JPS6169891A - Desulfurization of coal material - Google Patents

Desulfurization of coal material

Info

Publication number
JPS6169891A
JPS6169891A JP59191331A JP19133184A JPS6169891A JP S6169891 A JPS6169891 A JP S6169891A JP 59191331 A JP59191331 A JP 59191331A JP 19133184 A JP19133184 A JP 19133184A JP S6169891 A JPS6169891 A JP S6169891A
Authority
JP
Japan
Prior art keywords
reaction
desulfurization
iron
iron oxide
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59191331A
Other languages
Japanese (ja)
Other versions
JPS6352079B2 (en
Inventor
Kenji Mori
憲二 森
Mamoru Onoda
小野田 守
Makoto Watanabe
良 渡辺
Katsufumi Shinohara
篠原 克文
Takehiko Ashinaga
足永 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59191331A priority Critical patent/JPS6169891A/en
Publication of JPS6169891A publication Critical patent/JPS6169891A/en
Publication of JPS6352079B2 publication Critical patent/JPS6352079B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To remove sulfur contained in coal material and improve its quality, by mixing iron oxide into a reaction system of a fluidized bed gasification of coal material. CONSTITUTION:A sulfur-contg. coal material in powder or granule (coal, coke, etc.) is placed in a processing vessel together with an iron oxide (e.g. iron ore as iron oxide source) and water vapor is blown into the system, while temp. and pressure are kept at 850-1,000 deg.C and 1-10kg/cm<2>G, respectively, so that H2O/H2+H2O ratio in cracked gas may be 0.4 or higher by volume. The mixing of iron oxide promotes shift reaction of the formula during gasification reaction to a marked extent and reaction proceeds with decreased CO content of produced gas, marked increase of H2 ratio and increase of H2S concentration. The control of amounts of water vapor and oxygen blown into the system prevents lowering of desulfurization effect due to formation of FeS as a result of reaction of reduced iron with H2S caused by too high an H2 content. Thus the sulfur content of coal material is reduced to about 2% or lower.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石炭やコークス等の炭材中に含まれる硫黄分
を効率良く除去し、炭材の品質を高めることのできる改
良された脱硫方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an improved desulfurization method that can efficiently remove sulfur contained in carbon materials such as coal and coke and improve the quality of the carbon materials. It is about the method.

〔従来の技術〕[Conventional technology]

石炭やコークス等の炭材の脱硫方法については従来より
おびただしい数の技術が提供されているが、現在主流と
なっているのは炭材中の硫黄を硫化水素に変換して除去
する方法である。しかしこの穏の脱硫法では大量の水素
を必要とし、また反応時間も数時間乃至十数時間という
長時間を要するものが殆んどである。また炭材中にCa
OやMgO等の脱硫剤を加えて脱硫効果の向上を図る研
究も多数行なわれているが、脱硫剤の分離及び後処理に
問題がある為あまシ実用化されていない。
A large number of technologies have been provided to date to desulfurize carbonaceous materials such as coal and coke, but the current mainstream method is to convert sulfur in carbonaceous materials into hydrogen sulfide and remove it. . However, this mild desulfurization method requires a large amount of hydrogen, and in most cases requires a long reaction time of several hours to over ten hours. Also, Ca in the carbonaceous material
Many studies have been conducted to improve the desulfurization effect by adding desulfurization agents such as O and MgO, but this has not been put to practical use because of problems in separating and post-processing the desulfurization agent.

更に脱硫効果の向上を期してアンモニアを吹込む方法或
は炭材をNaOHで前処理する方法等も提案されている
が、コスト及び操業性の点で必ずしも有利な方法とは言
えない。
Furthermore, methods of injecting ammonia or pre-treating carbonaceous materials with NaOH have been proposed in order to improve the desulfurization effect, but these methods cannot necessarily be said to be advantageous in terms of cost and operability.

他方、炭材を流動層方式で分解してガス化する研究も古
くから行なわれておシ、改良研究も多数提案されている
。流動層方式による炭材のガス化はスチームと酸素を用
いて行なうのが一般的であシ、スチームは改質用ガスと
して、又酸素は主に反応熱供給の為の炭材燃焼用として
使用される。
On the other hand, research on decomposing and gasifying carbonaceous materials using a fluidized bed method has been conducted for a long time, and many improvements have been proposed. Gasification of carbonaceous materials using the fluidized bed method is generally carried out using steam and oxygen. Steam is used as a reforming gas, and oxygen is mainly used for burning carbonaceous materials to supply reaction heat. be done.

