JPS6170437A - Method for measuring wavelength dispersion of optical fiber - Google Patents

Method for measuring wavelength dispersion of optical fiber

Info

Publication number
JPS6170437A
JPS6170437A JP19293984A JP19293984A JPS6170437A JP S6170437 A JPS6170437 A JP S6170437A JP 19293984 A JP19293984 A JP 19293984A JP 19293984 A JP19293984 A JP 19293984A JP S6170437 A JPS6170437 A JP S6170437A
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
geo2
fibers
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19293984A
Other languages
Japanese (ja)
Inventor
Eiki Cho
張 榮基
Masakazu Higashimoto
東本 雅和
Mikio Kokayu
小粥 幹夫
Hiroshi Takahashi
宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP19293984A priority Critical patent/JPS6170437A/en
Publication of JPS6170437A publication Critical patent/JPS6170437A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/338Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/332Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using discrete input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To improve a measuring dynamic range sharply while keeping the measuring accuracy of wavelength dispersion and to shorten a measuring time by using GeO2 fibers as exciting optical fibers. CONSTITUTION:The measuring system makes a laser beam radiated from an exciting optical source 1 consisting of a O switch and an Nd:YAG laser allowed to execute mode locking operation incident upon an exciting optical fiber consisting of GeO2 fiber to obtain a GeO2 fiber line laser light having spectral characteristics shown in (A). The laser beam is separated into respective stroke light rays by an optical band filter or a simple type diffraction grating, separated light rays are made incident upon fibers 4 to be measured and light rays outputted from the fibers 4 are detected by an avalanche photodiode APD and observed by a high-speed oscilloscope.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の波長分散測定方法はYAGレーザによるGe0
22アイバラマンレーザを用いて光ファイバの波長分散
を測定するものである。
Detailed Description of the Invention (Industrial Application Field) The chromatic dispersion measurement method of the present invention uses a YAG laser to measure Ge0
The chromatic dispersion of an optical fiber is measured using a .22 Brassian laser.

(従来技術) 波長分散測定系として従来は第3図に示すようなものが
ある。これは石英ファイバ(Si02)を用いてラマン
散乱を励起させるものである。firJ3図のAは励起
用光源であり、Qスイッチ及びモードロック動作の可能
なNd : YAGレーザが使用されている。
(Prior Art) There is a conventional wavelength dispersion measuring system as shown in FIG. This uses a quartz fiber (Si02) to excite Raman scattering. A in the firJ3 diagram is an excitation light source, and an Nd:YAG laser capable of Q-switching and mode-locking operation is used.

この測定系では、励起用の単一モード光ファイバBから
の出力光を分光器Cで波長選択し、ついで分光後の出力
をAPD(7バランシユホトダイオード)で受信し、そ
れを増幅器りで増幅して高速のオシロスコープEで観測
するようにしである第3図の測定系で単一モード光ファ
イバAの伝搬遅延時間を測定するには以下の手順により
行なう。
In this measurement system, a spectrometer C selects the wavelength of the output light from a single mode optical fiber B for pumping, the output after spectroscopy is then received by an APD (7 balance photodiode), and it is amplified by an amplifier. In order to measure the propagation delay time of the single mode optical fiber A using the measurement system shown in FIG. 3, which is to be observed using a high-speed oscilloscope E, the following procedure is used.

まず、励起用光ファイバBについて伝搬遅延時間差の波
長依存性の測定を行なう、ついで励起用光ファイバBに
被測定用光ファイバFを接続し、同様に伝搬遅延時間差
の波長依存性の測定する。
First, the wavelength dependence of the propagation delay time difference is measured for the pumping optical fiber B. Next, the optical fiber F to be measured is connected to the pumping optical fiber B, and the wavelength dependence of the propagation delay time difference is similarly measured.

被測定用光ファイバFの伝搬遅延時間差は、接続後の遅
延時間から励起用光ファイバBの遅延時間を差引くこと
により決定する。
The propagation delay time difference of the optical fiber to be measured F is determined by subtracting the delay time of the pumping optical fiber B from the delay time after connection.

