 H,S
 O,でpH5,4まで微分法で滴定し、滴定量3.6
4−を得た。これから次のように計算されてN分析値が
求められた。
The introduced He gas containing ammonia generated by the accelerated decomposition in the preheating furnace 1 and the reaction decomposition furnace 2 is introduced into the alkaline bath of the steam distillation apparatus, where the hydrogen sulfide generated by the thermal decomposition of the sample is removed. Ammonia and water vapor are cooled and condensed in a condenser (boric acid saturated liquid 2 m −)
-N/100H! 80.10 tri ) of absorbent solution, and the beaker containing the absorbent solution was removed. After absorption, the pH value of the absorption liquid was 3.85 and dust was added to it.
100NH40H5m (N/100H, So,
4.95m equivalent), the pH value was 7.43.
rose to N/100 H,S using p■stat
Titrate using the differential method to pH 5.4 with O, titration amount is 3.6
Got 4-. From this, the N analysis value was calculated as follows.

α812 以下同様にして他の4銘柄(セロ、キャンモア、ホング
イ、コークス)について分析した結果を要約して示すと
次に示す表の通シである。
α812 The following table summarizes the results of similar analysis of the other four brands (Cero, Canmore, Hongui, and Coke).

註:石炭はセミミクロケルブール法、 コークスはガス化法による 分析例2 コークス試料(水分; 1.21% ) 0.1021
 ?  を磁製ホードに秤取し、これに粉状のソーダ石
灰1tを加えて混合し、さらにこの上を約0.1fの石
英綿で被覆した。このボートをさらに石英製のカートに
載せ、石英反応管に装入し、第1図の1000℃に保持
した反応分解炉2内の位置に装入し、反応管に水蒸気(
2〜3 w4t/sm、 )を含有するHe ifスを
導入して約20分間加熱分解し、発生したアンモニア分
を吸収液に吸収させた。
Note: Analysis example 2 using the semi-micro Kelbour method for coal and the gasification method for coke. Coke sample (moisture content; 1.21%) 0.1021
? was weighed out in a porcelain hoard, 1 ton of powdered soda lime was added thereto, mixed, and then covered with about 0.1 f of quartz wool. This boat was further placed on a quartz cart, charged into a quartz reaction tube, placed in the reaction cracking furnace 2 maintained at 1000°C as shown in Fig. 1, and placed in the reaction tube with water vapor (
Heif gas containing 2 to 3 w4t/sm) was introduced and thermally decomposed for about 20 minutes, and the generated ammonia was absorbed into the absorption liquid.

以下分析何重と同じ分析操作法で吸収液をN/100 
Ha S 04 で滴定し、滴定量L82mを得た。
The absorption liquid was prepared at N/100 using the same analytical procedure as the following analysis.
It was titrated with Ha S 04 to obtain a titer of L82m.

この結果から下記の計算でN : 0.92%を得た 
 −が、これは従来法(、ガス化法)の分析値と一致し
た。
From this result, N: 0.92% was obtained by the following calculation.
-, but this was consistent with the analytical value of the conventional method (gasification method).

0.1021 100−1.21 「発明の効果」 以上説明したような本発明によるときはJISM881
3  のガス化法では分析できなかった石炭中の窒素を
ガス化法により安定状態に分析することが可能であシ、
又単一装置における単一行程で分析できるので能率的で
あると共にガス反応管を適宜に複数本掛けすることが可
能でその能率を更に倍加することができ、しかも水銀や
水銀化合物およびセレンなどの府警物質を使用しないで
実施でき、又石英管の損傷をなからしめて長期に亘る分
析操作を可能にするなどの効果を有しておシ、工業的に
その効果の大きい発明でおる。
0.1021 100-1.21 "Effect of the invention" When the present invention as explained above is applied, JISM881
It is possible to analyze nitrogen in coal in a stable state using the gasification method, which could not be analyzed using the gasification method described in 3.
In addition, it is efficient because it can be analyzed in a single process in a single device, and it is possible to connect multiple gas reaction tubes as appropriate, further doubling the efficiency. This invention can be carried out without using prefectural substances, and has the effect of preventing damage to the quartz tube and enabling long-term analytical operations, making it an industrially highly effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は本発明方法を実施するための装置の概要を示し念説明
図、第2図はその水蒸気蒸溜機構部分の説明図、第3図
は従来のJIS M8813によるガス化装置の説明図
、第4図は同じ〈従来のセミミクロケルメール法による
水蒸気源溜装置の説明図である。 然してこれらの図面において、1は予備加熱炉、2は反
応分解炉、3は石英反応管、4は水蒸気蒸溜機構、5は
水蒸気蒸溜機構、6f′iロー2ポング又はチュービン
グポンプ、7はヒータ、11は磁製ボートを示すもので
ある。
The drawings show the technical contents of the present invention, and FIG. 1 is a conceptual diagram showing an outline of the apparatus for carrying out the method of the present invention, FIG. 2 is an explanatory diagram of the steam distillation mechanism, and FIG. FIG. 3 is an explanatory diagram of a conventional gasifier according to JIS M8813, and FIG. 4 is an explanatory diagram of the same conventional steam source reservoir according to the semi-micro Kermer process. In these drawings, 1 is a preheating furnace, 2 is a reaction cracking furnace, 3 is a quartz reaction tube, 4 is a steam distillation mechanism, 5 is a steam distillation mechanism, 6f'i is a low pump or tubing pump, 7 is a heater, 11 indicates a porcelain boat.

