JPS6166946A - Measuring method of concentration - Google Patents

Measuring method of concentration

Info

Publication number
JPS6166946A
JPS6166946A JP18998784A JP18998784A JPS6166946A JP S6166946 A JPS6166946 A JP S6166946A JP 18998784 A JP18998784 A JP 18998784A JP 18998784 A JP18998784 A JP 18998784A JP S6166946 A JPS6166946 A JP S6166946A
Authority
JP
Japan
Prior art keywords
pressure
pipe
detectors
differential pressure
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18998784A
Other languages
Japanese (ja)
Inventor
Atsushi Tatani
多谷 淳
Masakazu Onizuka
鬼塚 雅和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18998784A priority Critical patent/JPS6166946A/en
Publication of JPS6166946A publication Critical patent/JPS6166946A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/26Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To eliminate a pressure drop loss due to tube friction resistance and an error due to the spouting of measurement liquid at a cell peak by detecting pressure differences of constant intervals at a horizontal part and pressure differences of the same intervals with the horizontal part at a vertical part. CONSTITUTION:The liquid 12 reserved in a tank 11 is fed through vertical piping 14 and horizontal piping 15 which are equal in diameter to a pump 18 and made of the same material. Pressure detectors 16-19 are fitted to walls of those pipes 14 and 15 so that the interval between the detectors 16 and 17 of the pipe 14 and that of the detectors 18 and 19 of the pipe 15 are equal to each other. Signals (a) and (b) of pressure detected by the detectors 16 and 17 provided to the pipe 14 are inputted to a differential pressure detector 21, which outputs their pressure difference as a differential pressure signal (f). Similarly, signals (c) and (d) of pressure detected by the detectors 18 and 19 of the pipe 15 are inputted to a differential pressure detector 20, which outputs a differential pressure signal (e). Those signals (e) and (f) are used by a computing element 22 for processing to calculate corrected differential pressure, thereby outputting a pressure signal (g) for concentration arithmetic.

Description

【発明の詳細な説明】[Detailed description of the invention]

l産業上の利用分野] 液あるいはス°71.)−などの流体の密度を測定して
、溶質あるいは懸濁粒イの濃度を管理する「、法は一般
的であり2例えば石灰石膏法排煙脱イ飽装置においても
吸収Yfkスラリー中の神品濃度管用1のためス″λリ
ー°階度をd用5ff Lでいる。 〔従来の技術〕 従来の液あるいはスラリーの密度の連続相′、1′方法
について、第21ツーに基づき具体的に説明する。 液あるいはスラリー等の流体2を貯めるタンク1からポ
ンプ3で流1(・2はIZ配管4を経+l+ して送液
されている。前記主配管4から分岐する密度測定用配管
9を1山じてポンプ3を介して送液されている流体2の
1部は、バルジ5によ−・て所定流電だけ測定セル6に
送られ、同測宇セル頂部7より溢流し、溢流管8を経1
11シてタンク2に戻されている。611記比市測定セ
ル6の倶1壁には圧力検出器10がイ、1属しており、
同圧力検出器10では取イ・1け位置から比重41す定
セル6の[[′1部7迄の測定セル6を流れる流体の圧
))を検出している。 圧力検出器10で検出された月力から次式によって流体
2の密度を求めている3、 ρコT ・・・・・  (1) k タし、1゛  圧ノ月kg/m”1 、  Z :
 n4部から検出MH,’?−の長さl+n l 、 
 p : 密751kg’m”] f 、4 ル。 1全明が解決りようとする問題+:jjfS−来のJ、
法においてはτ夜あるいはス”i II−等の流1+2
がセル6内を流7する時の管摩擦抵抗1こよる流動時の
IIII 141失のちL〆がなさJlておらず。 父測定十ノし6j
l Industrial Application Fields] Liquids or liquids 71. ) - is a common method to control the concentration of solutes or suspended particles by measuring the density of a fluid such as For product concentration tube 1, the level is 5ff L for d. [Prior Art] The conventional method of continuous phase ', 1' for density determination of liquid or slurry will be explained in detail based on Section 21-2. A pump 3 is used to send a stream 1 (2) from a tank 1 that stores a fluid 2 such as liquid or slurry through an IZ pipe 4.A density measurement pipe 9 branching from the main pipe 4 is connected to one pile. A part of the fluid 2 being sent through the pump 3 is sent to the measuring cell 6 by a predetermined current through the bulge 5, overflowing from the top 7 of the measuring cell, and flowing into the overflow pipe. 8 through 1
After 11 hours, it was returned to tank 2. A pressure detector 10 is attached to one wall of the 611 measurement cell 6,
The pressure detector 10 detects the pressure of the fluid flowing through the measuring cell 6 up to the point 7 with a specific gravity of 41 from the position A.1. The density of the fluid 2 is calculated from the monthly force detected by the pressure detector 10 using the following formula. Z:
Detected from part n4 MH,'? − length l+n l ,
p: dense 751 kg'm"] f, 4 ru. 1 The problem that Zenmei tries to solve +: jjfS-Next J,
In law, the flow 1+2 of τ night or S”i II- etc.
When flowing through the cell 6, the pipe friction resistance 1 causes the loss of 141 during the flow, and there is no L end. Father measurement tenth 6j

