JPS6166350A - Plasma focus device - Google Patents

Plasma focus device

Info

Publication number
JPS6166350A
JPS6166350A JP59186538A JP18653884A JPS6166350A JP S6166350 A JPS6166350 A JP S6166350A JP 59186538 A JP59186538 A JP 59186538A JP 18653884 A JP18653884 A JP 18653884A JP S6166350 A JPS6166350 A JP S6166350A
Authority
JP
Japan
Prior art keywords
insulator
temperature
plasma
focus device
plasma focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59186538A
Other languages
Japanese (ja)
Inventor
Yasuo Kato
加藤 靖夫
Yoshio Watanabe
渡辺 良男
Seiichi Murayama
村山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59186538A priority Critical patent/JPS6166350A/en
Priority to US06/772,692 priority patent/US4627086A/en
Publication of JPS6166350A publication Critical patent/JPS6166350A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/52Generating plasma using exploding wires or spark gaps

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To reduce fluctuation of X-ray strength by applying a means for stabilizing temperature of an insulator to a plasma focus device in which plasma is generated by creeping discharge of the insulator and making amount of gas adsorbed constant. CONSTITUTION:A plasma focus device is constructed by disposing a cylindrical anode 1 and a cathode 2 on a coaxial and insulating by an insulator 3 of glass etc, and accommodating them in a vessel 4 which is sealed by gas of neon and argon, and providing a fluid path 7 in the vicinity of the insulator 3 to circulate pure water and air and controlling the temperature of the insulator by a sensor such as a thermister. And high voltage pulse is provided between electrodes 1, 2 to generate plasma and to inject soft X-rays. Then, the temperature of the insulator 3 is stabilized to make the amount of gas adsorbed on the surface of the insulator 3 constant, and fluctuation of X-ray strength is largely reduced to improve reproduceability.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、絶縁物を介して同軸状に配置された陽極と陰
極を含む放電管にガスを充填し、これらの同軸状電極間
に高電圧パルスを印加して絶縁物の表面にプラズマを発
生し、同軸状電極先端の近傍にフォーカスして高温高密
度のプラズマを形成するプラズマフォーカス装置の改良
に関するもので、この放電管から放射される軟X線は1
例えば。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention involves filling a discharge tube including an anode and a cathode coaxially arranged with an insulator in between, and applying a high voltage between these coaxial electrodes. This relates to the improvement of a plasma focus device that applies pulses to generate plasma on the surface of an insulator and focuses it near the tip of a coaxial electrode to form high-temperature, high-density plasma. X-ray is 1
for example.

サブミクロンのIC(集積回路)を製造するX線露光装
置などの線源として用いられる。
It is used as a radiation source in X-ray exposure equipment and other equipment used to manufacture submicron ICs (integrated circuits).

〔発明の背景〕[Background of the invention]

この腫のプラズマフォーカス装置については。 Regarding the plasma focus device for this tumor.

J、W、Mather ”Methds of Exp
erin+ental Physics”Vol、9.
 Pt 8. pp、187〜199 (1971)、
 AcademicPressに述へられている。その
装置概要は次の通りである。2本の円筒状電極の一端を
ガラスなどの絶縁物で絶縁し、他端は開放のまま、同軸
状に配置して放電管に収納する。放電管には、一般には
水素、…水素等が充填されるが、X線を発生するために
は、ネオン、アルゴン、クリプトンなどを0.1〜IT
orr範囲の圧力に封入し、充電したコンデンサからパ
ルス電圧を印加して放電を起こさせる。パルス電圧が印
加されると、まず、絶縁物の表面で絶縁破壊が起こって
プラズマが発生する。
J. W. Mather “Methods of Exp.
erin+mental Physics"Vol, 9.
Pt8. pp, 187-199 (1971),
It is described in Academic Press. The outline of the device is as follows. One end of the two cylindrical electrodes is insulated with an insulator such as glass, and the other end is left open, arranged coaxially and housed in the discharge tube. A discharge tube is generally filled with hydrogen, etc., but in order to generate X-rays, neon, argon, krypton, etc.
The capacitor is sealed at a pressure in the orr range, and a pulse voltage is applied from the charged capacitor to cause discharge. When a pulse voltage is applied, dielectric breakdown occurs on the surface of the insulator and plasma is generated.