スチームによる炭材のガス化では、まず下記(,0式で
示す水性ガス化反応によって等容量のH2とCOが発生
し、 C+H20→ CO+H2・・・(II)また酸素と炭
材の反応によ)下記口〕、(2)式の反応が起こ〕、高
温域では〔刀の反応も起こる。
In the gasification of carbonaceous materials by steam, equal volumes of H2 and CO are first generated by the water gasification reaction shown in the following equation (0), and C+H20→ CO+H2... (II) Also, due to the reaction between oxygen and carbonaceous materials, )The following reaction], the reaction of equation (2) occurs], and in the high temperature range, the [sword reaction also occurs].

C+   O2→co2   ・・・〔■〕C+ ’A
 O□ →co     ・・・印〕C+  CO2→
2CO・・・印〕 また生成したCOは更にCD式で示す様にスチームのシ
フト反応を起こして水素と002に転化する。
C+ O2 → co2 ... [■] C+ 'A
O□ →co ・・・mark〕C+ CO2→
2CO... mark] Also, the generated CO further causes a steam shift reaction as shown in the CD equation and is converted into hydrogen and 002.

Co + H2O→CO2+ Ht  ・・・[71更
に高圧下では生成した水素が(1’D 、([1式に示
す如<C−?COと反応したメタンを生成する。
Co+H2O→CO2+Ht...[71 Under higher pressure, the generated hydrogen reacts with (1'D, ([1<C-?CO) to produce methane.

C+2H,→CH,・・・〔℃ CO+3H,→CH,+H,0・−くIところで通常の
ガス化反応では前記(D〜(資)式の反応が主として起
こ)、生成ガスに占めるHtの比率は20〜40%、C
Oの比率は20〜50チ程度であるとされている。そし
て〔71式の反応も若干起こっているものと考えられる
がその比率は僅かであり、また(In 、(V[]式の
反応は高圧の条件下で促進されるものの、10kg/C
I?It以下の圧力ではメタンの生成率は数−以下と極
めて少ない。
C+2H, →CH,... [℃ CO+3H, →CH, +H,0・-kuI By the way, in the normal gasification reaction (the reaction of formula D~(equation) mainly occurs), the Ht proportion in the produced gas is The ratio is 20-40%, C
The ratio of O is said to be about 20 to 50 inches. It is thought that the reaction of formula [71] also occurs to some extent, but the proportion thereof is small, and the reaction of formula (In, (V[]) is promoted under high pressure conditions, but at 10 kg/C
I? At pressures below It, the production rate of methane is extremely low, at a few degrees or less.

何れにしろ炭材のガス化に当たっては炭材をできるだけ
多くガス化させることが第1の目的とされる。そしてガ
ス化後の残渣中には多量の硫黄分が含まれている為、固
形燃料として使用する場合には排ガス中に多量のSOX
が混入することとなり、大気汚染或は付帯設備の腐食促
進といった問題が発生し、また製鉄用炭素源として利用
した場合は溶銑中の硫黄含量が増大するという問題が生
じてくる。
In any case, when gasifying carbonaceous materials, the first objective is to gasify as much carbonaceous material as possible. Since the residue after gasification contains a large amount of sulfur, when used as solid fuel, a large amount of SOX is produced in the exhaust gas.
This causes problems such as air pollution and acceleration of corrosion of ancillary equipment, and when used as a carbon source for iron making, the problem of increased sulfur content in hot metal arises.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の様な公知技術のもとで、本発明は特に前者の炭材
脱硫についての改善法を提供しようとするものであるが
、その出発点となったのは炭材の流動層方式によるガス
化技術から得た新たな知見、即ち「炭材のガス化反応系
に酸化鉄を共存させると炭材の脱硫が著しく進行される
」という事実である。そして本発明はこの知見を生かし
、鉄鉱石等の酸化鉄を利用した炭材の新規な脱硫技術を
提供しようとするものである。
Based on the above-mentioned known techniques, the present invention aims to provide an improved method for the former desulfurization of carbonaceous materials, but the starting point was a method for improving the desulfurization of carbonaceous materials using a fluidized bed method. This is a new knowledge obtained from the carbonization technology, namely the fact that ``desulfurization of carbonaceous materials progresses significantly when iron oxide coexists in the gasification reaction system of carbonaceous materials.'' The present invention utilizes this knowledge to provide a novel desulfurization technology for carbonaceous materials using iron oxide such as iron ore.