【1部における流1本の噴j1旨旨さ
も考慮さ71−こい、ない6、持にス”7 l)−を取
扱う場合は懸/&li粉「のヒル6内での沈降を防11
するために粒仔にj志じで最少流速が現宇さJするため
にIJ【4の誤パをノ1じやすい5. 1問題点を解決するだめの手段゛] 本定明のツノθ、は、被射精流庫を水平部および垂11
!1′部からなる連続した同径Y1つ同材質の配管中を
流速させ、水平部における一宇間隔間の圧υ!可と、 
I1輪1°1部における前記水平部での間隔と等しい間
隔間のIt: JJ差とを検出し、水111部での圧り
差とdi直部での1.1ツノ差との差を1一層圧力差を
求めた隔間の1(さて除して液体の密度を求める方法で
ある。 〔作用〕 水平部での圧ツノ差は、−宇間隔を流れる間に流体が受
ける管との摩擦抵抗による静IFの低1によって生じる
。一方、垂直部での圧力差は2流体が流れる時に受ける
管との摩擦抵抗により生じる静圧の低下と背圧との和と
な−)でいる。 この圧力差を求める間隔を水平部と垂直部とて゛等しく
しておけは静圧の低下分は等いので、圧力差の差を求め
ることにより背圧のみ求められ。 それを長さで除せば密度が得られる。 〔実施例〕 以下1本発明の方法を図面を# I!<f Lながら説
明する。 タンク11に貯められている彼、?+’ +1111の
流体12i=t。 ポンプ13により径が等しく、[1つ、同材質からなる
垂直配管14および水IV配管15を介して送液されて
いる。これら配管14・15の′l?1mには各々圧力
検出器16・17・18・19が設けられており。 捷だ、 II′i直配管14のl−1−:)J検出器1
6から圧力検出器1Fまでの間隔と、水xll配管15
の圧力検出器18から圧力検出器191での間隔は等し
くなるように設けられている。まず垂直配管14に設け
られている圧力検出器16と圧力検出器17によって検
出された圧力の信号aおよびりは差圧検出器21に入力
されて圧力差が差圧信号のとして発信される。同じく水
下配管15でも圧力検出器18と圧力検出器19によっ
て検出された圧力の信号Cと(1は差圧検出器20に人
力されて、圧力差が差圧信号@として発信される。上記
の差圧検出器2゜からの差圧信す@並びに差圧検出器2
1からの差圧信号[F]を用いて演算器22では次式の
演算処理を行なわせ補iE差圧を求め密度演算用圧力信
号@を出力している。 P、−1’、、−P ただし、Pl  垂直部差圧、P2:水平部差圧。 P :比重演算用能力。 プリセット器24は圧力検出器16と17との設置距離
2を信号りとして密度演算器23に出力し。 演算器22からの密度演算用信りgとともに(])式に
より密度が計算され表示される。 発明者らは、タンク11に表−1に示すスラリー状の流
体12を調製しポンプ13で垂直配管14並びに水平配
管15を経由して送液し本発明の方法の確認試験を行っ
た。なお、圧力検出器】6と圧力検出器17の間隔並び
に圧力検出器18と圧力検出器19の間隔はいずれも2
mとした。 表−1調製スラリー組成 結果を表−2に示しであるが、測定結果と計算値とはほ
ぼ一致した。 表  2   fllll宇結果 (温度゛23°(1) 〔効果) 本発明の方法によ−)で、従来の測定力法においてみら
れた管摩擦抵抗による圧力損失誤差並びにセ/l/ +
n部における測定液噴きl−げによる誤差を解消するこ
とができた。
[Taking into account the taste of one jet in the first part, when handling the powder, prevent the sedimentation of the powder in the hill 6.
In order to do this, it is easy to make a mistake in IJ [4] because the minimum flow velocity is present in the particles.5. 1. Means to solve the problem ゛] The horn θ of this determination is to separate the ejaculated flow chamber into the horizontal part and the vertical part.
! The flow velocity is caused to flow through a continuous pipe of the same diameter and made of the same material, and the pressure υ between the intervals in the horizontal part is υ! Possible and
Detect the It: JJ difference between the intervals equal to the interval at the horizontal part in 1° 1 part of the I1 wheel, and calculate the difference between the pressure difference at 111 parts of water and the 1.1 horn difference at the di straight part. 1 of the interval where the pressure difference was found This is caused by a low static IF due to frictional resistance.On the other hand, the pressure difference at the vertical portion is the sum of the static pressure drop caused by the frictional resistance between the two fluids and the pipe when they flow, and the back pressure. If the intervals for calculating this pressure difference are made equal for the horizontal and vertical parts, the drop in static pressure will be the same, so by calculating the difference in pressure difference, only the back pressure can be determined. Divide it by the length to get the density. [Example] Below is a drawing showing the method of the present invention. <f I will explain while using L. He who is stored in Tank 11? +'+1111 fluid 12i=t. The liquid is fed by a pump 13 through vertical piping 14 and water IV piping 15, which have the same diameter and are made of the same material. These pipes 14 and 15'l? Pressure detectors 16, 17, 18, and 19 are installed at each 1 m. It's ok, II'i straight pipe 14 l-1-:) J detector 1
