JPS6165877A - Hydroxylactone - Google Patents

Hydroxylactone

Info

Publication number
JPS6165877A
JPS6165877A JP59187153A JP18715384A JPS6165877A JP S6165877 A JPS6165877 A JP S6165877A JP 59187153 A JP59187153 A JP 59187153A JP 18715384 A JP18715384 A JP 18715384A JP S6165877 A JPS6165877 A JP S6165877A
Authority
JP
Japan
Prior art keywords
formula
methyl
represented
solution
give
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59187153A
Other languages
Japanese (ja)
Inventor
Seiichi Takano
誠一 高野
Kuniro Ogasawara
国郎 小笠原
Masamichi Morimoto
政道 森本
Shigeki Sato
茂樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisho Pharmaceutical Co Ltd
Original Assignee
Taisho Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisho Pharmaceutical Co Ltd filed Critical Taisho Pharmaceutical Co Ltd
Priority to JP59187153A priority Critical patent/JPS6165877A/en
Publication of JPS6165877A publication Critical patent/JPS6165877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)

Abstract

NEW MATERIAL:A hydroxylactone shown by the formula I (R1 is methyl, or 4-methyl-3-pentenyl; R2 is 3-methyl-2-butenyl when R1 is methyl, and R2 is H when R1 is 4-methyl-3-pentenyl). USE:Useful as a raw material for synthesizing perylene or rosefuran. Capable of producing industrially perylene or rosefuran useful as perfume, etc. without producing position isomers. PREPARATION:For example, beta-methallyl alcohol is reacted with n-butyl lithium in the presence of excess N,N,N,N-tetramethylethylene-diamine to give a lithium derivative of beta-methallyl alcohol, this lithium derivative is reacted with 3,3- dimethylallyl chloride to give a compound shown by the formula II. Then, the compound shown by the formula II is oxidized, refluxed with sodium cyanide to give a reaction product shown by the formula III, which is dehydrated and subjected to ring closure to give a compound shown by the formula I.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、第1式 (ただし、前記第1式中、R1はメチル基および4−メ
チル−3−埒ンテニル基のいずれかを示し、R2は、R
1がメチル基のとき3−メチル−2−ブテニル基であり
、R1が4−メチル−3−ペンテニル基のとき水素原子
である。)で示されるヒドロキシラクトン類に関し、さ
らに詳しく言うと、たとえばペリレンやローズフランの
合成に有用な原料としての、前記第1式で示されるヒド
ロキシラクトン類に関する。
Detailed Description of the Invention [Industrial Application Field] This invention relates to a compound of the first formula (wherein R1 represents either a methyl group or a 4-methyl-3-bentenyl group, R2 is R
When 1 is a methyl group, it is a 3-methyl-2-butenyl group, and when R1 is a 4-methyl-3-pentenyl group, it is a hydrogen atom. ), and more specifically, the present invention relates to hydroxylactones represented by Formula 1, which are useful raw materials for the synthesis of perylene and rosefuran, for example.

[従来の技術] 3位あるいは2位および3位に置換基を有するフラン類
は天然に広く分布している。たとえば、第2式で示され
るところの3位に置換基を有するフランすなわちペリレ
ンは動植物から単離される。
[Prior Art] Furans having substituents at the 3-position or the 2- and 3-positions are widely distributed in nature. For example, furan or perylene having a substituent at the 3-position as shown in formula 2 is isolated from plants and animals.

また、第3式で示されるところの2位および3位に置換
基を有するフランすなわちローズフランはブルガリアロ
ーズから単離される。
Furthermore, furan having substituents at the 2- and 3-positions as shown in formula 3, ie rose furan, is isolated from Bulgarian rose.

前記ペリレンやローズフランはたとえば香料等に有用で
あるので、その合成法の確立が望まれていて、その合成
法としては、第4式および第5式で示されるフラノブテ
ノリドからの還元による方法が報告されている[D、 
 R,Gerlge  et  al、Tetrahe
dron  Lett、、(1977) 、 4443
] 。
Since the above-mentioned perylene and rosefuran are useful, for example, in fragrances, it is desired to establish a method for synthesizing them. As a method for synthesizing them, a method by reduction from furanobutenolide shown in formulas 4 and 5 has been reported. has been [D,
R., Gerlge et al., Tetrahe
Dron Lett, (1977), 4443
].