第2図に示すものは5i02ファイバラマンレ−ザの典
型的な分光特性例を示すものである。波長1.124m
、1.18gm、1.24gm及び1.31pmに観測
されるピークは、夫々5i−O−5i結合の分子振動に
よるラマン散乱の第1ストークス光から第4ストークス
光に相当する(発明が解決しようとする問題点) イ、83図に示すものは5i02フアイ/へを使用する
ものであるため分光特性が第2図に示すようになる。そ
のため分光器Cを使って波長選択(掃引)を行なわなけ
ればならない、この場合、分光器Cの波長分解能を得る
ため分光器Cのスリットを拡げれば分散によってパルス
波形の広がりが太き、くなり、パルスピークによる遅延
時間の測定誤差が大きくなるためスリットを絞らなけれ
ばならない、しかし分光器Cのスリットを絞ると出力パ
ワーが下り、測定ダイナミックレンジが小さくなる。測
定ダイナミックレンジが小さくなると高精度の測定がむ
ずかしくなるため、分光器Cを使用する場合はスリット
の絞り度合を波長分解能(精度)とダイナミックレンジ
を考慮して最適化しなければならない。
What is shown in FIG. 2 shows an example of typical spectral characteristics of a 5i02 fiber Raman laser. Wavelength 1.124m
The peaks observed at , 1.18 gm, 1.24 gm, and 1.31 pm correspond to the first to fourth Stokes lights of Raman scattering due to the molecular vibration of the 5i-O-5i bond (this invention will solve the problem). (2) Since the one shown in Fig. 83 uses a 5i02 fiber, the spectral characteristics are as shown in Fig. 2. Therefore, wavelength selection (sweeping) must be performed using spectrometer C. In this case, if the slit of spectrometer C is widened in order to obtain the wavelength resolution of spectrometer C, the pulse waveform will widen due to dispersion. Therefore, the measurement error in the delay time due to the pulse peak increases, so the slit must be narrowed down.However, when the slit of the spectrometer C is narrowed down, the output power decreases and the measurement dynamic range becomes smaller. As the measurement dynamic range becomes smaller, highly accurate measurement becomes difficult, so when using the spectrometer C, the degree of aperture of the slit must be optimized in consideration of wavelength resolution (accuracy) and dynamic range.

0.5i02フアイバを使用した場合、1.3JLm波
長近傍のラマン散乱出力が弱い。
When a 0.5i02 fiber is used, the Raman scattering output near the 1.3JLm wavelength is weak.

ハ9分光特性が第2図に示すように連続的になるため分
光器Cで分光しなければんらす、測定に時間がかかる。
C9 Since the spectral characteristics are continuous as shown in FIG. 2, the spectrometer C must be used to perform the spectroscopic analysis, which takes time to measure.

(問題を解決するための手段) 本発明の目的は波長分数の測定精度を保ちながら(従来
と比べて)測定ダイナミックレンジを大幅に向上させ、
しかも測定時間を短縮することにある。
(Means for Solving the Problem) The purpose of the present invention is to significantly improve the measurement dynamic range (compared to conventional methods) while maintaining the measurement accuracy of wavelength fractions.
Moreover, the aim is to shorten the measurement time.

そのため本発明では励起用光ファイバとしてGeO2フ
ァイバを使用するようにしである。
Therefore, in the present invention, a GeO2 fiber is used as the excitation optical fiber.

本発明の測定系を第1図に示す、この測定系はQスイッ
チ及びモードロック動作の可能なNd:YAGレーザに
よる励起用光源lからのレーザをGeO2ファイバによ
る励起用光ファイバ2に入射して第4図に示すような分
光特性のGem2フアイバラマンレーザを得る。
The measurement system of the present invention is shown in FIG. 1. This measurement system injects a laser beam from an excitation light source 1, which is a Nd:YAG laser capable of Q-switching and mode-locking operation, into an excitation optical fiber 2, which is a GeO2 fiber. A Gem2 fiber Brahman laser having spectral characteristics as shown in FIG. 4 is obtained.

このレーザを光学的バンドフィルターまたは簡易タイプ
の回折格子3で各ストーク光を分離して被測定用ファイ
バ4に入射し、同ファイバ4からの出力光をアバランシ
ュホトダイオードAPDで検出し、高速のオシロスコー
プ5で観測するようにしたものである。
This laser is separated into individual stalk lights using an optical band filter or a simple type diffraction grating 3, and then inputted into a fiber 4 to be measured.The output light from the fiber 4 is detected by an avalanche photodiode APD, and a high-speed oscilloscope 5 It was designed to be observed.