発生したプラズマは、電極間の電界と放電電流によって
生じる強い環状の磁界とから力を受けて。
The generated plasma receives force from the electric field between the electrodes and the strong annular magnetic field generated by the discharge current.

電極の開放端に向って走行し、電極の端を過ぎると、電
流の磁界によって中心軸上にフォーカスし。
It travels toward the open end of the electrode, and when it passes the end of the electrode, it is focused on the central axis by the magnetic field of the current.

高温高密度のプラズマを形成してX線を放射する。It forms high-temperature, high-density plasma and emits X-rays.

このような構成のプラズマフォーカス装置は。A plasma focus device with such a configuration.

構造が単純で、注入できるエネルギーの幅が広く。The structure is simple and the range of energy that can be injected is wide.

発生するX線の強度が強いために、すぐれたX線源とな
る可能性がある。
Because the intensity of the X-rays it generates is strong, it has the potential to be an excellent source of X-rays.

しかし、この種のプラズマフォーカス装置を。However, this kind of plasma focus device.

X線露光装置のxIQ源として使用する場合に、最大の
問題点は、放電ごとのX線出力の再現性に欠ける点にあ
る。特に前述の文献(194頁第13行目以降)にも記
述されているように、プラズマフォーカス装置における
はじめのガラス表面での放電の問題についてはほとんど
検討がなされていないのが実情である。
When used as an xIQ source for an X-ray exposure device, the biggest problem is the lack of reproducibility of the X-ray output for each discharge. In particular, as described in the above-mentioned document (page 194, line 13 onwards), the reality is that the problem of initial discharge on the glass surface in a plasma focus device has hardly been studied.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、絶縁物の表面でプラズマを発生させ、
これをフォーカスあるいはピンチして高温高密度のプラ
ズマを形成し、この高温高密度のプラズマが放射する軟
X線を利用するプラズマX線源などにおける。放電のた
びに生じるX線強度の変動を少なくすることのできるプ
ラズマフォーカス装置を提供することにある。
The purpose of the present invention is to generate plasma on the surface of an insulator,
This is focused or pinched to form high-temperature, high-density plasma, and the soft X-rays emitted by this high-temperature, high-density plasma are used in plasma X-ray sources. An object of the present invention is to provide a plasma focus device that can reduce fluctuations in X-ray intensity that occur each time a discharge occurs.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために9本発明では、プラズマフ
ォーカス装置の絶縁物表面の温度を一定にする手段が設
けられる。絶縁物表面の温度を一定にすることによって
2表面に吸着されるガスの量を一定とし、沿面放電によ
ってはじめに作られるプラズマの密度分布を一様、かつ
、一定にして。
In order to achieve the above object, the present invention provides means for keeping the temperature of the insulator surface of the plasma focus device constant. By keeping the temperature of the insulator surface constant, the amount of gas adsorbed on the two surfaces is kept constant, and the density distribution of the plasma initially created by creeping discharge is made uniform and constant.

放電の再現性を改善する6本発明は、プラズマフォーカ
ス放電管からのX線出力の再現性を阻害する原因を調べ
ているうちに、それが絶縁物の沿面放電に依存している
ことを見出したことから生まれたものである。
Improving the reproducibility of discharge 6 While investigating the cause of inhibiting the reproducibility of X-ray output from plasma focus discharge tubes, the present invention discovered that the cause was dependent on creeping discharge of the insulator. It was born out of that.

〔発明の実施例〕[Embodiments of the invention]

以下2本発明の一実施例を、第1図に示した。 The following two embodiments of the present invention are shown in FIG.

プラズマフォーカス放電管の断面図を用いて説明する。This will be explained using a cross-sectional view of a plasma focus discharge tube.