H3 [発明が解決しようとする問題点] 前記報文によるローズフラン等の合成では、4−メチル
−(5H)−フラン−2−オンを出発[料にして側鎖の
ジメチルアリル基を導入するのであるが、位置異性体を
副生じて目的前駆体の収率が低く、しかも目的前駆体の
分離精製が困難である。
H3 [Problems to be solved by the invention] In the synthesis of rosefuran etc. according to the above-mentioned report, 4-methyl-(5H)-furan-2-one is used as a starting material and a dimethylallyl group in the side chain is introduced. However, positional isomers are produced as by-products, resulting in a low yield of the desired precursor, and furthermore, it is difficult to separate and purify the desired precursor.

[問題点を解決するための手段] この発明者らは、前記事情に基づき、前記第4式および
第5式で示されるフラノブテノリドを収率良く、しかも
副生物のない単一物として合成することのできるヒドロ
キシラクトン類を合成することができることを見出して
この発明に到達した。
[Means for Solving the Problems] Based on the above circumstances, the inventors aimed to synthesize the furanobutenolides represented by the fourth and fifth formulas in a high yield and as a single product without by-products. The present invention was achieved by discovering that it is possible to synthesize hydroxylactones that have the following properties.

この発明に係る、前記第1式で示されるヒドロキシチク
トン類は、さらに次の第6式および第7式で示すことが
でき、いずれも新規な化合物である。
The hydroxytictones represented by the first formula according to the present invention can be further represented by the following formulas 6 and 7, both of which are novel compounds.

(以下余白) この発明に係るヒドロキシラクトン類は、いずれもメタ
リルアルコールを出発原料にして次のようにして合成す
ることができる。すなわち、第6式で示されるヒドロキ
シラクトンを合成する場合、先ず、過剰のN、N、N、
N−テトラメチルエチレンジアミンの存在下にβ−メタ
リルアルっ−ルとn−ブチルリチウムとを反応させてβ
−メタリルアルコールのリチウム化物を得、このリチウ
ム化物に3,3−ジメチルアリルクロライドを反応させ
ることにより、第8式で示されるアリルアルコール誘導
体を得る。
(The following is a blank space) The hydroxylactones according to the present invention can all be synthesized using methallyl alcohol as a starting material in the following manner. That is, when synthesizing the hydroxylactone represented by the sixth formula, first, excess N, N, N,
β-methallyl alcohol and n-butyllithium are reacted in the presence of N-tetramethylethylenediamine to form β
- Obtaining a lithiated product of methallyl alcohol, and reacting this lithiated product with 3,3-dimethylallyl chloride to obtain an allyl alcohol derivative represented by Formula 8.

また、第7式で示されるヒドロキシラクトンを合成する
場合、β−メタリルアルコールをたとえばジフェニルジ
スルフィド(1,5当量)およびトリーn−ブチルホス
フィン(1,1当量、ピリジン溶液、0℃)で処理して
第9式で示されるスルフィド化合物を得、次いでこのス
ルフィド化合物をn−ブチルリチウム(1,1当量、テ
トラハイドロフラン溶液、−78℃)の存在下に3,3
−ジメチルアリルクロライドと処理して第10式で示さ
れる化合物を得る。
In addition, when synthesizing the hydroxylactone represented by formula 7, β-methallyl alcohol is treated with, for example, diphenyl disulfide (1,5 equivalents) and tri-n-butylphosphine (1,1 equivalents, pyridine solution, 0°C). to obtain a sulfide compound represented by formula 9, and then this sulfide compound was 3,3
-dimethylallyl chloride to obtain a compound of formula 10.

(ただし、第9式および第10式中phはフェニル基を
示す、) この第1O式で示される化合物を、たとえばm−クロロ
過安息香酸(1,0当量、塩化メチレン溶液、−20℃
)等の過酸化物で酸化すると、第11式で示されるスル
ホキシド化合物が生成し、このスルホキシド化合物をた
とえばトリエチルホスファイトあるいはジエチルアミン
と処理すると第12式で示されるアリルアルコール化合
物が得られる。
(However, in the 9th and 10th formulas, ph represents a phenyl group.) The compound represented by this 1st formula, for example, m-chloroperbenzoic acid (1.0 equivalent, methylene chloride solution, -20°C
) etc., a sulfoxide compound represented by formula 11 is produced, and when this sulfoxide compound is treated with, for example, triethyl phosphite or diethylamine, an allyl alcohol compound represented by formula 12 is obtained.

第12式で示されるアリルアルコール化合物と第8式で
示されるアリルアルコール化合物とは異性体関係にある
The allyl alcohol compound represented by the 12th formula and the allyl alcohol compound represented by the 8th formula have an isomer relationship.