(実験例) 第1図の測定系を用いて3.96kmのシングルモード
ファイバの波長分散を測定した0本実験で用いたGem
、ファイバの諸元は次の通りである。
(Experiment example) Gem used in the experiment in which the wavelength dispersion of a 3.96 km single mode fiber was measured using the measurement system shown in Figure 1.
, the specifications of the fiber are as follows.

sbドープのGeO2コア、直径ニア04m純GeO2
クラッド、  直径:150gm開口比 NA=0.1 長1さ290m ボンピング光 1 、064 ファイバ内パルスピークパワー5KW YAGレーザ、モードロツタ160MHz、Q−スイッ
チl kHz。
sb-doped GeO2 core, diameter near 04m pure GeO2
Cladding, Diameter: 150gm Aperture ratio NA = 0.1 Length 1 Length 290m Bumping light 1,064 In-fiber pulse peak power 5KW YAG laser, mode rotator 160MHz, Q-switch l kHz.

この場合の分光特性は第4図に示す通りである(各スト
ークス光の半値幅は数7zmである)。
The spectral characteristics in this case are as shown in FIG. 4 (the half width of each Stokes beam is several 7 zm).

第5図にO印で示すものは伝搬遅延時間差の波長依存性
測定例である。
What is indicated by O in FIG. 5 is an example of measuring the wavelength dependence of the propagation delay time difference.

τ (入)=A入4+B入2+C+D入4 + E −
4近似式を用い、この式に上記のデータを当てはめ、微
分(入に対して)によって零分散波長入〇(伝搬遅延時
間差が最大となる波長)及び分散値σが得られる。
τ (in) = A input 4 + B input 2 + C + D input 4 + E −
Using the 4 approximation formula, and applying the above data to this formula, the zero dispersion wavelength (wavelength at which the propagation delay time difference is maximum) and the dispersion value σ are obtained by differentiation (with respect to input).

計算の結果 零分散波長入0=1.331ルm 分散値crat 1 、30=2.21ps/nm/k
mである。
Calculation result Zero dispersion wavelength input 0 = 1.331 lm Dispersion value crat 1 , 30 = 2.21 ps/nm/k
It is m.

S i 02フアイバラマンレーザによる測定結果を同
時に第5図にX印で示す0両者は良く一致している。
The measurement results using the S i 02 fiber Brahman laser are also shown as X marks in FIG. 5 and are in good agreement.

(発明の効果) 本発明は励起用光ファイバ2としてGeO2光ファイバ
を使用し、しかも同ファイバの分光特性が第4図に示す
通り各励起ストークス光のスペクトルが分離しており且
つシャープであり、1.1ルm〜1.7用m波長域内に
ほぼ等間隔で分布しており、しかも各ストークス光の波
長シフトは約424cm’であるため、本発明によれば
次のような各種効果がある。
(Effects of the Invention) The present invention uses a GeO2 optical fiber as the excitation optical fiber 2, and the spectral characteristics of the fiber are such that the spectra of each excitation Stokes light are separated and sharp, as shown in FIG. They are distributed at approximately equal intervals within the 1.1 m to 1.7 m wavelength range, and the wavelength shift of each Stokes beam is about 424 cm, so the present invention provides the following various effects. be.

(1)従来の測定系の分光器Cのかわりに簡易タイプの
回折格子或は光学的バンドフィルタ3を使用しても各ス
トークス光が十分に分離できる。
(1) Even if a simple type diffraction grating or optical band filter 3 is used in place of the spectrometer C of the conventional measurement system, each Stokes beam can be sufficiently separated.

(2)分光器Cが不要となるためその分だけダイナミッ
クレンジが1odB以上改善され、高精度の測定が可能
になる。
(2) Since the spectrometer C is not required, the dynamic range is improved by more than 1 odB, and highly accurate measurement becomes possible.

(3)SiO2ファイバラマンレーザの分光特性と比べ
て、各ストークス光がシャープになる分だけ(ラマン散
乱断面積が大きいため)エネルギーが集中され、各スト
ークス光のパワーが大きくなる。
(3) Compared to the spectral characteristics of the SiO2 fiber Raman laser, each Stokes beam becomes sharper (because the Raman scattering cross section is larger), and the energy is concentrated, and the power of each Stokes beam becomes larger.