この放電管では2円筒状の陽極1とこれをとり囲む陰極
2とが同軸状に配置され9両電極はガラスなどで形成さ
れる絶縁物3によって絶縁されている。これらは容器4
に収められ、内部にネオン、アルゴン、クリプトンなど
のガスが9.1〜1Torrの圧力で充填される。陽極
1と陰極2間には、コンデンサ5が放電スイッチ6を介
して接続されている。放電スイッチ6が短絡されると。
In this discharge tube, two cylindrical anodes 1 and a cathode 2 surrounding them are arranged coaxially, and both electrodes are insulated by an insulator 3 made of glass or the like. These are container 4
The inside is filled with a gas such as neon, argon, or krypton at a pressure of 9.1 to 1 Torr. A capacitor 5 is connected between the anode 1 and the cathode 2 via a discharge switch 6. When the discharge switch 6 is short-circuited.

コンデンサ5に充電されている電圧が瞬時に両電極間に
印加され、まず絶縁物3の沿面で放電がはじまり、プラ
ズマが発生する。発生したプラズマのイオンと電子は、
電界と9両電極に挟まれた空間に放電電流によって作ら
れる環状の磁界から力を受けて電極に沿って電極開放端
に向って走行し。
The voltage charged in the capacitor 5 is instantaneously applied between both electrodes, and discharge begins on the surface of the insulator 3, generating plasma. The ions and electrons of the generated plasma are
It receives force from the electric field and the annular magnetic field created by the discharge current in the space between the two electrodes, and travels along the electrodes toward the open end of the electrodes.

電極の端を過ぎると磁界の圧力を受けてピンチし。When it passes the edge of the electrode, it is pinched by the pressure of the magnetic field.

陽極1の先端近傍の軸上に圧縮された高温高密度のプラ
ズマのホットスポットを形成して軟X線を放射する。
A hot spot of compressed high-temperature, high-density plasma is formed on the axis near the tip of the anode 1, and soft X-rays are emitted.

以上の構成において、はじめに絶縁物3の沿面放電によ
って作られるプラズマが種になって1両電極に挟まれた
空間に存在する原子を次々と電離し、相次いで発生する
プラズマが、電界と磁界の作用によってフォーカスする
。はじめに作られるプラズマの密度の分布が不均一であ
ったり2発生するプラズマの量が変化したりすると、そ
の後の放電の進行に変化が生じ、フォーカスするプラズ
マが軸からずれたり、プラズマの温度、密度が変動し、
放射されるX線の強度が変動することにな゛  る。本
発明は、X線強度が変動する原因を追求した結果、絶縁
物3の表面に吸着されるガスの量を一定にすることが、
X線強度の変動を低減するのに顕著な効果があることを
見出し、絶縁物3の温度を制御し、放電の時間間隔を規
則的にすることによってX線出力の安定化を実現するも
のである。
In the above configuration, first, the plasma created by the creeping discharge of the insulator 3 becomes a seed and ionizes the atoms existing in the space between the two electrodes one after another, and the plasma generated one after another is caused by the electric and magnetic fields. Focus by action. If the density distribution of the plasma initially created is uneven or the amount of plasma generated changes, the subsequent progress of the discharge will change, the focused plasma may shift from the axis, or the temperature and density of the plasma may change. fluctuates,
The intensity of the emitted X-rays will fluctuate. As a result of investigating the causes of fluctuations in X-ray intensity, the present invention found that it is possible to keep the amount of gas adsorbed on the surface of the insulator 3 constant.
It was discovered that this method has a remarkable effect on reducing fluctuations in X-ray intensity, and by controlling the temperature of the insulator 3 and regularizing the discharge time interval, it is possible to stabilize the X-ray output. be.

第1図の7は、絶縁物温度安定化の一実施例としての、
絶縁物3の近傍に配置される流体流路であり、この流体
流路7に、温度一定の液体、気体。
7 in FIG. 1 is an example of insulator temperature stabilization.
This is a fluid channel placed near the insulator 3, and a liquid or gas at a constant temperature is placed in this fluid channel 7.

