JPS6166979A - Measuring method of position of underground body - Google Patents

Measuring method of position of underground body

Info

Publication number
JPS6166979A
JPS6166979A JP59190214A JP19021484A JPS6166979A JP S6166979 A JPS6166979 A JP S6166979A JP 59190214 A JP59190214 A JP 59190214A JP 19021484 A JP19021484 A JP 19021484A JP S6166979 A JPS6166979 A JP S6166979A
Authority
JP
Japan
Prior art keywords
frequency
magnetic field
induced voltage
coil
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59190214A
Other languages
Japanese (ja)
Inventor
Yoshihiko Nomura
野村 由司彦
Hiroshi Naruse
央 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59190214A priority Critical patent/JPS6166979A/en
Publication of JPS6166979A publication Critical patent/JPS6166979A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/105Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To measure the position of the underground body with high precision by switching and supplying AC currents of <=2 frequencies to a magnetic field producing means and finding each inflection point of the induced voltage characteristic of each frequency of a magnetic field detecting means. CONSTITUTION:Alternating currents from an oscillator 5 of frequency f1 and an oscillator 6 of f2 are switched through a switch 7 and supplied to the oscilla tion coil 2 of a tunnel digging machine 1. The induced voltage across a receiving coil 3 is inputted to a voltage measuring instrument 13 through a BPF11 of frequency f1 or BPF12 of frequency f2 by a switch 10. Then when the induced voltage characteristic of the coil 3 is denoted as F1 when the frequency f1 is selected through the associative switching of the switches 7 and 10 or as F2 when the frequency f2 is selected, distances Y1 and Y2 between inflection points of both characteristics and a reference point P are found. Then, the real distance after the influence of a nearby metallic body 4 is removed is calculated from a specific expression.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、埋設管或いはトンネル掘進機等の地中物体の
位置を高精度に計測する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the position of an underground object such as a buried pipe or a tunnel boring machine with high precision.

(従来技術) 従来、−1−記した種類の地中物体の位置を^l/Jl
lI−Jる方法としては、例えば第4図にボずように、
6[測対象としてのトンネル掘進ill内に、中心磁中
の軸が鉛直となるように発信コイル2 (磁界発〕l゛
手段)を設り、地!−では受信コイル3(磁界検知手段
)の磁束鎖交面を鉛直に保ちつつ、その受fバコイル3
を水平方向に走査し、その受信コイル3での誘起電圧が
最小となる位置(誘起電圧特性の変曲点に対応する位W
)を楳索して、発イバコイル2の位置、つまりl・ンネ
ル掘進機1の水平()7置を求める方法があった。Pは
基準位置、Y「はその基準位置Pから掘進機1の水平位
置までの距離である。
(Prior art) Conventionally, the position of the underground object of the type described in -1- is ^l/Jl
For example, as shown in Figure 4,
6. Install the transmitting coil 2 (magnetic field generation means) in the tunnel excavation ill as the measurement target so that the axis of the central magnetic field is vertical, and set it on the ground! -, while keeping the magnetic flux linkage plane of the receiving coil 3 (magnetic field detection means) vertical, the receiving coil 3
is scanned in the horizontal direction, and the position W where the induced voltage in the receiving coil 3 is minimum (corresponding to the inflection point of the induced voltage characteristics)
) to find the position of the generator coil 2, that is, the horizontal ()7 position of the tunnel tunnel excavator 1. P is the reference position, and Y is the distance from the reference position P to the horizontal position of the excavator 1.

ところが、この方法は、発信コイル2や受信コイル3の
近傍に金属物体が存杓しない場合には高精度な位置計測
が可能であるが、第5図に示すように、近傍に金属体4
が存在する場合には、その金属体4に誘導されたうず電
流が発生ずる磁界(二次磁界)のために、受信コイル3
でit#られる誘起電圧が最小となる位置は、トンネル
掘進機lの真の水IF位置から、金属体4の側にやや平
行移動した位置、つまり基準点1)から距離Y(>Yr
)だ(J離れた位置となる。
However, this method allows highly accurate position measurement when there are no metal objects near the transmitting coil 2 or the receiving coil 3, but as shown in FIG.
If there is a magnetic field (secondary magnetic field) generated by the eddy current induced in the metal body 4, the receiving coil
The position where the induced voltage is the minimum is a distance Y (> Yr
) (It will be located J away.