6 to pressure detector 1F and water xll piping 15
The distances from the pressure detector 18 to the pressure detector 191 are set to be equal. First, the pressure signals a and 1 detected by the pressure detectors 16 and 17 provided in the vertical pipe 14 are input to the differential pressure detector 21, and the pressure difference is transmitted as a differential pressure signal. Similarly, in the underwater pipe 15, the pressure signal C (1) detected by the pressure detector 18 and the pressure detector 19 is manually input to the differential pressure detector 20, and the pressure difference is transmitted as the differential pressure signal @. Differential pressure signal from differential pressure detector 2° and differential pressure detector 2
Using the differential pressure signal [F] from 1, the computing unit 22 performs arithmetic processing according to the following equation to obtain a supplementary iE differential pressure and outputs a pressure signal @ for density calculation. P, -1',, -P where Pl is vertical differential pressure, P2 is horizontal differential pressure. P: Specific gravity calculation ability. The preset device 24 outputs the installation distance 2 between the pressure detectors 16 and 17 as a signal to the density calculator 23. The density is calculated and displayed using the formula ( ) together with the density calculation confidence g from the calculator 22. The inventors prepared a slurry-like fluid 12 shown in Table 1 in a tank 11, and conducted a test to confirm the method of the present invention by pumping the fluid through a vertical pipe 14 and a horizontal pipe 15 using a pump 13. Note that the distance between the pressure detector] 6 and the pressure detector 17 and the distance between the pressure detector 18 and the pressure detector 19 are both 2.
It was set as m. The composition results of the slurry prepared in Table 1 are shown in Table 2, and the measured results and calculated values were almost in agreement. Table 2 Results (Temperature ゛23°(1) [Effect] According to the method of the present invention), the pressure loss error due to pipe friction resistance observed in the conventional measuring force method and the
It was possible to eliminate the error caused by the spraying of the measurement liquid at the n part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による比重測定時のフローを示すもの、
第2図は従来方法における比重測定時のフローを示すフ
ローである。 11・・・タンク、12  流体、13・ポンプ、14
・垂泊°配管、15・水)ド配管、16・17・18・
19・・圧力検出器、20・21・・・差圧検出器、′
22・・演算器第1巴
Figure 1 shows the flow when measuring specific gravity according to the present invention.
FIG. 2 is a flowchart showing the flow when measuring specific gravity in a conventional method. 11... Tank, 12 Fluid, 13. Pump, 14
・Takuhaku Piping, 15・Water) Do Piping, 16・17・18・
19...Pressure detector, 20.21...Differential pressure detector,'
22... Arithmetic unit 1st tomoe

