JPS6169937A - Titanium alloy for superplastic working having high specific strength at high temperature - Google Patents

Titanium alloy for superplastic working having high specific strength at high temperature

Info

Publication number
JPS6169937A
JPS6169937A JP19052484A JP19052484A JPS6169937A JP S6169937 A JPS6169937 A JP S6169937A JP 19052484 A JP19052484 A JP 19052484A JP 19052484 A JP19052484 A JP 19052484A JP S6169937 A JPS6169937 A JP S6169937A
Authority
JP
Japan
Prior art keywords
phase
alloy
specific strength
superplastic
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19052484A
Other languages
Japanese (ja)
Other versions
JPH0211659B2 (en
Inventor
Hidehiro Onodera
小野寺 秀博
Toshihiro Yamagata
山県 敏博
Michio Yamazaki
道夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP19052484A priority Critical patent/JPS6169937A/en
Publication of JPS6169937A publication Critical patent/JPS6169937A/en
Publication of JPH0211659B2 publication Critical patent/JPH0211659B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain a Ti alloy for superplastic working having superior specific strength and ductility at high temp. as well as superior superplasticity by adding specified amounts of Al, V, Sn, Zr, Mo, Cr, Fe and O to Ti. CONSTITUTION:This Ti alloy contains, by weight, 6.2-6.8% Al, 1.2-1.6% V, 1.2-1.6% Sn, 0.8-1.2% Zr, 2.7-3.1% Mo, 1.9-2.3% Cr, 1.4-1.8% Fe and 0.10-0.15% O. The alloy has a structure consisting of 30-70% alpha-phase and the balance beta-phase at 850 deg.C, and it has superior specific strength and ductility at high temp. as well as superior superplasticity. A rotor for a compressor or the like can be manufactured without requiring machining by plastically working the alloy, so the yield of starting material is remarkably improved, and the cost of manufacture is considerably reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高温比強度の高い超塑性加工用チタン合金尺関
する。更に詳しくは850Cでα相を30〜70%含み
、残部はβ相からなり、高温製造されてきたが、;/プ
レッサーローターの製造の場合には、切削ぐずが約90
%程度にもなり、極めて歩留りが悪いばかりでなく、作
業性も極めて悪かった。これを改善するためKはTi合
金の超塑性加工が有効な手段である。超塑性加工は加工
温度でα相とβ相の体積比が1:1に近いTi合金が優
nている。また超塑性加工温度は900C附近の温度が
適しでいる。9υOCより高い高温では結晶粒の粗大化
及び酸化が生じ易くなるため超塑性特性が劣化する。ま
た900Cより低い温度では、粒界上りが起きにくくな
るため、超塑性特性が劣化し、また変形応力が高くなり
、超塑性加工が困難となる。従来の超塑性加工用チタン
合金としては、Ti −6AI−4V合金、Ti−6A
I−2Sn−4Zr−2Fvlo合金、T i −6A
 I−2Sn −4Z r −6M o合金が知られて
いる。しかし、これらのTi合金はいずれもβ型Ti合
金と比べて強度が低い欠点があった。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a titanium alloy scale for superplastic working with high high temperature specific strength. More specifically, it contains 30 to 70% α phase at 850C, and the remainder consists of β phase, and has been manufactured at high temperature.
%, and not only was the yield extremely low, but also the workability was extremely poor. To improve this, superplastic working of K and Ti alloys is an effective means. For superplastic working, Ti alloys have a volume ratio of α phase to β phase close to 1:1 at the working temperature. Further, a temperature around 900C is suitable for the superplastic working temperature. At high temperatures higher than 9υOC, coarsening and oxidation of crystal grains tend to occur, resulting in deterioration of superplastic properties. Furthermore, at temperatures lower than 900C, grain boundary climbing becomes difficult to occur, resulting in deterioration of superplastic properties and increased deformation stress, making superplastic processing difficult. Conventional titanium alloys for superplastic working include Ti-6AI-4V alloy and Ti-6A
I-2Sn-4Zr-2Fvlo alloy, Ti-6A
I-2Sn-4Zr-6Mo alloy is known. However, all of these Ti alloys have a drawback of lower strength than the β-type Ti alloy.