すなわち、受信コイル3におIIる誘起電圧のh4小の
位置は本来の位置からずれた位置となり、そのn1測(
Aは誤差を含む値となる。
That is, the position of h4 small of the induced voltage II in the receiving coil 3 is shifted from the original position, and its n1 measurement (
A is a value that includes an error.

このように、従来の計Ill力法では當に面精度な計測
を保証することはできないという欠点があった。
As described above, the conventional measuring force method has the drawback that it cannot guarantee surface-accurate measurement.

(発明の目的) 本発明はかかる点に42でなされたもので、そのトI的
は2種以上の周波数を用いてn1測し、各周波数におけ
る針測値から近傍金属体による影響を排除した高ネn度
な位置を求めることができるようにした地中物体の位置
計測方法を提供することである。
(Objective of the Invention) The present invention was made in 42 to solve this problem, and its main purpose is to measure n1 using two or more frequencies and eliminate the influence of nearby metal objects from the needle measurements at each frequency. It is an object of the present invention to provide a method for measuring the position of an underground object, which allows the position of an underground object to be determined with high precision.

(発明の構成) このために本発明では、磁界発’「I一段に2種以上の
周波数の交流電流を切換供給し゛(、磁界検知11没に
おける各周波数の誘起電圧特性の各変曲点と1記名周波
数とから1−記地中物体のイ)旨6を1ill’1する
ようにし°(いる。
(Structure of the Invention) For this purpose, in the present invention, alternating currents of two or more frequencies are switched and supplied to a single stage of magnetic field generation. From the 1-recording frequency, 1-6 of the object being recorded is made to be 1ill'1.

(実AIM例) 以下、本発明の実施例について説明する。第1図はその
一実h&!例を小ずものである。なお、第4図及び第5
図にお↓するものと同一のちのには同・の符゛・)をイ
・1した。5は周波数f1の発1辰器、bは周波数[2
の発振器、7は切換スイッチ、8は増幅器である。そし
゛(、発掘器5或いは6からの交流電流はI−ン不ル掘
進機1内の発信コイル2に供給され゛(いる。−力、受
信rlイル3の誘起?1ill−の出力は増幅器1)に
31、って増幅された後にりJ換スイッチI Oに31
、ってIS波数r+ のパン1′パスフイルタ11或い
LJ周’6Jl 数f 2のバントパスフィルタ12を
経由して電月、測定′a13に人力する。
(Actual AIM Example) Examples of the present invention will be described below. Figure 1 is the fruit h&! An example is small items. In addition, Figures 4 and 5
Identical to the one shown below in the figure, the same symbol (゛・) was changed to ``a'' and ``1'' later. 5 is the oscillator of frequency f1, b is the frequency [2
7 is an oscillator, 7 is a changeover switch, and 8 is an amplifier. Then, the alternating current from the excavator 5 or 6 is supplied to the transmitter coil 2 in the excavator 1. 1) 31, after being amplified, 31 to J exchange switch I O
, and manually performs the measurement 'a13' via the pan 1' pass filter 11 with the IS wave number r+ or the band pass filter 12 with the LJ frequency '6Jl number f2.

第1図の1一部分は測定結果を示すもので、切換スイッ
チ7と10の連動切換によって周波数f。
Part 1 of FIG. 1 shows the measurement results, in which the frequency f is set by interlocking switching of changeover switches 7 and 10.