Claims (1)

【特許請求の範囲】[Claims] 所定量の石炭試料をボートに秤取し、ソーダ石灰、アル
ミナおよび含水酸化鉄による合剤の所定量を加えて混合
した後に前記ボートを430±20℃に保持した反応管
中に装入し、水蒸気を含んだ不活性ガス雰囲気で所定時
間加熱し、次いで前記反応管中のボートを950〜10
00℃に保持した条件下で所定時間加熱し、発生したN
H_3ガスを前記反応管に連結した水蒸気蒸溜機構を経
由して吸収液に吸収せしめ、アンモニア分を定量するこ
とを特徴とする石炭の窒素分析法。
Weighing a predetermined amount of coal sample into a boat, adding and mixing a predetermined amount of a mixture of soda lime, alumina, and hydrated iron oxide, and then charging the boat into a reaction tube maintained at 430 ± 20 ° C., Heating in an inert gas atmosphere containing water vapor for a predetermined period of time, and then heating the boat in the reaction tube at a temperature of 950 to 100
The generated N
A coal nitrogen analysis method, characterized in that H_3 gas is absorbed into an absorption liquid via a steam distillation mechanism connected to the reaction tube, and the ammonia content is determined.
JP19262984A 1984-09-17 1984-09-17 Nitrogen analysis method of coal Granted JPS6171356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19262984A JPS6171356A (en) 1984-09-17 1984-09-17 Nitrogen analysis method of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19262984A JPS6171356A (en) 1984-09-17 1984-09-17 Nitrogen analysis method of coal

Publications (2)

Publication Number Publication Date
JPS6171356A true JPS6171356A (en) 1986-04-12
JPH0360389B2 JPH0360389B2 (en) 1991-09-13

Family

ID=16294424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19262984A Granted JPS6171356A (en) 1984-09-17 1984-09-17 Nitrogen analysis method of coal

Country Status (1)

Country Link
JP (1) JPS6171356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
CN104062396A (en) * 2014-07-14 2014-09-24 四川天齐锂业股份有限公司 Method for measuring content of nitrogen in metal lithium and lithium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
US9097688B2 (en) 2010-03-01 2015-08-04 Central Glass Company, Limited Method and device for measuring water content in hydrogen fluoride-containing fluoride salt compounds
CN104062396A (en) * 2014-07-14 2014-09-24 四川天齐锂业股份有限公司 Method for measuring content of nitrogen in metal lithium and lithium alloy

Also Published As

Publication number Publication date
JPH0360389B2 (en) 1991-09-13

Similar Documents

Publication Publication Date Title
CS274470B2 (en) Method of acids winning or recovery from their metals containing solutions
GB1121845A (en) Process and apparatus for recovering mercury or mercury(ii) chloride from catalysts containing mercury
US4119706A (en) Method of catalytically recombining radiolytic hydrogen and radiolytic oxygen
US4246235A (en) Horizontal flow catalytic reactor
US5582812A (en) Process for gas phase conversion of diethylzinc to zinc oxide powder
US2631083A (en) Production of calcium fluoride and silica
EP0179994B1 (en) Process for drying a chelating agent
JPS60500999A (en) Method and apparatus for purifying combustion gases discharged from combustion equipment
GB344119A (en) Process and apparatus for catalytic gaseous reactions
JPS6171356A (en) Nitrogen analysis method of coal
JP2010517904A (en) Preparation of hydrogen fluoride from calcium fluoride and sulfuric acid
US4185079A (en) Removal of phosphine contaminant from carbon monoxide gas mixtures
US4174379A (en) Manufacture of ammonium nitrate
US5082645A (en) Waste acid recovery process
JPS61168506A (en) Production of sulfuric trioxide from fuming sulfuric acid
US3016285A (en) Method of selectively absorbing hydrogen fluoride from gases containing hydrogen fluoride and sulfur dioxide
Pangarkar et al. Simultaneous absorption and reaction of two gases: absorption of CO2 and NH3 in water and aqueous solutions of alkanolamines
JPH0463002B2 (en)
US1473826A (en) Floyd j
KR100214762B1 (en) Exhaust gas conditioning method
CN220165835U (en) Liquid phosphorus treatment system and yellow phosphorus furnace gas treatment system
JP2545417B2 (en) Nitrogen compound decomposing agent and method for quantitative analysis of nitrogen in nitrogen compound
Mozes Regenerative limestone slurry process for flue gas desulfurization
JPS594365B2 (en) Method for purifying gas containing elemental sulfur
US1623942A (en) Method for the prepartion of hydrogen sulphide