(4)ダイナミックレンジが1odB以上改善さ1  
 ′″hi+x“−“x′(7)′< 7−”3°゛1
1尺な光ファイバの波長分散測定ができる。
(4) Dynamic range improved by more than 1 odB1
′″hi+x″−“x′(7)′< 7−”3°゛1
It is possible to measure the chromatic dispersion of a one-meter optical fiber.

(5)測定系の構成が簡単になるため、計算、操作時間
などが短縮される。ちなみにGeO2ファイ八では7番
目のストークス光まで測定すれば1 、1 pm〜1.
74m波長帯がカバーできるため測定点が7つで済むが
、5i02フアイバでは1.2pm−1,5pm波長帯
で、0.OLgm間隔で測定を行なう場合測定点が31
ケとなり、Gem、ファイバの測定点数が5i02フア
イバの測定点の1/4となる。
(5) Since the configuration of the measurement system is simplified, calculation and operation time are shortened. By the way, in GeO2 Phi 8, if you measure up to the 7th Stokes beam, it will be 1.1 pm to 1.1 pm.
Since it can cover the 74m wavelength band, only seven measurement points are required, but with the 5i02 fiber, it can cover the 1.2pm-1.5pm wavelength band, so it is 0. When measuring at OLgm intervals, there are 31 measurement points.
Therefore, the number of measurement points for Gem and fiber is 1/4 of the measurement points for 5i02 fiber.

また本発明では各ストークス光が分離し、しかもシャー
プであり、さらには各ストークス光に伝搬時間差がある
ため各ストークス光を被測定ファイバに同時に入力し、
データ処理することにより更に短時間に測定することが
できる。
In addition, in the present invention, each Stokes beam is separated and sharp, and since each Stokes beam has a propagation time difference, each Stokes beam is simultaneously input into the fiber under test.
By processing the data, measurements can be made even more quickly.

(6)各ストークス光が1.lpm〜1.7pmにわた
って均一に分布しているため測定確度が容易に保たれる
(6) Each Stokes light is 1. Since it is uniformly distributed over lpm to 1.7pm, measurement accuracy can be easily maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定系の一例を示す説明図、第2図は
5i02フアイバラマンレーザの分光特性の説明図、第
3図は従来の波長分散測定系の説明図、第4図はGeO
2ファイバラマンレーザの分光特性の説明図、第5図は
GeO2ファイバラマンレーザと5i02フアイバラマ
ンレーザの伝搬遅延時間差の波長依存特性の説明図であ
る。 1は励起用光源 2は励起用光ファイバ 3はバンドフィルター または簡易タイプの回折格子 4は被測定用光ファイバ 図面の浄′S(p’1答に変更なし) 第 22 迎 3 :フ 第5図 1.OL+     +21.’3    L4   
15   1.6涙長Vグ) 手続補正書(方式) %式% l 事件の表示    特願昭59−192939号2
 発明の名称    光ファイバの波長分散測定方法3
 補正をする者 事件との関係  特許出願人 住所
Fig. 1 is an explanatory diagram showing an example of the measurement system of the present invention, Fig. 2 is an explanatory diagram of the spectral characteristics of the 5i02 fiber Brahman laser, Fig. 3 is an explanatory diagram of the conventional wavelength dispersion measurement system, and Fig. 4 is an explanatory diagram of the GeO2 fiber Brahman laser.
FIG. 5 is an explanatory diagram of the spectral characteristics of the two-fiber Raman laser. FIG. 5 is an explanatory diagram of the wavelength-dependent characteristic of the propagation delay time difference between the GeO2 fiber Raman laser and the 5i02 fiber Raman laser. 1 is the excitation light source 2 is the excitation optical fiber 3 is a band filter or simple type diffraction grating 4 is the optical fiber to be measured. Figure 1. OL+ +21. '3 L4
15 1.6 tear length Vg) Procedural amendment (method) % formula % l Indication of case Patent application No. 192939/1989 2
Title of the invention Optical fiber chromatic dispersion measurement method 3
Relationship with the case of the person making the amendment Address of the patent applicant

Claims (1)

