JPS6166806A - Turbine frame - Google Patents

Turbine frame

Info

Publication number
JPS6166806A
JPS6166806A JP18795284A JP18795284A JPS6166806A JP S6166806 A JPS6166806 A JP S6166806A JP 18795284 A JP18795284 A JP 18795284A JP 18795284 A JP18795284 A JP 18795284A JP S6166806 A JPS6166806 A JP S6166806A
Authority
JP
Japan
Prior art keywords
turbine
earthquake
frame
steel
frames
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18795284A
Other languages
Japanese (ja)
Inventor
Sunao Hayagumo
早雲 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18795284A priority Critical patent/JPS6166806A/en
Publication of JPS6166806A publication Critical patent/JPS6166806A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M5/00Engine beds, i.e. means for supporting engines or machines on foundations

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To reduce load produced due to an earthquake whereby improve structural strength with ease while shorten a process of construction by providing upper and lower steel-made frames constituting a turbine frame, and arranging an earthquake insulator device profitably employing frictional force between both of said frames. CONSTITUTION:A turbine frame consists of a upper frame 1 and a lower frame 2, and the upper frame 1 has a reinforcing steel plate 9, stell bodies 12, 13 and a grout 15, etc. In the above arrangement, the upper and lower frames 1, 2 are respectively made of steel, and an earthquake insulator device is provided therebetween. The earthquake insulator device is constructed for example by fixing integrally a upper friction plate 8 and a lower friction plate 10 with use of a bolt 11. Hereby, the turbine frame is made endurable in strength against earthquake load within a prescribed limit by making use of frictional frame produced between the upper and lower friction plates 8, 10, while, for excessive earthquake load, the bolt 11 is ruptured to allow the upper and lower friction plates 8, 10 to slide transversely. Thus, since friction absorbs earthquake energy, the structure can be simplified.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、火力、原子力発電所等における主タービン、
および、タービン発電機を設置するための高耐震性を有
した架台構造に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to main turbines in thermal power plants, nuclear power plants, etc.
The present invention also relates to a frame structure with high earthquake resistance for installing a turbine generator.

〔発明の背景〕[Background of the invention]

従来技術に関し、以下第3因及び第4.第5図。 Regarding the prior art, the third and fourth causes are as follows. Figure 5.

第6図に基づいて説明する。This will be explained based on FIG.

図において、lはタービン架台、2は高圧タービン、3
は低圧タービン、4はタービン発電機、5は格納施設と
してのタービン建屋床である。
In the figure, l is a turbine pedestal, 2 is a high-pressure turbine, and 3 is a high-pressure turbine.
4 is a low-pressure turbine, 4 is a turbine generator, and 5 is a turbine building floor serving as a storage facility.

第3−は、タービン建屋内のタービン発電機廻りの立体
図、第4図は、タービン及びタービン発電mを設置する
タービン建屋2階の土面図であり、第5囚には、タービ
ン発電機位置部における縦断面図(A−A断面)である
Figure 3 is a three-dimensional view of the turbine generator area inside the turbine building, Figure 4 is a soil surface diagram of the second floor of the turbine building where the turbine and turbine generator m are installed, and Figure 5 is a three-dimensional view of the turbine generator area in the turbine building. It is a longitudinal cross-sectional view (AA cross section) in a position part.

従来、高圧タービン2、低圧タービン3、タービン発を
機4は、堅固なタービン架台lの上に設置されている。
Conventionally, a high-pressure turbine 2, a low-pressure turbine 3, and a turbine generator 4 are installed on a rigid turbine pedestal l.

前記高圧タービン2、低圧タービン3、タービン発電機
4は、高速回転体として、それら自身がかなシの振動発
生を有する。父、それらの機器部を設置した従来のター
ビン架台lは、タービン建屋床5と切り離され、回転振
動の建屋側伝播による、建屋コンクリート構造物のクラ
ンク発生を防止する構造となっていた。従って、タービ
ン架台lは、タービン建屋基礎部分において、建屋側と
一本基gl構造をなす以外に支持部分?持たず、所領る
自立型構造金なしている。
The high-pressure turbine 2, low-pressure turbine 3, and turbine generator 4 are high-speed rotating bodies, and each of them generates a large amount of vibration. The conventional turbine mount l on which these equipment parts were installed was separated from the turbine building floor 5, and was designed to prevent cranking of the building concrete structure due to rotational vibration propagation to the building side. Therefore, in addition to forming a single base structure with the building side, the turbine mount l is a supporting part at the foundation of the turbine building. It is a self-supporting structure that does not have any money.