Claims (1)

【特許請求の範囲】[Claims] 被計測流体を水平部および垂直部からなる連続した同径
且つ同材質の配管中を流通させ、水平部における一定間
隔間の圧力差と、垂直部における前記水平部での間隔と
等しい間隔間の圧力差とを検出し、水平部での圧力差と
垂直部での圧力差との差を上記圧力差を求めた隔間の長
さで除して流体の密度を求めることを特徴とする密度の
測定方法。
The fluid to be measured is passed through a continuous pipe of the same diameter and made of the same material, consisting of a horizontal section and a vertical section. The density of the fluid is determined by detecting the pressure difference and dividing the difference between the pressure difference in the horizontal part and the pressure difference in the vertical part by the length of the interval from which the pressure difference was determined. How to measure.
JP18998784A 1984-09-11 1984-09-11 Measuring method of concentration Pending JPS6166946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18998784A JPS6166946A (en) 1984-09-11 1984-09-11 Measuring method of concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18998784A JPS6166946A (en) 1984-09-11 1984-09-11 Measuring method of concentration

Publications (1)

Publication Number Publication Date
JPS6166946A true JPS6166946A (en) 1986-04-05

Family

ID=16250492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18998784A Pending JPS6166946A (en) 1984-09-11 1984-09-11 Measuring method of concentration

Country Status (1)

Country Link
JP (1) JPS6166946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760569A (en) * 2018-07-13 2018-11-06 孙玘凡 Oil-water mixture density and pure oil flow measuring device and method
WO2021206166A1 (en) * 2020-04-10 2021-10-14 三菱パワー株式会社 Apparatus for acquiring slurry concentration, method for acquiring slurry concentration and method for remodeling flue gas desulfurization facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760569A (en) * 2018-07-13 2018-11-06 孙玘凡 Oil-water mixture density and pure oil flow measuring device and method
WO2021206166A1 (en) * 2020-04-10 2021-10-14 三菱パワー株式会社 Apparatus for acquiring slurry concentration, method for acquiring slurry concentration and method for remodeling flue gas desulfurization facility
JP2021166955A (en) * 2020-04-10 2021-10-21 三菱パワー株式会社 Slurry concentration obtaining device, slurry concentration obtaining method and flue-gas desulfurization facility remodeling method

Similar Documents

Publication Publication Date Title
US20160341585A1 (en) Multiphase Flow Meter
US7963172B2 (en) Multiphase flowmeter using a combination of pressure differentials and ultrasound doppler readings
US8322228B2 (en) Method of measuring flow properties of a multiphase fluid
TWI515433B (en) Device and method for determining a flow velocity of a fluid or a fluid component in a pipeline
US10082486B2 (en) Method for recognizing the presence of liquid in a gas flow
US3926050A (en) Method and apparatus for determining solids delivered from moving slurry
US4282760A (en) Multiphase fluid flow meter (D#76,244)
Kalman et al. Phase diagrams for pneumatic and hydraulic conveying
US10641635B2 (en) Measuring arrangement
JPS6166946A (en) Measuring method of concentration
US11543276B2 (en) Multiphase flowmeter system with a non-radioactive sensor subsystem and methods thereof
JPH1164067A (en) Flowmeter for multi-phase flow
KR101208330B1 (en) Method for measuring non-full flow using multiple sensors
Waluś Mathematical modelling of an ultrasonic flowmeter primary device
JP5924556B2 (en) Multiphase flow meter
JPS5928326Y2 (en) differential pressure flowmeter
CN217358626U (en) Float flowmeter with rectifier and polytetrafluoroethylene-lined metal tube
US1214853A (en) Apparatus for indicating the rate of flow of fluids in pipes.
JPS57102212A (en) Detection of clogging for condensed water treating apparatus
Weir Jr et al. Two-and three-dimensional flow of air through square-edged sonic orifices
JP2877269B2 (en) Simultaneous continuous measurement of viscosity and density
RU2157970C2 (en) Pressure transducer for flowmeter
SU821923A1 (en) Flowrate meter
SU370468A1 (en) UNIFIED • - &#34;&#34; MS ^
US10527469B2 (en) Flow-rate measuring system for drilling muds and/or for multiphase mixtures