〔問題を解決する為の手段〕[Means to solve the problem]

本発明は、硫黄を含む粉粒状炭材を粉粒状酸化鉄と共に
処理容器内へ装入し、温度を850〜1000℃、圧力
を1〜10kg〆iGに維持しつつ分解生成ガス中のH
t O/(H20+Hz )が体積比0.4以上となる
様に、処理系内へ水蒸気及び酸素を吹込むところに要旨
が存在する。
In the present invention, granular carbonaceous material containing sulfur is charged into a processing container together with granular iron oxide, and the H
The gist lies in blowing water vapor and oxygen into the treatment system so that t O/(H20+Hz ) has a volume ratio of 0.4 or more.

〔作用〕[Effect]

本発明者等が炭材の流動層式ガス化の予備実験で確認し
たところによると、炭材流動層内に粉粒状の鉄鉱石を混
入させた場合は前記ガス化反応のうちCD式のシフト反
応が著しく促進され、生成ガス中のCOが減少すると共
にHtの比率が大幅に増大し、同時KH,SJ度も増大
する。即ち鉄鉱石の共存によって炭材の脱硫反応が進行
し、H,S として硫黄が除去される。但し生成ガス中
のH2濃度が高くなシ過ぎると、還元反応によって生成
する金属鉄と硫化水素の反応によって硫化鉄が生成しく
 Fe+H2S # FeS+H2)、該硫化鉄が反応
系に徐々に蓄積されて炭材に対する脱硫効果が低下して
くる。ところが生成ガス中のH2濃度が特定値以下とな
る様に反応条件をコントロールしてやれば、硫化鉄の生
成が抑制されて炭材の脱硫を効率良く進行せしめ得るこ
とが確認された。そして該H7濃度の抑制手段としては
、改質ガスとして吹込むスチームの量を調整するのが最
も効果的であシ、その目安として生成ガス中の% a、o/ (H2O+H,)が40(体積比二以下同じ
久以上となる様にスチーム及び酸素の吹込量を調整すれ
ばよく、それKよシ炭材の硫黄含有率を約2%以下にま
で低減することができる。ちなみに高炉吹込原料等とし
て使用されるオイルコークスの硫黄含有率は2チ以下と
されているので、上記の方法によシ高炉吹込原料等とし
て有用な低値炭材を得ることができる。尚反応系の圧力
は脱硫効果を進行させる為に1〜10 kg /crr
F Gの範囲に設定すべきである。また温度は850℃
以上に設定すべきであシ、850℃未満では脱硫の為の
平衡反応が効率良く進行しなくなる。但し反応温度が高
過ぎると鉄鉱石同士の融着によるスティッキング現象(
流動層の流動化が停止する現象)が起こる場合があるの
で、1ooo℃程度以下に抑えるのがよい。
According to the inventors' preliminary experiments on fluidized bed gasification of carbonaceous materials, when powdered iron ore is mixed into the fluidized bed of carbonaceous materials, the CD shift of the gasification reaction occurs. The reaction is significantly promoted, CO in the produced gas decreases, the Ht ratio increases significantly, and at the same time the degrees of KH and SJ also increase. That is, due to the coexistence of iron ore, the desulfurization reaction of the carbonaceous material progresses, and sulfur is removed as H and S. However, if the H2 concentration in the generated gas is too high, iron sulfide will be produced by the reaction between metallic iron produced by the reduction reaction and hydrogen sulfide (Fe+H2S # FeS+H2), and the iron sulfide will gradually accumulate in the reaction system and become carbon. The desulfurization effect on the material decreases. However, it has been confirmed that if the reaction conditions are controlled so that the H2 concentration in the produced gas is below a specific value, the production of iron sulfide can be suppressed and the desulfurization of the carbon material can proceed efficiently. The most effective way to suppress the H7 concentration is to adjust the amount of steam injected as reformed gas. It is only necessary to adjust the amount of steam and oxygen blown so that the volume ratio is less than 2 or more, and the sulfur content of the carbon material can be reduced to about 2% or less. Since the sulfur content of the oil coke used as a fuel coke is said to be less than 2%, the above method can yield a low-value carbonaceous material useful as a raw material for blast furnace injection.The pressure in the reaction system is 1 to 10 kg/crr to promote desulfurization effect
It should be set within the range of FG. Also, the temperature is 850℃
It should be set above 850° C., and the equilibrium reaction for desulfurization will not proceed efficiently. However, if the reaction temperature is too high, a sticking phenomenon (
Since a phenomenon in which the fluidization of the fluidized bed stops may occur, it is preferable to suppress the temperature to about 100°C or less.