今後のプラントでは、タービンE1mのコンパクト化?
図るため、タービン架台を走るヒータ全2本から4本に
増やす傾向にわり、タービン架台自体の高芒は、従来よ
り約2m高くなり、架台上部の変位、及び、タービン建
屋とタービン架台間の相対変位が大きくなる。従って、
第4図に示す例の如く、タービ/と湿分分離器を結ぶク
ロスアラ9ンド管の設計は厳しいものとなる。
Will the turbine E1m be made more compact in future plants?
In order to achieve this, there has been a trend to increase the number of heaters running on the turbine pedestal from two to four, and the height of the turbine pedestal itself has become approximately 2 m higher than before, resulting in the displacement of the upper part of the pedestal and the relative distance between the turbine building and the turbine pedestal. Displacement increases. Therefore,
As shown in the example shown in FIG. 4, the design of the cross-aligned pipe connecting the turbine/moisture separator is difficult.

一方、近年発電プラントの立地難と耐震規制の強化に併
い、設計用地戻動が従来プラン)K比べ大きなものへと
移行しつつあるため、支持部をもたないタービン架台l
の地震時応答が大きくなり、支持構造の解決策が早急に
必要となっている。
On the other hand, in recent years, due to the difficulty in locating power plants and the tightening of seismic regulations, the design ground return movement is shifting to a larger one than the conventional plan).
seismic responses are increasing, and support structure solutions are urgently needed.

第4@には、タービン架台lで、地震時に、変形モード
解析により求めた結果金−例として示す。
The fourth example shows the results obtained by deformation mode analysis on the turbine pedestal l during an earthquake.

囚に示すように、タービン架台l上部位置での地MK形
社、すなわち、タービン建屋とタービン架台間の相対変
位が大きくなっている。
As shown in the figure, the relative displacement between the turbine building and the turbine mount is large at the upper position of the turbine mount.

従来、タービン架台は、鉄筋コンクリート構造となって
いるが、荷重の増加に対しては鉄筋量を近い状態となっ
ている。従って、近年は、鉄筋せの増大に併ない、建設
工程増となる傾向にある。
Conventionally, the turbine frame has a reinforced concrete structure, but the amount of reinforcing steel is kept close to the amount required to cope with an increase in load. Therefore, in recent years, there has been a tendency for the construction process to increase as the number of reinforcing bars increases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術における問題点に対し、
上部架台と下部架台間に免震ゴムを設置し、かつ、それ
ら全一体に固定することにより、摩擦力の利用による地
震力の低減、建設工程の短縮全可能とした鋼製のタービ
ン架台を提供するものである。
An object of the present invention is to solve the problems in the prior art described above.
By installing seismic isolation rubber between the upper and lower mounts and fixing them all together, we provide a steel turbine mount that uses frictional force to reduce seismic force and shorten the construction process. It is something to do.

〔発明の概要〕[Summary of the invention]

本発明の要点は、従来の鉄筋コンクリートタービン架台
に対し、上部架台及び下部架台間に免震ゴムよりなる制
震装置を設置し、かつ、それらを一体に固定することに
より、従来の構造では強度上はぼ限界に近く、鉄筋量の
増大に伴なう建設工程の増大に対し工短を可能とし、経
済的な1%耐震型構造が可能となる点でめる。
The main point of the present invention is to install a seismic damping device made of seismic isolation rubber between the upper and lower frames of the conventional reinforced concrete turbine frame, and to fix them together. This method is close to the limit, making it possible to shorten the construction process due to an increase in the amount of reinforcing bars, and making it possible to create an economical 1% earthquake-resistant structure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

図において、8は上部摩擦板、1oは下部摩擦板、ll
は上部摩擦板8と下部摩擦板1(1一体固定させるボル
ト、12及び13は個々の角状鋼製物、14はグ2クト
注入用のグラウトホール、15はグラタト、9は角状鋼
製物の補強鋼板を示す。
In the figure, 8 is the upper friction plate, 1o is the lower friction plate, ll
are the upper friction plate 8 and the lower friction plate 1 (1 bolts for fixing them together, 12 and 13 are individual square steel products, 14 is a grout hole for grout injection, 15 is a grout, 9 is a square steel product) Shows the reinforced steel plate of the object.