の発振器5と周波数11のハンIパスソイルタ11を選
IJ1!シた場合の受信コイル3におりる誘起’iuの
特性をFlで、また周波数f2の発1辰器6とバンドパ
スフィルタ12を選択した場合の特性をF2で示したも
のである。Foは近傍金属体4が存在しない場合の特性
である。またYI は特性FIの変曲点(最小電圧点)
で得られた基準点Pからの距離、Y2は特性F2の変曲
点で得られた同様の距離であり、Yrは真の距離である
Select oscillator 5 and Han I-pass soiler 11 of frequency 11 IJ1! The characteristic of the induced 'iu in the receiving coil 3 when the signal is switched is shown by Fl, and the characteristic when the oscillator 6 of the frequency f2 and the bandpass filter 12 are selected is shown by F2. Fo is a characteristic when the nearby metal body 4 does not exist. Also, YI is the inflection point (minimum voltage point) of characteristic FI
The distance from the reference point P obtained by Y2 is a similar distance obtained at the inflection point of the characteristic F2, and Yr is the true distance.

ここで、近傍金属体4としてアルミニウム板や鉄板を発
信コイル2と受信コイル3の間に第2図に示す寸法関係
で置き、水平位置の計測誤差Y−Yrと発信コイル2に
供給する電流の周波数fとの関係を調べた(第3図)。
Here, an aluminum plate or a steel plate is placed as the nearby metal body 4 between the transmitting coil 2 and the receiving coil 3 in the dimensional relationship shown in FIG. The relationship with frequency f was investigated (Figure 3).

この第3図に示すように、個々の物体によって固有の周
波数以下では計測誤差は勾配2の実線(計測誤差が周波
数の2乗に比例する実線)に良く一致している。また、
抵抗R1インダククンスLのコイルを近傍金属体に見た
てて、理論的に検討したところ、 Y−Yr=C+ / (C2”1/f” )  =・(
11の関係が得られた。ここで、CI 、C2は上記し
たR、L等に関する定数である。この式(1)は、低周
波域ではmt[ll誤差が周波数の2乗に比例し、面周
波域ではその81劃−呉差が一定になることを意味し゛
(おり、第3図の実験結果をよく説明している。
As shown in FIG. 3, below the frequency specific to each object, the measurement error closely matches a solid line with a slope of 2 (a solid line in which the measurement error is proportional to the square of the frequency). Also,
When considering the coil of resistor R1 and inductance L as a nearby metal body, we theoretically considered it as follows: Y-Yr=C+/(C2"1/f")=・(
Eleven relationships were obtained. Here, CI and C2 are constants related to R, L, etc. described above. This equation (1) means that in the low frequency range, the mt[ll error is proportional to the square of the frequency, and in the surface frequency range, the difference is constant. Explains the results well.

故に、低周波域においては、定数02を無視できるので
、次の式の理論が成り立つ。
Therefore, in the low frequency range, the constant 02 can be ignored, so the theory of the following equation holds true.

すなわち、一般に、周波数fがl K IIZ稈度以上
の場合、周波数fとMl測値Yとは、 Y−Yr =αf”           −121な
る関係にある。ここで、αは個々の条(IIにおいて定
まる定数(CI に対応)である。故に、周波¥If+
 、F2について、それぞれ、Y + −−Y r−α
f、2         ・・・(3)Y2 −Yr−
af22        ・i41が成立する。この式
に3)、(4)の差をとると、YI  Y2 =tX 
(f+ ”   (22)   ・i51となる。ここ
で、Yl 、Y2はn1測値であり、またr、、r、は
既知であるので、式(5)から定数αを求めることがで
きる。すなわち、 (X−(”l’l   Y2) / (f+ ’   
F2” ) −1filとなる。この式(6)を用い、
式(3)より、Yrは、Yr−YI  −f+  ’ 
 (YI   Y2)/  (f+  2−  f22
 )・・・(7) で与えられる。
That is, in general, when the frequency f is equal to or higher than l K IIZ culm, the frequency f and the Ml measured value Y have the following relationship: Y - Yr = αf'' -121. Here, α is It is a fixed constant (corresponding to CI).Therefore, the frequency\If+
, F2, respectively, Y + −Y r−α
f, 2...(3) Y2 -Yr-
af22 ・i41 is established. Taking the difference between 3) and (4) into this equation, YI Y2 = tX
(f+ ” (22) ・i51. Here, Yl and Y2 are n1 measured values, and r,,r, are known, so the constant α can be found from equation (5). That is, , (X-("l'l Y2) / (f+ '
F2”) −1fil.Using this equation (6),
From formula (3), Yr is Yr-YI-f+'
(YI Y2)/ (f+ 2- f22
)...(7) is given by.