なお、粉粒状酸化鉄として前記鉄鉱石の代シにミルスケ
ールやダスト類等を使用することもできるし、またこれ
らを鉄鉱石に一部混合しても良い更に、酸化鉄の粒度は
30〜500μmに調整したものを用いるのが最適でち
る。
In addition, mill scale, dust, etc. can be used as a substitute for the iron ore as the powdered iron oxide, and a part of these may be mixed with the iron ore. Furthermore, the particle size of the iron oxide is 30~ It is best to use one adjusted to 500 μm.

〔実施例〕〔Example〕

本発明者等が実験によシ確認したところによると、流動
層内の炭゛材をスチームによシガス化する際反応系に粉
粒状の鉄鉱石を共存させておくと、以下に示す如く生成
ガス中の水素濃度が高まると共に、脱硫反応によって多
量のH,Sが生成することが明らかとなった。ちなみに
第1表は下記の条件(炭材単独使用及び炭材と鉄鉱石併
用)で流動層ガス化を行なった場合の生成ガス組成を示
したものである。
The inventors have confirmed through experiments that when powdery iron ore is allowed to coexist in the reaction system when carbon material in a fluidized bed is gasified by steam, the following results are produced. It has become clear that as the hydrogen concentration in the gas increases, large amounts of H and S are produced by the desulfurization reaction. Incidentally, Table 1 shows the composition of the produced gas when fluidized bed gasification is performed under the following conditions (using carbonaceous material alone and using carbonaceous material and iron ore in combination).

〔反応条件〕[Reaction conditions]

反応温度=900℃ 反応圧カニ 5kg/cffItG 鉄鉱石/炭材:85/15又は100/Q (重量比)
ガス他剤ニスチーム100% ガス化炉:第1図参照(88Mφ) 第1表の生成ガス組成を比較すれば明らかな様に、鉄鉱
石を併用した場合は発生ガス中のCOが減少すると共に
H7の比率が増大しておシ、前記〔マ〕式のシフト反応
が促進されていることが明白である。そして生成ガス中
のHtSm度が著しく増大しており、炭材の脱硫反応も
かなり進行している。ちなみに上記の実験で得た結果で
は、鉄鉱石の併用によって約33′M量チの炭材がガス
化されるが、炭材中の初期S含有率が5.5重#、チで
あったものが、ガス化反応後は1.6重量%に低下して
いた。一般に商品価値のある炭材のS含有率は2%程度
以下であるとされているので、この方法は炭材の脱硫法
として十分に利用可能である。また炭材の面質時間を長
くしてやれば脱硫反応は更に進行するが、反面ガス化に
よる炭材の消費も進むので、滞留時間は低値炭材の目標
収率との兼ね合いを考慮して決定すればよい。
Reaction temperature = 900°C Reaction pressure Crab 5kg/cffItG Iron ore/charcoal material: 85/15 or 100/Q (weight ratio)
Nisteam 100% as gas and other agents Gasifier: See Figure 1 (88Mφ) As is clear from the comparison of the generated gas composition in Table 1, when iron ore is used together, CO in the generated gas decreases and H7 It is clear that the shift reaction of the above formula [Ma] is promoted as the ratio of . The degree of HtSm in the generated gas has increased significantly, and the desulfurization reaction of the carbonaceous material has progressed considerably. By the way, according to the results obtained in the above experiment, approximately 33'M of carbonaceous material was gasified by the combination of iron ore, but the initial S content in the carbonaceous material was 5.5%. However, the amount decreased to 1.6% by weight after the gasification reaction. Since the S content of commercially valuable carbonaceous materials is generally considered to be about 2% or less, this method can be fully utilized as a desulfurization method for carbonaceous materials. In addition, if the surface quality time of the carbon material is increased, the desulfurization reaction will proceed further, but on the other hand, the consumption of carbon material due to gasification will also progress, so the residence time is determined by considering the balance with the target yield of low value carbon material. do it.