あるいは適当な沸点を有する液体を循環させることによ
って、絶縁物3の温度を制御する。さらに高い安定度を
実現するには、温度測定用溝8に例えばサーミスタなど
のセンサを埋め込んで絶縁物3の温度を開定し、流体流
路7内を循環する液体または気体の流量を制御する。循
環させる液体あるいは気体としては、純水、空気、フレ
オン、液体窒素などが使用できる。
Alternatively, the temperature of the insulator 3 is controlled by circulating a liquid having an appropriate boiling point. To achieve even higher stability, a sensor such as a thermistor is embedded in the temperature measurement groove 8 to determine the temperature of the insulator 3 and control the flow rate of the liquid or gas circulating in the fluid flow path 7. . As the liquid or gas to be circulated, pure water, air, Freon, liquid nitrogen, etc. can be used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように1本発明によれば、絶縁物の沿面放電
によって最初にプラズマを発生させる方式のプラズマフ
ォーカス装置において、絶縁物の温度を安定化し放電の
時間間隔を規則的にすることによって、プラズマから放
射するX線強度の変動を大幅に低減することが可能であ
る。
As described above, according to one aspect of the present invention, in a plasma focus device that first generates plasma by creeping discharge of an insulator, by stabilizing the temperature of the insulator and regularizing the time intervals of discharge, It is possible to significantly reduce fluctuations in the intensity of X-rays emitted from the plasma.

具体的な効果例を挙げると、充填ガスにネオンを用いて
繰返し放電を行った場合に所定の値より強いX線強度が
得られる確率が9本発明を実施しないとき50%以下で
あったが、同じ条件で本発明の温度安定化及び放電時間
間隔を規則的にしたことにより、80%以上に改善され
た。
To give a specific example of the effect, the probability of obtaining an X-ray intensity stronger than a predetermined value when repeatedly discharging using neon as the filling gas was less than 50% when the present invention was not implemented. , by regularizing the temperature stabilization and discharge time intervals of the present invention under the same conditions, the improvement was over 80%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図である。 〈符号の説明〉 FIG. 1 is a sectional view showing one embodiment of the present invention. <Explanation of symbols>

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁物を介して同軸状に配置された陽極と陰極を
含む放電管にガスを充填し、前記同軸状電極間に高電圧
パルスを印加して前記絶縁物の表面にプラズマを発生し
、同軸状電極先端の近傍にフォーカスして高温高密度の
プラズマを形成するプラズマフォーカス装置において、
前記絶縁物の温度を安定化する手段を有することを特徴
とするプラズマフォーカス装置。
(1) A discharge tube including an anode and a cathode arranged coaxially through an insulator is filled with gas, and a high voltage pulse is applied between the coaxial electrodes to generate plasma on the surface of the insulator. , in a plasma focus device that forms high-temperature, high-density plasma by focusing near the tip of a coaxial electrode.
A plasma focus device comprising means for stabilizing the temperature of the insulator.
(2)前記電極間に印加する高電圧パルスが、 定の時
間間隔で印加される高電圧パルスであることを特徴とす
る特許請求の範囲第1項記載のプラズマフォーカス装置
(2) The plasma focus device according to claim 1, wherein the high voltage pulse applied between the electrodes is a high voltage pulse applied at regular time intervals.
(3)前記絶縁物温度安定化手段が、前記絶縁物の近傍
に配置される流体流路と、この流路内にほぼ一定温度の
流体を循環させる流体循環手段とを備えてなる絶縁物温
度安定化手段であることを特徴とする特許請求の範囲第
1項あるいは第2項に記載のプラズマフォーカス装置。
(3) The insulator temperature stabilizing means includes a fluid flow path disposed near the insulator, and a fluid circulation means for circulating a fluid at a substantially constant temperature within the flow path. The plasma focus device according to claim 1 or 2, characterized in that it is a stabilizing means.
(4)前記絶縁物温度安定化手段が、前記絶縁物の近傍
に配置される流体流路と、この流路内に流体を循環させ
る手段と、前記絶縁物の温度を検出する温度センサと、
この検出温度に応じて前記流体流路内に流す流体の流量
あるいは温度を制御する手段とを備えてなる絶縁物温度
安定化手段であることを特徴とする特許請求の範囲第1
項あるいは第2項に記載のプラズマフォーカス装置。
(4) The insulator temperature stabilizing means includes a fluid flow path disposed near the insulator, a means for circulating fluid in the flow path, and a temperature sensor that detects the temperature of the insulator;
Claim 1: An insulator temperature stabilizing means comprising means for controlling the flow rate or temperature of the fluid flowing into the fluid flow path in accordance with the detected temperature.
The plasma focus device according to item 1 or 2.
JP59186538A 1984-09-07 1984-09-07 Plasma focus device Pending JPS6166350A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59186538A JPS6166350A (en) 1984-09-07 1984-09-07 Plasma focus device
US06/772,692 US4627086A (en) 1984-09-07 1985-09-05 Plasma X-ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186538A JPS6166350A (en) 1984-09-07 1984-09-07 Plasma focus device