そして、例えばf、=2f2とすれば、式(7)は更に
簡単な式、 Yr=Y+ −4(YI−Y2)/3 −(4Y2 YI)/3      ・・・(8)とな
り、近傍金属体4による影響を排除した真の水平位置を
示す距1i11fYrを得ることができる。
For example, if f, = 2f2, equation (7) becomes an even simpler equation, Yr=Y+ -4(YI-Y2)/3 -(4Y2 YI)/3...(8), and the nearby metal A distance 1i11fYr indicating the true horizontal position excluding the influence of the body 4 can be obtained.

なお、以−にの実施例では2種の周波数を使用して計測
したが、31!以上でも計測することができ、この場合
は式+11の定数02を見い出して地中物体の位置を計
測することができる。また、以−にの実施例では磁界検
出手段としての受信コイル3の誘起電圧特性の変曲点を
最小電圧値として得るているが、磁界発生手段や磁界検
知手段に若干の変更を加えれば、変曲点を最高電圧値と
して得るようにすることもできる。
In addition, in the example described above, measurements were made using two types of frequencies, but 31! The above measurement can be performed, and in this case, the position of the underground object can be measured by finding the constant 02 of equation +11. Furthermore, in the embodiments described above, the inflection point of the induced voltage characteristic of the receiving coil 3 as the magnetic field detection means is obtained as the minimum voltage value, but if the magnetic field generation means and the magnetic field detection means are slightly modified, It is also possible to obtain the inflection point as the highest voltage value.

(発明の効果) 以上のように本発明によれば、近傍金属体による影響を
排除することができるので、埋設管やトンネル掘進機等
の地中物体の位置を+E6梢度に求めることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to eliminate the influence of nearby metal objects, so the position of underground objects such as buried pipes and tunneling machines can be determined at +E6 degree. .

よって、例えば、トンネル掘進機においては、高ネh度
な位置81測結果をフィー1ハツクするごとにより、面
精度な方向制御30がTIJ能となり、埋設管において
も埋設管の設備管理を容易にする等の利点かある。
Therefore, for example, in a tunnel excavating machine, every time a high precision position 81 measurement result is obtained, surface-accurate direction control 30 becomes TIJ function, and even underground pipes can be easily managed. There are some advantages to doing so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のa1測方法の説明図、第2
図は実験の寸法説明図、第3図は実験結果を示ず81測
娯差特性図、第4図は近傍金属体が存在しない場合の従
来の計測説明図、第5図は近傍金属体が存在する場合の
従来の計測説明図である。 1・・叫・ン不ル掘進機、2・・・発fばコイル、3・
・・受(、(コイル、4・・・近傍金属体、5.6・・
・発振器、7・・切換スイッチ、8.9・・・増幅器、
1() ・すJ換スイッチ、11.12・・・ハンI゛
パスフィルタ、13・・・電圧測定器。 特許出願人 lJ本電信電話公?1 代 理 人 弁理ト 長尾席明
Fig. 1 is an explanatory diagram of the a1 measurement method according to an embodiment of the present invention;
The figure is a diagram explaining the dimensions of the experiment, Figure 3 is an 81 measurement difference characteristic diagram that does not show the experimental results, Figure 4 is a diagram explaining the conventional measurement when there is no nearby metal body, and Figure 5 is a diagram explaining the measurement when there is no nearby metal body. It is an explanatory diagram of conventional measurement when it exists. 1. Screaming machine, 2. Explosive coil, 3.
...Receiver (, (coil, 4...nearby metal body, 5.6...
- Oscillator, 7... Selector switch, 8.9... Amplifier,
1() - J exchange switch, 11.12... Han I pass filter, 13... Voltage measuring device. Patent applicant lJ Hon Telegraph and Telephone Public Corporation? 1 Representative Attorney Shikiaki Nagao