この様に炭材の流動層ガス化反応系に鉄鉱石を共存させ
ると炭材の脱硫反応が進行するが、反面シフト反応促進
によるH2濃度の増大によって鉄鉱石の還元が進み、生
成した金属鉄は反応系中の硫化水素と反応して硫化鉄を
生成する。
In this way, when iron ore coexists in the fluidized bed gasification reaction system of carbonaceous materials, the desulfurization reaction of the carbonaceous materials progresses, but on the other hand, the reduction of iron ore progresses due to the increase in H2 concentration due to promotion of the shift reaction, and metallic iron is produced. reacts with hydrogen sulfide in the reaction system to produce iron sulfide.

Fe+H2S q FeS+H。Fe+H2S q FeS+H.

従って鉄鉱石を脱硫反応の融媒として循環使用すると、
徐々に硫化鉄が蓄積してくる。そしてH。
Therefore, if iron ore is recycled as a melting medium for desulfurization reaction,
Iron sulfide gradually accumulates. And H.

ガスが硫化鉄や脱硫に消費されることによシ、炭材に対
する脱硫効果が十分に発揮されなくなる。
As the gas is consumed for iron sulfide and desulfurization, the desulfurization effect on carbonaceous materials cannot be sufficiently exerted.

鉄鉱石がヘマタイトやマグネタイトの状態であれば平衡
論的に見て鉄成分の硫化は起こり得す、またウスタイト
段階まで還元されたとしても上記実験で得られた程度の
a2sa度では硫化は生じない。しかし鉄鉱石が金属鉄
まで還元されると、H,S との反応でFeSを生ずる
可能性がでてくる。従って、鉄鉱石の還元によって金属
鉄が生成するのを阻止してやれば、FeSの生成も必然
的に阻止できる岐ずである。こうした観点に立って反応
条件を種々検討したところ、生成ガス中のH2比率を低
めに抑えてやれば金属鉄の生成を防止し得ることが確認
された。即ち第2図はH2とH,0の混合ガス中におけ
る鉄酸化物の還元平衡関係を示したグラフであ)、鉄酸
化物の還元状態は温度とHz O/(Ht O+Ht)
比によって決まるので、発生するH2比率と送入するス
チーム量を適正に調節してやれば、金属鉄の生成を防止
することができる。
If the iron ore is in the state of hematite or magnetite, sulfidation of iron components can occur from an equilibrium perspective, and even if it is reduced to the wustite stage, sulfidation will not occur at the a2sa degree obtained in the above experiment. . However, when iron ore is reduced to metallic iron, there is a possibility that it will react with H and S to produce FeS. Therefore, if the production of metallic iron by reduction of iron ore is prevented, the production of FeS can also be necessarily prevented. From this viewpoint, various reaction conditions were investigated, and it was confirmed that the production of metallic iron could be prevented if the H2 ratio in the produced gas was kept low. In other words, Figure 2 is a graph showing the reduction equilibrium relationship of iron oxide in a mixed gas of H2 and H,0), and the reduction state of iron oxide is determined by temperature and Hz O/(Ht O+Ht).
Since it is determined by the ratio, the generation of metallic iron can be prevented by appropriately adjusting the generated H2 ratio and the amount of steam introduced.