発明の目的 本発明は前記従来の超m性加工用チタン合金の欠点を改
善せんとするものであり、その目的は超塑性特性が優れ
、かつ高温比強度及び延性の優れた超塑性加工用チタン
合金を提供するにある。
Purpose of the Invention The present invention aims to improve the drawbacks of the conventional titanium alloys for ultra-molecular working, and its purpose is to provide a titanium alloy for superplastic working that has excellent superplastic properties, high-temperature specific strength, and ductility. It is in providing alloys.

発明の構成 本発明者らは前記目的を達成すべく研究の結果、850
Cでα相を約30〜70%含み、残部がβ相から成り、
超塑性特性が優れ、かつ高温比強度及び延性の優れた超
重性加工用チタン合金を究明し得た。この知見に基いて
本発明を完成した。
Structure of the Invention As a result of research to achieve the above object, the present inventors have discovered 850
C contains about 30 to 70% α phase, and the remainder consists of β phase,
We have discovered a titanium alloy for super-heavy processing that has excellent superplastic properties, high-temperature specific strength, and ductility. The present invention was completed based on this knowledge.

本発明のチタン合金は、 重量係で、AI6.2〜6.8%、V 6.2〜6.6
%、Sn6.2〜6.6%、 Zr0.8〜6.2%、
Mo 2.7〜3.1 %、Cr6.9〜2.3%、F
e6.4〜6.8%、O0.10〜0.15%を含み、
残部は実質的にTiよりなる高温比強度の高い超重性加
工用チタン合金にある。
The titanium alloy of the present invention has an AI of 6.2 to 6.8% and a V of 6.2 to 6.6 in terms of weight.
%, Sn6.2-6.6%, Zr0.8-6.2%,
Mo 2.7-3.1%, Cr6.9-2.3%, F
Contains e6.4-6.8%, O0.10-0.15%,
The remainder is a super-heavy working titanium alloy with high high-temperature specific strength consisting essentially of Ti.

本発明の合金における組成成分の作用ならびに組成割合
の限定理由は次の通りである。
The effects of the compositional components and the reasons for limiting the composition ratios in the alloy of the present invention are as follows.

AIは主としてα相に固溶してα相を強化する作用をす
る。AI量が6.2 % (%は重′Ik%を示す。
AI mainly acts as a solid solution in the α phase to strengthen the α phase. The amount of AI was 6.2% (% indicates weight Ik%).

以下同じ)より少いと、α相強化の効果が十分得られな
く、その量が6.8係を超えるとα相量が増加して十分
な超塑性特性が得られなくなるので、Altは6.2〜
6.8%であることが必要である。
If Alt is less than 6.8, the α phase strengthening effect will not be sufficiently obtained, and if the amount exceeds 6.8, the α phase amount will increase and sufficient superplastic properties will not be obtained. 2~
It needs to be 6.8%.

■はα相及びβ相に固溶してこれらの相を強化する作用
をする。Vi−が6.2・係より少いと強化効果が十分
得られなく、その量が6.6%を超えるとα相量が減少
して十分な超m性特性が得られなくなるので、Viは6
.2〜6.6%であることが必要である。
(2) acts as a solid solution in the α phase and β phase to strengthen these phases. If Vi- is less than 6.2%, a sufficient strengthening effect cannot be obtained, and if the amount exceeds 6.6%, the amount of α phase decreases and sufficient ultra-m properties cannot be obtained. 6
.. It is necessary that it is 2 to 6.6%.

Sn及びZrはα相及びβ相にほぼ同じ比率で固溶して
とnらの相を強化する作用をする。Sn量が6.2%よ
り少いと強化効果が十分得らnなく、その量が6.6%
を超えると比重が大きくなり比強度が低下するので、5
niiは6.2〜6.6%であることが必要である。ま
た、Zr量が0.8%より少いと強化効果が得らnなく
、その量が6.2%を超えるとα相量が減少して十分な
超塑性特性が得らnなくなるので、Zr1liは0.8
〜6.2%であることが必要である。
When Sn and Zr are dissolved in solid solution in the α phase and the β phase at approximately the same ratio, they act to strengthen the n and other phases. If the amount of Sn is less than 6.2%, a sufficient strengthening effect will not be obtained, and the amount will be 6.6%.
If it exceeds 5, the specific gravity will increase and the specific strength will decrease.
nii needs to be 6.2 to 6.6%. Furthermore, if the amount of Zr is less than 0.8%, no strengthening effect will be obtained, and if the amount exceeds 6.2%, the amount of α phase will decrease and sufficient superplastic properties will not be obtained. is 0.8
~6.2% is required.