H3 第8式および第12式で示されるアリルアルコール化合
物はいずれも同様の方法によりヒドロキシラクトンに変
換される。
H3 Allyl alcohol compounds represented by formulas 8 and 12 are converted to hydroxylactone by the same method.

すなわち、第8式で示されるアリルアルコール化合物を
例にとると、先ず、第8式で示されるアリルアルコール
化合物は、たとえばバナジルアセチルアセトナート(2
モル%、塩化メチレン溶液、0℃)の存在下にt−ブチ
ルハイドロパーオキサイド(2,0当量)で酸化して、
第13式で示されるエポキシド化合物とする0次いで、
このエポキシド化合物をエタノール中でシアン化ナトリ
ウム(5,C1量)と共に16時間還流すると、ペイン
(Payne )転位を伴なった一連の反応により、第
14式で示されるジヒドロキシカルボン酸第14式で示
されるこのジヒドロキシカルボン酸化合物をトルエン中
で共沸的に還流すると、脱水、閉環して、第6式で示さ
れるヒドロキシラクトンが得られる。
That is, taking the allyl alcohol compound represented by the 8th formula as an example, first, the allyl alcohol compound represented by the 8th formula is, for example, vanadyl acetylacetonate (2
mol%, methylene chloride solution, 0 °C) with t-butyl hydroperoxide (2,0 eq.),
The epoxide compound represented by formula 13 is then 0,
When this epoxide compound was refluxed with sodium cyanide (5, C1 amount) in ethanol for 16 hours, a series of reactions accompanied by Payne rearrangement resulted in the dihydroxycarboxylic acid represented by Formula 14. When this dihydroxycarboxylic acid compound is azeotropically refluxed in toluene, it undergoes dehydration and ring closure, yielding a hydroxylactone represented by Formula 6.

同様にして、第12式で示されるアリルアルコール化合
物も、過酸化物で酸化して第15式で示されるエポキシ
ド化合物とし、このエポキシド化合物をたとえばアルコ
ール中でシアン化合物と共に加熱することにより、ペイ
ン転位、シアノ基の導入、加水分解を経て、第16式で
示されるジヒドロキシカルボン酸化合物を得、このジヒ
ドロキシカルボン酸化合物を脱水、閉環することにより
、第7式で示されるヒドロキシラクトンが得らこのよう
にして得られるヒドロキシラクトン類は、簡単な脱水反
応により容易に、しかも位置異性体の副生を生じること
なく第4式および第5式で示されるフラノブテノリドに
変換することができ、これらのフラノブテノリドは既述
のように還元反応により容易にペリレンおよびローズフ
ランにほぼ定量的に誘導することができる。したがって
、この発明に係るヒドロキシラクトン類は、ペリレンお
よびローズフランの合成に有用な原料であり、またこの
発明に係るヒドロキシフラン類は、β−メタリルアルコ
ールから誘導することができるので、ペリレンおよびロ
ーズフランの工業的生産を可能とすることができる。
Similarly, the allyl alcohol compound represented by the 12th formula is oxidized with a peroxide to form the epoxide compound represented by the 15th formula, and this epoxide compound is heated together with a cyanide compound in alcohol to undergo the Payne rearrangement. Through the introduction of a cyano group and hydrolysis, a dihydroxycarboxylic acid compound represented by the 16th formula is obtained, and by dehydrating and ring-closing this dihydroxycarboxylic acid compound, a hydroxylactone represented by the 7th formula is obtained. The hydroxylactones obtained can be easily converted into furanobutenolides represented by formulas 4 and 5 by a simple dehydration reaction without producing positional isomer by-products, and these furanobutenolides are As mentioned above, perylene and rosefuran can be easily derived almost quantitatively by reduction reaction. Therefore, the hydroxylactones according to the present invention are useful raw materials for the synthesis of perylene and rosefuran, and since the hydroxyfurans according to the present invention can be derived from β-methallyl alcohol, perylene and rosefuran are useful. Industrial production of francs can be made possible.

[実施例] 次に、参考例および実施例を挙げてこの発明をさらに具
体的に説明する。
[Example] Next, the present invention will be explained in more detail by referring to Reference Examples and Examples.

(参考例1) 第12式で示されるアリルアルコール化合物の合成。(Reference example 1) Synthesis of allyl alcohol compound represented by Formula 12.