Publications (1)

Publication Number Publication Date
JPS6166350A true JPS6166350A (en) 1986-04-05

Family

ID=16190245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186538A Pending JPS6166350A (en) 1984-09-07 1984-09-07 Plasma focus device

Country Status (1)

Country Link
JP (1) JPS6166350A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348733A (en) * 1986-08-14 1988-03-01 Nichicon Corp X-ray generator
JP2004504706A (en) * 2000-07-04 2004-02-12 ランブダ フィジク アクチェンゲゼルシャフト Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
CN112839422A (en) * 2020-12-15 2021-05-25 成都金创立科技有限责任公司 Insulation structure for multi-pole plasma generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348733A (en) * 1986-08-14 1988-03-01 Nichicon Corp X-ray generator
JP2004504706A (en) * 2000-07-04 2004-02-12 ランブダ フィジク アクチェンゲゼルシャフト Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
JP4880179B2 (en) * 2000-07-04 2012-02-22 エクストリーム テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
CN112839422A (en) * 2020-12-15 2021-05-25 成都金创立科技有限责任公司 Insulation structure for multi-pole plasma generator

Similar Documents

Publication Publication Date Title
Van Tilborg et al. Nonuniform discharge currents in active plasma lenses
US7679027B2 (en) Soft x-ray laser based on z-pinch compression of rotating plasma
Miller et al. Electron beam generation in plasma-filled diodes
Graybill et al. OBSERVATIONS OF MAGNETICALLY SELF‐FOCUSING ELECTRON STREAMS
JPH0542098B2 (en)
Kaganovich et al. Investigations of double capillary discharge scheme for production of wave guide in plasma
Sato et al. Kilohertz‐range flash x‐ray generator utilizing a triode in conjunction with an extremely hot cathode
Akishev et al. On the mechanism of maintenance and instability of the overvoltage low-pressure discharge forming a high-current runaway electron beam
JPS6166350A (en) Plasma focus device
US4627086A (en) Plasma X-ray source
Yeung et al. An RF probe technique for the measurement of plasma electron concentrations in the presence of negative ions
Nashilevskiy et al. A high repetition rate electron accelerator with a water Blumlein and a matching transformer
Korolev et al. Transient processes during an initial stage of breakdown in saline solution
Wester et al. Theoretical and experimental investigations of the filamentation of high-frequency excited CO2 laser discharges
Ahmad et al. Comparative study of X-ray emission from plasma focus relative to different preionization schemes
Steyer Discharge kinetics and emission characteristics of a large-area-cold cathode flash X-ray tube: parametric study and numerical modelling
Suprunenko et al. An investigation of electromagnetic radiation from the plasma of a linear high-current discharge
Yudin et al. Formation of a high-frequency discharge in the active metal vapor laser medium
Halsted et al. Electrostatic and Magnetic Pinch Effects in Beam‐Generated Plasmas
US5048068A (en) Magnetically operated pulser
Ahmada et al. Comparative Study of X-Ray Emission from Plasma Focus Relative to Different Preionization Schemes1
McArthur et al. Pumping of high‐pressure CO2 laser media via a fast‐burst reactor and electrical sustainer
Chepusov et al. Investigation of Annular Explosive-Emission Cathodes of the Conductor–Insulator Structure
Hsu et al. A high‐power electron beam source based on the superemissive cathode
Sakagami et al. Experimental Study on Backward Wave Oscillators Using Dielectric Discharge Cold Cathodes