Mo、Cr及びFeは主としてβ相に固溶してβ相を強
化する作用をする。Mo量が2,7%より少いと十分な
強化効果が得られなく、その量が3.1%を超えると比
重が大きくなるため比強度が低下するので、Mojlは
2.7〜3.1%であることが必要でちる。Crfkが
6.9%よシ少いと十分な強化効果が得られなく、その
量が2.3%を超えるとα相量が減少して十分な超塑性
特性が得られなくなるので、Cr量は6.9〜2.3%
であることが必要である。また、Pa量が6.4%より
少いと十分な強化効果が得られなく、その量が1,8%
を超えるとα相量が減少して十分な超塑性特性が得られ
なくなるので、Fe量は6.4〜6.8%であることが
必要である。
Mo, Cr, and Fe mainly act as solid solutions in the β phase to strengthen the β phase. If the amount of Mo is less than 2.7%, a sufficient strengthening effect will not be obtained, and if the amount exceeds 3.1%, the specific gravity will increase and the specific strength will decrease, so Mojl is 2.7 to 3.1. % is required. If the amount of Crfk is less than 6.9%, a sufficient strengthening effect cannot be obtained, and if the amount exceeds 2.3%, the amount of α phase decreases and sufficient superplastic properties cannot be obtained, so the amount of Cr is 6.9-2.3%
It is necessary that In addition, if the amount of Pa is less than 6.4%, a sufficient strengthening effect cannot be obtained, and the amount is 1.8%.
If the Fe content exceeds 6.4% to 6.8%, the amount of α phase decreases and sufficient superplastic properties cannot be obtained.

Oは主としてα相に固溶してα相を強化する作用をする
。Oiが0.10%より少いとその強化効果が十分得ら
れなく、その針が0.15%を超えるとα相量が増加し
て十分な超塑性特性が得らfなくなるので、O蓋は0.
10〜0.15%であることが必要である。
O mainly acts as a solid solution in the α phase to strengthen the α phase. If Oi is less than 0.10%, the reinforcing effect will not be sufficiently obtained, and if the needle exceeds 0.15%, the amount of α phase will increase and sufficient superplastic properties will not be obtained. 0.
It is necessary that the content is 10 to 0.15%.

以上のような各元素を前記割合で含ませたチタン合金は
、850Cにおいてα相が30〜70係で残部がβ相と
なる。α相とβ相は互に結晶粒の成長を妨げ、超m性特
性を向上させる。α相が30%より少くなるとβ相の結
晶粒が粗大化し2易くなり超塑性特性が劣化する。また
α相が70%を超えるとα相の結晶粒が粗大化し易くな
り超塑性特性が劣化する。
In a titanium alloy containing each of the above elements in the proportions described above, at 850C, the α phase is 30 to 70, and the remainder is the β phase. The α phase and the β phase mutually inhibit the growth of crystal grains and improve the super-m property. When the α-phase content is less than 30%, the β-phase crystal grains become coarser and more likely to become 2-prone, resulting in deterioration of superplastic properties. Moreover, if the α phase exceeds 70%, the crystal grains of the α phase tend to become coarse, resulting in deterioration of superplastic properties.

α相及びβ相の強化に必要な各元素の最低の含有量は、
他の元素の含有量とのかね合いで決まる。
The minimum content of each element required to strengthen the α and β phases is:
It is determined by the balance with the content of other elements.

例えば、Zr量が5.0〜7.5%と多く含むとAIの
最低含有量が5.3%であるが、本発明におけるように
、Zrfkが0.8〜6.2%と少い場合はAI量は6
.2%以上を必要とする。また、α相量についてもすべ
ての合金元素の含有量のかね合いで決まる。本発明のチ
タン合金は前記の各元素の含有量の範囲において、超塑
性加工を行うのに十分な特性を有し、かつ優れた高温比
強度と延性を有する。
For example, when the Zr content is as high as 5.0 to 7.5%, the minimum AI content is 5.3%, but as in the present invention, when Zrfk is as low as 0.8 to 6.2%, the minimum content of AI is 5.3%. In this case, the AI amount is 6
.. 2% or more is required. Further, the amount of α phase is also determined by the balance of the contents of all alloying elements. The titanium alloy of the present invention has sufficient properties for superplastic working within the content ranges of each of the above-mentioned elements, and has excellent high-temperature specific strength and ductility.