ところで流動層反応においては、流動化している粒子が
流動層外へ飛び出す終端速度(即ち限界ガス流速)以下
で操業される為、スチームの吹込量には上限がある。そ
して常圧でガス化を行なう場合、適正な流速でスチーム
を吹込んだときに生成するH2と未反応H20の比は第
2図の■に示す通シとなシ、若干量の金属鉄を生ずる可
能性がある。ちなみに常圧、900℃でガス化実験を行
なった場合における■!20/(I(20+H2)の比
は約035であり、鉄鉱石側の分析結果では約20重量
係の金属鉄が生成していた。しかもX線回折によると相
尚量のFeSが確認され、硫黄が鉄鉱石側へ移行してい
ることが裏付けられた。しかし第2図からも明らかな様
に、反応系のH,WH20+ HD比が0.4以上とな
る様にガス組成を調整することができれば、金属鉄の生
成をなくすことが可能である。そこで反応系のH20/
(H20+H2)比を0.4以上となし得る様な方法を
明らかにすべく研究を進めた結果、反応系の圧力を高め
ればよいという結論を得た。即ち反応系の圧力を高める
と、同等のガス流速でも圧力に比例してスチーム吹込量
を増大し得るのに対し、炭材のガス化速度は圧力に殆ん
ど影響されずほぼ一定で、生成するH4は変わらない。
By the way, in a fluidized bed reaction, since the reaction is operated at a terminal velocity below the terminal velocity (that is, the critical gas flow velocity) at which the fluidized particles fly out of the fluidized bed, there is an upper limit to the amount of steam blown into the reactor. When gasification is carried out at normal pressure, the ratio of H2 generated when steam is blown in at an appropriate flow rate and unreacted H20 is the same as shown in ■ in Figure 2. This may occur. By the way, ■ when performing gasification experiments at normal pressure and 900°C! The ratio of 20/(I(20+H2)) was approximately 035, and the analysis results of the iron ore showed that approximately 20 parts by weight of metallic iron had been produced.Moreover, X-ray diffraction confirmed a significant amount of FeS in the phase. It was confirmed that sulfur was migrating to the iron ore side. However, as is clear from Figure 2, the gas composition must be adjusted so that the H, WH20 + HD ratio in the reaction system is 0.4 or more. If possible, it is possible to eliminate the formation of metallic iron.Therefore, the reaction system H20/
As a result of conducting research to find a method that would allow the (H20+H2) ratio to be 0.4 or higher, it was concluded that the pressure in the reaction system could be increased. In other words, if the pressure of the reaction system is increased, the amount of steam blown can be increased in proportion to the pressure even if the gas flow rate is the same, whereas the gasification rate of carbonaceous material is almost constant, almost unaffected by pressure, and the amount of steam produced is H4 remains unchanged.

従って反応圧力を高めてスチーム吹込量を増大してやれ
ば、反応系のH2儂度を相対的に低下させることができ
、H20/ (H3O+ H2)比を高めることができ
る。例えば流動化ガス流速を40cm/秒一定とした場
合、第2図にプロットした様に圧力の増大に伴ってH2
0/(H20+ H2)比は徐々に増大し、51(g〆
)Gでは完全にFe、O,安定化領域に入っている。
Therefore, if the reaction pressure is increased and the amount of steam blown is increased, the H2 intensity of the reaction system can be relatively lowered and the H20/(H3O+H2) ratio can be increased. For example, when the fluidizing gas flow rate is kept constant at 40 cm/sec, as the pressure increases, H2
The 0/(H20+H2) ratio gradually increases, and at 51(g〆)G, it is completely in the Fe, O, stabilization region.

この様に流動層ガス化反応系の圧力を高めて生成ガスの
Hto/(H,o+at )比が0.4以上となる様に
スチームを吹込んでやれば、鉄鉱石の還元による金属鉄
の生成(ひいては硫化鉄の生成・蓄積による脱硫効果の
低下)を招くことなく、鉄鉱石を炭材脱硫用の触媒とし
て有効に活用することができる。しかも鉄鉱石は、反応
系のH,ガス比率が少ない場合でも容易にFe、03(
ヘマタイト)からpesoa(マグネタイト)まで還元
される為、脱硫処理後の炭材と鉄鉱石は磁選によって簡
単に分離することができ、鉄鉱石を脱硫触媒として循環
使用することができる。但し反応系の圧力が高くな)過
ぎると前記(Ll 、[:V2O式で示したメタン化反
応が促進されてH2ガスが消費され脱硫効果が低下して
くるので、圧力は1〜10 kg /Cm” G程度に
設定するのがよい。尚反応温度は、前記〔13式のガス
化反応とCD式のシフト反応によシ効率良く進行させる
うえで850℃以上に設定するのがよく、また鉄鉱石の
融着によるスティッキングを防止する為には1000℃
程度以下に抑えるのがよい。
In this way, if the pressure of the fluidized bed gasification reaction system is increased and steam is injected so that the Hto/(H, o+at) ratio of the produced gas becomes 0.4 or more, metallic iron can be produced by reducing iron ore. Iron ore can be effectively used as a catalyst for desulfurization of carbonaceous materials without causing deterioration of the desulfurization effect due to generation and accumulation of iron sulfide. Moreover, iron ore can easily be used as Fe, 03(
(hematite) to pesoa (magnetite), the carbonaceous material and iron ore after desulfurization treatment can be easily separated by magnetic separation, and the iron ore can be recycled as a desulfurization catalyst. However, if the pressure of the reaction system is too high, the methanation reaction shown in the formula (Ll, [:V2O) will be promoted, H2 gas will be consumed, and the desulfurization effect will decrease, so the pressure should be 1 to 10 kg/ It is preferable to set the reaction temperature to about 850°C or higher to allow the gasification reaction of formula 13 and the shift reaction of CD formula to proceed efficiently. 1000℃ to prevent sticking caused by iron ore fusion.
It is best to keep it below a certain level.