【特許請求の範囲】[Claims] 励起用光源からのレーザを誘導ラマン散乱を発生する励
起用光ファイバに入射し、励起用光ファから発生される
誘導ラマン散乱光を用いて被測定用光ファイバの波長分
散を測定する方法において、励起用光ファイバとしてG
eO_2光ファイバを使用するようにしたことを特徴と
する光ファイバの波長分散測定方法。
In a method in which a laser from an excitation light source is incident on an excitation optical fiber that generates stimulated Raman scattering, and the chromatic dispersion of an optical fiber to be measured is measured using the stimulated Raman scattering light generated from the excitation optical fiber, G as a pumping optical fiber
A method for measuring chromatic dispersion of an optical fiber, characterized in that an eO_2 optical fiber is used.
JP19293984A 1984-09-14 1984-09-14 Method for measuring wavelength dispersion of optical fiber Pending JPS6170437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19293984A JPS6170437A (en) 1984-09-14 1984-09-14 Method for measuring wavelength dispersion of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19293984A JPS6170437A (en) 1984-09-14 1984-09-14 Method for measuring wavelength dispersion of optical fiber

Publications (1)

Publication Number Publication Date
JPS6170437A true JPS6170437A (en) 1986-04-11

Family

ID=16299516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19293984A Pending JPS6170437A (en) 1984-09-14 1984-09-14 Method for measuring wavelength dispersion of optical fiber

Country Status (1)

Country Link
JP (1) JPS6170437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947731B1 (en) 2008-01-30 2010-03-16 광주과학기술원 Apparatus for and method of measuring chromatic dispersion of optical fiber and otical waveguide using spectral interferometer
KR100963237B1 (en) 2008-01-18 2010-06-11 광주과학기술원 Apparatus for calculating chromatic dispersion, and method therefor, and system for measuring chromatic dispersion, and method therefor, and the recording media storing the program performing the said methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963237B1 (en) 2008-01-18 2010-06-11 광주과학기술원 Apparatus for calculating chromatic dispersion, and method therefor, and system for measuring chromatic dispersion, and method therefor, and the recording media storing the program performing the said methods
KR100947731B1 (en) 2008-01-30 2010-03-16 광주과학기술원 Apparatus for and method of measuring chromatic dispersion of optical fiber and otical waveguide using spectral interferometer

Similar Documents

Publication Publication Date Title
JP7405175B2 (en) Light source device for light measurement, spectrometer measurement device, and spectrometer measurement method
JPH04276531A (en) Optical-fiber type temperature-distribution measuring apparatus
JPH0364812B2 (en)
CN107064100B (en) Optical fiber Raman spectrometer based on dispersion time variation
Luther-Davies et al. Evaluation of material dispersion in low loss phosphosilicate core optical fibres
US6462863B1 (en) System and method for resolving polarization mode dispersion in optical fibers
WO2020235441A1 (en) Broadband pulsed light source, spectrometry device, and spectrometry method
US10816720B2 (en) Optical fiber with specialized figure-of-merit and applications therefor
Hlubina Experimental demonstration of the spectral interference between two beams of a low-coherence source at the output of a Michelson interferometer
JPS6170437A (en) Method for measuring wavelength dispersion of optical fiber
Wiesenfeld et al. Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers
CN113008302B (en) Temperature and acoustic resistance double-parameter sensing method and device based on forward Brillouin scattering
US4068956A (en) Pulsed laser densitometer system
TW200530564A (en) Wavelength meter
Tanaka et al. Scanless Brillouin gain spectrum measurement based on multi-heterodyne detection
Ilev et al. A fiber-optic autocollimation refractometric method for dispersion measurement of bulk optical materials using a widely tunable fiber Raman laser
Smiley et al. Material dispersion measurements on fiber optic cables used at the Nevada test site
JPH075400Y2 (en) Multi-channel curse measuring device
JPH0231489A (en) Soliton laser oscillation and apparatus
JPS63309833A (en) Zero-dispersion wavelength measuring method for optical fiber
Lüpken et al. Inline Measurement of Modal Phase Differences in Optical Fibers
JPH10160633A (en) Method for evaluating characteristic of single-mode optical fiber
JPH0371050B2 (en)
Ackermann et al. Femtosecond Two-Beam Coherent Anti-Stokes Raman Scattering for High Pressure Gas Analysis
JPS6147534A (en) Method and apparatus for measuring light loss characteristic of optical fiber