Claims (1)

【特許請求の範囲】[Claims] (1)、埋設管或いはトンネル掘進機等の地中物体内に
磁界発生手段を設け、地上にて、該磁界発生手段からの
磁界を検知する磁界検知手段を走査して、該磁界検知手
段における誘起電圧特性の変曲点により上記地中物体の
位置を計測する方法において、 上記磁界発生手段に2種以上の周波数の交流電流を切換
供給して、上記磁界検知手段における各周波数の誘起電
圧特性の各変曲点と上記各周波数とから上記地中物体の
位置を計測するようにしたことを特徴とする地中物体の
位置計測方法。
(1) A magnetic field generating means is provided in an underground object such as a buried pipe or a tunneling machine, and a magnetic field detecting means that detects the magnetic field from the magnetic field generating means is scanned on the ground, and the magnetic field detecting means detects the magnetic field. In the method of measuring the position of the underground object based on the inflection point of the induced voltage characteristics, alternating current of two or more frequencies is switched and supplied to the magnetic field generating means, and the induced voltage characteristics of each frequency in the magnetic field detecting means are determined. A method for measuring the position of an underground object, characterized in that the position of the underground object is measured from each inflection point and each of the frequencies.
JP59190214A 1984-09-11 1984-09-11 Measuring method of position of underground body Pending JPS6166979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190214A JPS6166979A (en) 1984-09-11 1984-09-11 Measuring method of position of underground body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190214A JPS6166979A (en) 1984-09-11 1984-09-11 Measuring method of position of underground body

Publications (1)

Publication Number Publication Date
JPS6166979A true JPS6166979A (en) 1986-04-05

Family

ID=16254363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190214A Pending JPS6166979A (en) 1984-09-11 1984-09-11 Measuring method of position of underground body

Country Status (1)

Country Link
JP (1) JPS6166979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018884A1 (en) * 1994-12-16 1996-06-20 Tokyo Gas Co., Ltd. Electromagnetic inspection of elements of piping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018884A1 (en) * 1994-12-16 1996-06-20 Tokyo Gas Co., Ltd. Electromagnetic inspection of elements of piping

Similar Documents

Publication Publication Date Title
US10845497B1 (en) Phase-synchronized buried object transmitter and locator methods and apparatus
US4091322A (en) Eddy current generating type metal pipeline detector
US3614600A (en) Electromagnetic prospecting apparatus for detecting electrically or magnetically responsive ore bodies
NL7908614A (en) CASING EXAMINATION WITH MAGNETIC PERMEABILITY CORRECTION.
CA2978481C (en) Method and device for detecting buried metal using synchronous detection method
US2413620A (en) Direction finding system
US8742747B2 (en) Detector for detecting a current carrying conductor
JPS6166979A (en) Measuring method of position of underground body
US1820953A (en) Method and apparatus for subsoil investigating
JP2865599B2 (en) Exploration methods for buried objects
CA1260060A (en) Coherent detection system for use in induction well logging apparatus
US2753520A (en) Methods and systems for maintaining alternating current networks in a reference condition
US3085197A (en) Inductor survey apparatus and method for determining presence of oil bearing substrata
US2929985A (en) Method and a device for measuring the wall thickness of articles made of ferromagnetic materials
US2642473A (en) Wave translating system
US2291779A (en) Geophysical apparatus and method
JP3035724B2 (en) Metal detection method
JPS586912B2 (en) Depth measurement method for underground metal tracks
US2874348A (en) Electromagnetic method of geophysical exploration
AU2023202011B2 (en) An improved metal detector
JP3084298B2 (en) Buried metal tube and metal lump detector
US2665499A (en) Pendulum and acceleration compensation apparatus
US2883659A (en) Timing and phase-control circuits
JPS585258Y2 (en) Transmitter for underground metal path measurement
JPH0326983A (en) Method and apparatus for detecting position of ground embedded pipe