第3図は本発明の炭材脱硫法を実施する場合の代表例を
示すフロー図であり、流動層反応炉lに上部から粉粒状
の炭材と鉄鉱石を装入し、下部からスチーム(及び少量
の酸素)を吹込みながら流動状態で炭材のガス化と脱硫
反応を進める。この場合の反応条件は前述の説明に準じ
て適正に調整する。そして生成したガスは順次炉外へ抜
き出す一方、流動層の適当な位置から炭材と鉄鉱石の浪
合物を少量ずつ抜き出す。そして磁選によシ炭材と鉄鉱
石を分?9また後鉄鉱石は脱硫た媒として循環し、脱硫
された炭材は製品として順次取シ出す。
FIG. 3 is a flow diagram showing a typical example of carrying out the carbonaceous material desulfurization method of the present invention, in which powdery carbonaceous material and iron ore are charged into a fluidized bed reactor l from the upper part, and steam ( Gasification and desulfurization reactions of the carbonaceous material proceed in a fluidized state while blowing in a small amount of oxygen). The reaction conditions in this case are appropriately adjusted according to the above explanation. The generated gas is then sequentially extracted out of the furnace, while a mixture of carbonaceous materials and iron ore is extracted little by little from appropriate positions in the fluidized bed. And then separate the carbonaceous materials and iron ore through magnetic selection? 9 In addition, the iron ore is circulated as a desulfurization medium, and the desulfurized carbonaceous material is sequentially extracted as a product.

この様に鉄鉱石を触媒として循環使用することによって
炭材を効率良く脱硫することができる。尚本発明では前
述の様に炭材のガス化と脱硫反応が併行して進行するが
、炭材の低硫化を進めようとすればするほどガス化率が
増大し低値炭材の回収率は低下してくる。従って炭材の
目標硫黄濃度に応じて滞留時間等を調節すればよく、ま
た生成ガスは必要に応じて変性、脱水処理等を行なって
、燃料や還元性ガス等として利用することができる。
By recycling iron ore as a catalyst in this way, carbonaceous materials can be efficiently desulfurized. In the present invention, as mentioned above, the gasification and desulfurization reactions of the carbonaceous material proceed in parallel, but the more you try to reduce the sulfurization of the carbonaceous material, the higher the gasification rate and the lower the recovery rate of the low-value carbonaceous material. is decreasing. Therefore, the residence time etc. may be adjusted according to the target sulfur concentration of the carbonaceous material, and the generated gas may be subjected to denaturation, dehydration, etc. as necessary, and then used as fuel, reducing gas, etc.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に宿成されるが、要は炭材の流動層ガ
ス化反応において鉄鉱石を共存させることによシ、未反
応炭材の脱硫を効率良く進行させることができ、炭材の
新たな脱硫技術を確立し得ることになった。
The present invention is carried out as described above, but the point is that by coexisting iron ore in the fluidized bed gasification reaction of carbonaceous materials, desulfurization of unreacted carbonaceous materials can proceed efficiently, and the carbonaceous materials can be desulfurized efficiently. It has now become possible to establish a new desulfurization technology for wood.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は流動層ガス化の実験法を示す説明図、第2図は
反応系中のガス組成と鉄鉱石の還元平衡状態を示すグラ
フ、第3図は本発明の実施例を示すフロー図である。
Fig. 1 is an explanatory diagram showing the experimental method of fluidized bed gasification, Fig. 2 is a graph showing the gas composition in the reaction system and the reduction equilibrium state of iron ore, and Fig. 3 is a flow diagram showing an example of the present invention. It is.