第1図は、上部架台と下部架台間罠免震ゴム摩擦板)を
有した一実施例を示し、第2図は、摩擦板及びボルト接
合方法の一実施例を示す。上部架台は、複数個の鋼製物
を組み合わせることも可能であり、グラウトホール14
よりグラウト15i注入した構造となっているが、各々
の角状鋼製物は、鋼製物量を補強する鋼板9より構成さ
れている。
FIG. 1 shows an embodiment of the present invention having a seismic isolation rubber friction plate between the upper and lower mounts, and FIG. 2 shows an embodiment of the friction plate and bolt connection method. The upper frame can also be made of a combination of multiple steel products, and the grout hole 14
Although it has a structure in which grout 15i is injected, each square steel product is composed of a steel plate 9 that reinforces the steel product.

本発明は、以上のように構成でれるので、上部架台と下
部架台間において、ある限度以内の地震荷重に対しては
、摩擦力により強度上耐える構造とし、過大な地震荷重
に対しては、ボルトが破断し、かつ、摩擦力を超えるた
め横すべりする。従って、本構造においては、摩擦によ
り地震エネルギーを吸収するため、板厚全過大とするこ
となく、単純な構造とすることが出来る。¥罠材質金変
えることも可能となり、かつ、鋼製物を工場にてプレフ
ァブ加工し、現地ではボルト接合のみ行なえばよい構造
となるため、建設工程の短縮が可能となる。
Since the present invention is configured as described above, the structure is such that between the upper frame and the lower frame, the structure is strong enough to withstand earthquake loads within a certain limit due to frictional force, and the structure is strong enough to withstand earthquake loads that are within a certain limit. The bolt breaks and slides because it exceeds the frictional force. Therefore, in this structure, since seismic energy is absorbed by friction, it is possible to have a simple structure without increasing the total plate thickness. It is possible to change the material of the material, and the construction process can be shortened because the steel product is prefabricated at the factory and only needs to be bolted together on site.

に 又、本発明においては、上部架台内lラウドを注入して
いるが、これにより、タービン架台の剛性が増し、従っ
て、タービン架台の変形量が減少し、タービン架台とタ
ービン建屋間に発生する相対変位が低下するため、サポ
ート設計を含め、タービンと建屋間fI:渡っているク
ロスアラウンド管7等の設計が容易となる効果を有して
いる。
Furthermore, in the present invention, the loudness is injected into the upper pedestal, which increases the rigidity of the turbine pedestal and therefore reduces the amount of deformation of the turbine pedestal, which reduces the amount of deformation that occurs between the turbine pedestal and the turbine building. Since the relative displacement is reduced, it has the effect of facilitating the design of the cross-around pipe 7, etc. that spans the fI between the turbine and the building, including the support design.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記のように構成され作用するので、次の効
果を奏する事が出来る。
Since the present invention is configured and operates as described above, it can achieve the following effects.

(1)制震装置を有したタービン架台とする事により、
地震荷重が低減し、構造強度の向上が容易となる。
(1) By using a turbine mount equipped with a vibration damping device,
Earthquake loads are reduced, making it easier to improve structural strength.

(2)鋼製物を工場でプレファブ加工することによリ、
現地ではボルト接合のみ行なえばよい構造となるので、
建設工程の短縮が可能となる。
(2) By prefabricating steel products at a factory,
Since the structure only needs to be bolted together on-site,
The construction process can be shortened.