発明の効果 本発明の合金は、以下の実施例における比較例からも明
らかなように、従来の超塑性加工用チタン合金に比べて
超塑性特性が優れ、超塑性加工が容易で、かつ高温比強
度及び延性も浸れたものである。従って切削加エフ、C
Lに、コンプレッサーローター等の部品を安価に製造す
ることができる。またこれを使用することによりジェッ
トエンジンや発電設備などの各穏ガスタービンの軽量化
及び高効率化が可能になる等の優れた効果を有する。
Effects of the Invention As is clear from the comparative examples in the Examples below, the alloy of the present invention has superior superplastic properties compared to conventional titanium alloys for superplastic working, is easy to superplastically work, and has a high temperature ratio. Strength and ductility are also significant. Therefore, the cutting process F, C
L, parts such as compressor rotors can be manufactured at low cost. Further, by using this, it has excellent effects such as making it possible to reduce the weight and increase the efficiency of various gas turbines such as jet engines and power generation equipment.

実施例 本発明の下記表如1に示す組成の合金と比較び59d超
望性試ν〜作った。
EXAMPLE A 59d ultra-high-performance test v~ was prepared for comparison with the alloy of the present invention having the composition shown in Table 1 below.

高温引張試験片は850〜900 Cで1時間熱処理し
次後水冷し、再び500〜600Cで4時間熱処理、空
冷して試験に供した。高温引張試験は300 t:で、
3 X 10 ’S−”の歪速度で行った。
The high-temperature tensile test piece was heat-treated at 850-900 C for 1 hour, then water-cooled, heat-treated again at 500-600 C for 4 hours, air-cooled, and subjected to the test. High temperature tensile test is 300 t:
The strain rate was 3 x 10'S-''.

超塑性試験片は熱間圧延のままの状態で試験に供した。The superplastic specimen was subjected to the test in the hot-rolled state.

超塑性試験は850Cで、アルゴン雰囲気中で6.7X
10−’S−”及び6.7 X 10−38−’の速度
で行った。その結果は下記の表蚤2及び表÷3に示す通
りであった。
Superplasticity test at 850C, 6.7X in argon atmosphere
The results were as shown in Table 2 and Table ÷ 3 below.

表N2の結果が示すように、本発明のTi合金は既存の
Ti−6AI−4V、 Ti −6AI−2Sn−4Z
r2Mo及びTiTi−6AI−2Sn−4Zr−6合
金に比べて、延性及び比強度において著しく優nでいる
ことがわかる。すなわち、本発明のTi合金では、比強
度が30.9 Kpf/md/p/atl  の値を示
す条件で9.1%の伸びが確保されるのに対し、Ti 
−6AI−4V及びTi −6AI−2Sn−4Zr−
2Mo合金では、そのような高比強度が得らnない。
As shown in the results in Table N2, the Ti alloy of the present invention is superior to the existing Ti-6AI-4V, Ti-6AI-2Sn-4Z.
It can be seen that the ductility and specific strength are significantly superior to the r2Mo and TiTi-6AI-2Sn-4Zr-6 alloys. That is, in the Ti alloy of the present invention, an elongation of 9.1% is secured under the condition that the specific strength shows a value of 30.9 Kpf/md/p/atl, whereas the Ti alloy
-6AI-4V and Ti -6AI-2Sn-4Zr-
Such a high specific strength cannot be obtained with the 2Mo alloy.

また、Ti −6AI−2Sn−4Zr−6Mo合金の
場合は、比強度が29.9 K9f/rui/11/a
llまで増大すると伸びは5.2%まで低下する。
In addition, in the case of Ti-6AI-2Sn-4Zr-6Mo alloy, the specific strength is 29.9 K9f/rui/11/a
The elongation decreases to 5.2% when increasing to ll.