β−メタリルアルコール7.2g(0,1厘of )と
トリーn−ブチルホスフィン30.35 g (0,1
5mat )とジフェニルジスルフィド32.7g(0
,15mol )とを含むピリジン溶液を、室温下に1
時間15分撹拌した。撹拌後、ピリジンを減圧下に溜去
し、得られた残渣にジエチルエーテルを加え、10%塩
酸、10%苛性ソーダ水溶液、水および飽和食塩水で、
この順に洗浄操作した。
β-methallyl alcohol 7.2 g (0.1 l) and tri-n-butylphosphine 30.35 g (0.1 l)
5 mat ) and diphenyl disulfide 32.7 g (0
, 15 mol) at room temperature.
The mixture was stirred for 15 minutes. After stirring, pyridine was distilled off under reduced pressure, diethyl ether was added to the resulting residue, and the mixture was diluted with 10% hydrochloric acid, 10% aqueous sodium hydroxide solution, water and saturated brine.
Washing operations were performed in this order.

洗浄後、硫醜マグネシウムで乾燥し、溶媒を減圧下に溜
去した。得られた残渣を蒸留すると、bp=125〜1
31℃で、第9式で示されるスルフィドが68%の収率
で得られた。
After washing, it was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. When the obtained residue is distilled, bp=125~1
At 31°C, the sulfide represented by formula 9 was obtained in a yield of 68%.

次いで、前記スルフィド500B(3,05mmol 
)を含むテトラハイドロフラン溶液5mlに、−78℃
に冷却しながら、n−ブチルリチウムの10%n−ヘキ
サン溶液を滴下し、5分間撹拌した0次いで、同温度で
3,3−ジメチルアリルクロライド627 mg (6
,1mmol )のテトラハイドロフラン溶液5mlを
滴下し、25分間撹拌した後、室温に戻し、35分間撹
拌して生成液を得た。この生成液に飽和炭酸水素ナトリ
ウム水溶液を加え、次いでジエチルエーテルで希釈し、
得られる有機層を飽和食塩水で洗浄後、硫酸マグネシウ
ムで乾燥した。乾燥後、溶媒を減圧下に溜去して第10
式で示される化合物870mgを得た。
Next, the sulfide 500B (3.05 mmol
) in 5 ml of tetrahydrofuran solution at -78°C.
A 10% n-hexane solution of n-butyllithium was added dropwise while cooling to 0.05%, and the mixture was stirred for 5 minutes. Then, at the same temperature, 627 mg (627 mg
, 1 mmol) in tetrahydrofuran was added dropwise thereto, and after stirring for 25 minutes, the mixture was returned to room temperature and stirred for 35 minutes to obtain a product liquid. A saturated aqueous sodium hydrogen carbonate solution was added to this product solution, then diluted with diethyl ether,
The resulting organic layer was washed with saturated brine and then dried over magnesium sulfate. After drying, the solvent was distilled off under reduced pressure and the 10th
870 mg of the compound represented by the formula was obtained.

第10式で示される化合物7.07g (30,47m
mol)の塩化メチレン溶液100m1に炭酸水素ナト
リウム12.8 g (152,4mmol )を加え
、食塩−氷で冷却しながら、m−クロロ過安息香酸5.
26gを加えた。同温度に冷却しながら25分間撹拌し
て生成液を得た。この生成液に2%のチオ硫酸ソーダ水
溶液を加えて、有機層を分取し、′この有機層に水およ
び飽和食塩水で洗浄操作した後、この有機層を硫酸マグ
ネシウムで乾燥した。
Compound 7.07g (30.47m
12.8 g (152.4 mmol) of sodium hydrogen carbonate was added to 100 ml of methylene chloride solution of 5.0 mol) of m-chloroperbenzoic acid while cooling with salt-ice.
Added 26g. A product liquid was obtained by stirring for 25 minutes while cooling to the same temperature. A 2% aqueous solution of sodium thiosulfate was added to the resulting solution, and the organic layer was separated. After washing the organic layer with water and saturated brine, the organic layer was dried over magnesium sulfate.

乾燥後、この有機層から溶媒を溜去し、得られる残渣を
、シリカゲルカラムクロマトグラフィーに付して、ジエ
チルエーテル/n−ヘキサン(l:4、V/V)の溜升
から第11式で示されるスルホキシド化合物3.63g
を得た。
After drying, the solvent was distilled off from this organic layer, and the resulting residue was subjected to silica gel column chromatography, and the residue was purified from a diethyl ether/n-hexane (l:4, V/V) distillate using Equation 11. 3.63g of the sulfoxide compound shown
I got it.