(3)調製物内にグ2つ)1−注入することにより、剛
性が増し、高耐震型のタービン架台となり、相対変位が
減少するため、タービン、発電機等に接続されている配
管の設計が容易となる。
(3) Two groups in the preparation) 1- By injecting, the rigidity increases, creating a highly earthquake-resistant turbine frame and reducing relative displacement, so design piping connected to turbines, generators, etc. becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1囚は本発明の一実施例を示すタービン架台断面図、
第2図は同じく本発明における摩擦板の組み合せ方法概
略図、第3図は従来のタービン発IE@廻りの立体図、
第4図はタービン建屋平面図、第5図は第4図のA−A
IFr面図、第6図は固有値解析によるタービン架台の
振動モードの説明図である。
The first figure is a sectional view of a turbine mount showing an embodiment of the present invention.
FIG. 2 is a schematic diagram of the method of combining friction plates according to the present invention, and FIG. 3 is a three-dimensional diagram of a conventional turbine generator IE@.
Figure 4 is a plan view of the turbine building, Figure 5 is A-A in Figure 4.
The IFr plane view and FIG. 6 are explanatory diagrams of vibration modes of the turbine mount based on eigenvalue analysis.

Claims (1)

【特許請求の範囲】[Claims] 1、上部架台及び下部架台よりなるタービン架台におい
て、上部架台及び下部架台を鋼製とし、両者の間に制震
装置を挿入し、かつ、両者を一体に結合するボルトから
構成され、摩擦力を利用することにより地震荷重を低減
し、鋼製化により建設工程短縮をも可能としたタービン
及びタービン発電機を設置することを特徴とするタービ
ン架台。
1. In a turbine frame consisting of an upper frame and a lower frame, the upper frame and the lower frame are made of steel, a damping device is inserted between the two, and bolts are used to connect the two together to reduce frictional force. A turbine mount on which a turbine and a turbine generator are installed, which reduces seismic loads by using it, and also shortens the construction process by making it made of steel.
JP18795284A 1984-09-10 1984-09-10 Turbine frame Pending JPS6166806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18795284A JPS6166806A (en) 1984-09-10 1984-09-10 Turbine frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18795284A JPS6166806A (en) 1984-09-10 1984-09-10 Turbine frame

Publications (1)

Publication Number Publication Date
JPS6166806A true JPS6166806A (en) 1986-04-05

Family

ID=16215037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18795284A Pending JPS6166806A (en) 1984-09-10 1984-09-10 Turbine frame

Country Status (1)

Country Link
JP (1) JPS6166806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905685A1 (en) 2006-09-29 2008-04-02 Atlas Copco Energas Gmbh Device and method for attaching a turbo engine to the floor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905685A1 (en) 2006-09-29 2008-04-02 Atlas Copco Energas Gmbh Device and method for attaching a turbo engine to the floor
JP2008089179A (en) * 2006-09-29 2008-04-17 Atlas Copco Energas Gmbh Floor-side mounting device and method for turbo machine

Similar Documents

Publication Publication Date Title
US4179104A (en) Mechanical attenuator
CN105821961A (en) T-shaped beam column connecting joint
CN108952290A (en) The energy-dissipating and shock-absorbing body structure at overhead only column station
CN114809277B (en) Assembled self-resetting prestressed concrete frame dual energy consumption node
CN110512761A (en) A kind of viscous friction composite damping wall
CN112049500B (en) Multistage damping flat beam-floor system based on solid spiral spring pin connection
JPS6166806A (en) Turbine frame
CN111749352A (en) Energy-consuming connecting device for assembly type shear wall
CN112032041A (en) Water pump installation device and construction method thereof
JP3093059B2 (en) Seismic isolation installation of building unit and unit building
JPH10317712A (en) Damping wall and construction method therefor
JPH0320562B2 (en)
JP2956546B2 (en) Seismic isolation structure
Iyengar et al. Composite floor system for Sears Tower
CN210460131U (en) Self-damping chassis of box-type house
JPH11200383A (en) Vibration-isolation supporting structure of structure-heavy installed article, etc.
CN118166937A (en) Anti-seismic prefabricated wall and construction method thereof
SU1193260A1 (en) Rigidity diaphragm of ferroconcrete skeleton of multistorey earthquake-proof building
Albermani Design verification of guyed transmission tower using nonlinear analysis
JP3779814B2 (en) Power generation equipment
JPH01306A (en) Steel mount for turbine
CN117345001A (en) Energy dissipation and shock absorption type reinforcing device and method for reinforced frame structure
CN115493786A (en) Tunnel end face construction simulation test bed and use method thereof
SU1381263A1 (en) Rigidity membrane of earthquake-proof structure
Nawrotzki Earthquake protection strategies for power plant equipment