Claims (1)

【特許請求の範囲】[Claims] 硫黄を含む粉粒状炭材を粉粒状酸化鉄と共に処理容器内
へ装入し、温度を850〜1000℃、圧力を1〜10
kg/cm^2Gに維持しつつ分解生成ガス中のH_2
O/(H_2+H_2O)が体積比0.4以上となる様
に、処理系内へ水蒸気及び酸素を吹込むことを特徴とす
る炭材の脱硫方法。
Powdered carbonaceous material containing sulfur is charged into a processing container together with powdered iron oxide, and the temperature is set at 850-1000°C and the pressure is set at 1-10°C.
H_2 in decomposition gas while maintaining kg/cm^2G
A method for desulfurizing carbonaceous materials, characterized by blowing steam and oxygen into a treatment system so that O/(H_2+H_2O) has a volume ratio of 0.4 or more.
JP59191331A 1984-09-12 1984-09-12 Desulfurization of coal material Granted JPS6169891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191331A JPS6169891A (en) 1984-09-12 1984-09-12 Desulfurization of coal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191331A JPS6169891A (en) 1984-09-12 1984-09-12 Desulfurization of coal material

Publications (2)

Publication Number Publication Date
JPS6169891A true JPS6169891A (en) 1986-04-10
JPS6352079B2 JPS6352079B2 (en) 1988-10-17

Family

ID=16272776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191331A Granted JPS6169891A (en) 1984-09-12 1984-09-12 Desulfurization of coal material

Country Status (1)

Country Link
JP (1) JPS6169891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106894A (en) * 2010-11-19 2012-06-07 Hitachi Ltd Method of manufacturing gas containing hydrogen as main component and manufacturing apparatus
CN104818075A (en) * 2015-04-16 2015-08-05 张开军 Equipment and method for desulfurization before combustion of coal by using steam explosion machine and extracting agent
CN104818076A (en) * 2015-04-16 2015-08-05 张开军 Composite desulfurization system and method before coal combustion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106894A (en) * 2010-11-19 2012-06-07 Hitachi Ltd Method of manufacturing gas containing hydrogen as main component and manufacturing apparatus
CN104818075A (en) * 2015-04-16 2015-08-05 张开军 Equipment and method for desulfurization before combustion of coal by using steam explosion machine and extracting agent
CN104818076A (en) * 2015-04-16 2015-08-05 张开军 Composite desulfurization system and method before coal combustion
CN104818076B (en) * 2015-04-16 2017-03-15 张开军 Compound desulphurization system and method before a kind of coal combustion

Also Published As

Publication number Publication date
JPS6352079B2 (en) 1988-10-17

Similar Documents

Publication Publication Date Title
US3853538A (en) Use of reducing gas by coal gasification for direct iron ore reduction
US3847567A (en) Catalytic coal hydrogasification process
US4272399A (en) Conversion of carbon-containing materials to synthesis gas
US2824047A (en) Desulfurization of carbonaceous solid fuels
US2593257A (en) Blast furnace operation
US4298460A (en) Process for processing sulfur-containing heavy oil
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
JPS6156217A (en) Direct reduction of iron oxide-containing substance
EP0196359B1 (en) Method and apparatus for fluidized bed reduction of iron ore
CA1307907C (en) Process for removing sulphur from the waste gas of a reduction shaft furnace
WO2017061482A1 (en) Carbonaceous fuel gasification method, steel mill operation method, and gasified gas production method
US4692172A (en) Coal gasification process
US3909244A (en) Process for directly reducing iron ores in the solid state under pressure
US2919983A (en) Iron ore reduction process
JPS6169891A (en) Desulfurization of coal material
JPS649376B2 (en)
ZA200107867B (en) Fluidized bed reduction of laterite fines with reducing gases generated in situ.
US4147615A (en) Hot sand-coal-cracking to hydrodistillate fuels
JPS5811484B2 (en) Method for manufacturing reduced iron
SU997610A3 (en) Process for producing carburized spongy iron
CA1133843A (en) Process for processing sulfur-containing heavy oil
US2650160A (en) Production of iron sponge from iron ore
JP2024508605A (en) Extracted gas recovery in direct reduction process
US3620699A (en) Reducing gas generation
US3072469A (en) Generation of reducing gas