この結果が示すようK、本発明チタン合金は、416〜
698%の超塑性伸びを有し、最大変形応力も6.3〜
2. s xyr7miと十分に低く、既存のTi−6
AI−2Sn−4Zr−6Mo合金に比べて著しく優れ
ている。
As this result shows, the titanium alloy of the present invention has a K of 416 to
It has a superplastic elongation of 698% and a maximum deformation stress of 6.3~
2. s xyr7mi, which is sufficiently low, compared to the existing Ti-6
It is significantly superior to the AI-2Sn-4Zr-6Mo alloy.

特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  −
Patent applicant: Ryu Kawa, Director, Research Institute for Metals, Science and Technology Agency −

Claims (1)

【特許請求の範囲】[Claims] 重量%で、Al6.2〜6.8%、V1.2〜1.6%
、Sn1.2〜1.6%、Zr0.8〜1.2%、Mo
2.7〜3.1%、Cr1.9〜2.3%、Fe1.4
〜1.8%、O0.10〜0.15%を含み、残部は実
質的にTiよりなる高温比強度の高い超塑性加工用チタ
ン合金。
In weight%, Al6.2-6.8%, V1.2-1.6%
, Sn1.2-1.6%, Zr0.8-1.2%, Mo
2.7-3.1%, Cr1.9-2.3%, Fe1.4
A titanium alloy for superplastic working with high high-temperature specific strength, containing ~1.8% and 0.10-0.15% of O, and the remainder being substantially Ti.
JP19052484A 1984-09-13 1984-09-13 Titanium alloy for superplastic working having high specific strength at high temperature Granted JPS6169937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19052484A JPS6169937A (en) 1984-09-13 1984-09-13 Titanium alloy for superplastic working having high specific strength at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19052484A JPS6169937A (en) 1984-09-13 1984-09-13 Titanium alloy for superplastic working having high specific strength at high temperature

Publications (2)

Publication Number Publication Date
JPS6169937A true JPS6169937A (en) 1986-04-10
JPH0211659B2 JPH0211659B2 (en) 1990-03-15

Family

ID=16259519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19052484A Granted JPS6169937A (en) 1984-09-13 1984-09-13 Titanium alloy for superplastic working having high specific strength at high temperature

Country Status (1)

Country Link
JP (1) JPS6169937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430264U (en) * 1990-07-04 1992-03-11

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589632B2 (en) * 2010-07-16 2014-09-17 株式会社Ihi Compressor sealing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430264U (en) * 1990-07-04 1992-03-11

Also Published As

Publication number Publication date
JPH0211659B2 (en) 1990-03-15

Similar Documents

Publication Publication Date Title
JP3049767B2 (en) Ti alloy with excellent heat resistance
JP3395443B2 (en) High creep strength titanium alloy and its manufacturing method
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
JP3097748B2 (en) Improved titanium-aluminum alloy
JP2543982B2 (en) Titanium-aluminum alloy modified with manganese and niobium
CA2014908C (en) Gamma titanium aluminum alloys modified by carbon, chromium and niobium
EP0732416A1 (en) Refractory superalloys
JPH0641662A (en) Oxidation-resistant coating film of gamma-titanium/aluminum alloy modified with chromium and tantalum
WO1989001052A1 (en) Titanium alloys
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
JPH09165634A (en) Heat resistant titanium alloy
JPH0931572A (en) Heat resistant titanium alloy excellent in high temperature fatigue strength
JPS6169937A (en) Titanium alloy for superplastic working having high specific strength at high temperature
JP2608688B2 (en) High strength and high ductility Ti alloy
JP2608689B2 (en) High strength and high ductility Ti alloy
JP3332615B2 (en) TiAl-based intermetallic compound-based alloy and method for producing the same
JP3146341B2 (en) High melting point superalloy
JP3491397B2 (en) Near β type high strength Ti alloy material with excellent fatigue crack propagation characteristics
JPS60251240A (en) High strength titanium alloy for superplastic working
JPS6169936A (en) Titanium alloy for superplastic working having high specific strength at high temperature
JPS6217145A (en) High-strength heat-resistant titanium alloy suitable for superplastic working
JPH09143599A (en) Titanium-aluminum intermetallic compound base alloy
JP2737500B2 (en) Heat resistant titanium alloy
JP3334246B2 (en) Method for producing TiAl-based thermostat forged alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term