このスルホキシド化合物1.00 g (4,03mm
al)のメタノール溶液20m1に、ジエチルアミ70
.885 g (12,1mmal )を加え、10時
間加熱還流した。得られた生成液から溶媒を減圧下に溜
去し、残渣をジエチルエーテルで希釈した。このジエチ
ルエーテル溶液を、2%塩酸、水、15%苛性ソーダ水
溶液、水、飽和食塩水でこの順に洗浄操作した。洗浄後
、有a層を硫酸マグネシウムで乾燥した後、溶媒を溜去
して残渣を得た。この残渣を、シリカゲルカラムクロマ
トグラフィーに付し、ジエチルエーテル/n−ヘキサン
(1:6、V/V)の溜升から表題のアリルアルコール
化合物を740B得た。
This sulfoxide compound 1.00 g (4.03 mm
al) to 20ml of methanol solution, add 70ml of diethylamine.
.. 885 g (12.1 mmal) was added and heated under reflux for 10 hours. The solvent was distilled off from the resulting product solution under reduced pressure, and the residue was diluted with diethyl ether. This diethyl ether solution was washed with 2% hydrochloric acid, water, 15% aqueous sodium hydroxide solution, water, and saturated saline in this order. After washing, the a-layer was dried with magnesium sulfate, and then the solvent was distilled off to obtain a residue. This residue was subjected to silica gel column chromatography, and the title allyl alcohol compound 740B was obtained from a distillate of diethyl ether/n-hexane (1:6, V/V).

IR(y、c+a−1)  3600.3420.13
70.99O NMR(δ、 ppm ) 1.58 (IH%S)1
.60 (3H,S) 1.70 (6H,5X2) 2.72 (2H,dd、 J = 6 X 6 Hz) 3.82〜4.02 (2H,m) 4.92〜5.20 (LH,m) 5.20〜5.50 (LH,m) (参考例?) 第15式で示されるエポキシド化合物の合成。
IR(y,c+a-1) 3600.3420.13
70.99O NMR (δ, ppm) 1.58 (IH%S)1
.. 60 (3H, S) 1.70 (6H, 5X2) 2.72 (2H, dd, J = 6 , m) 5.20-5.50 (LH, m) (Reference example?) Synthesis of an epoxide compound represented by Formula 15.

参考例1で合成したアリルアルコール化合物200mg
 (1,43mmol ) (7)塩化メチレン溶液1
0m1に、バナジルアセチルアセトナート7、6 mg
の塩化メチレン溶液(濃度;2mo1%)を加え、次い
で水冷下に、2.86 mmolのt−ブチルハイドロ
パーオキサイドを有する塩化メチレン溶液1.41m1
を加え、しかる後、室温で3.5時間撹拌して生成液を
得た。
200 mg of allyl alcohol compound synthesized in Reference Example 1
(1,43 mmol) (7) Methylene chloride solution 1
0ml of vanadyl acetylacetonate 7.6 mg
of methylene chloride solution (concentration: 2 mo1%) was added, and then, under water cooling, 1.41 ml of a methylene chloride solution containing 2.86 mmol of t-butyl hydroperoxide was added.
was added, and then stirred at room temperature for 3.5 hours to obtain a product liquid.

この生成液に8%亜硫酸ソーダ水溶液を加えた後、有機
層を分取し、飽和食塩水で洗浄し、硫酸マグネシウムで
乾燥した。溶媒の溜去後、シリカゲルカラムクロマトグ
ラフィーに付してジエチルエーテル/n−ヘキサン(l
:2、V/V)の溜升から表題のエポキシド化合物を8
5%の収率で得た。
After adding an 8% aqueous sodium sulfite solution to the resulting solution, the organic layer was separated, washed with saturated brine, and dried over magnesium sulfate. After distilling off the solvent, it was subjected to silica gel column chromatography to extract diethyl ether/n-hexane (l
: 2, V/V) from a distillate of 8
Obtained with a yield of 5%.

IR(y、cm−’)3400.1440.1370.
1010 35N (δ、ppm ) 1.33 (3H,S)1
.66 (3H,S) 1.73 (3H,S) 1.92〜2.53 (3H,m) 3.03 (IH,t、J=7Hz) 3.63 (2H,br、 S) 4.9.2〜5.40 (IH,m) (実施例1) 第7式で示されるヒドロキシラクトンの合成。
IR (y, cm-') 3400.1440.1370.
1010 35N (δ, ppm) 1.33 (3H,S)1
.. 66 (3H, S) 1.73 (3H, S) 1.92-2.53 (3H, m) 3.03 (IH, t, J=7Hz) 3.63 (2H, br, S) 4. 9.2-5.40 (IH, m) (Example 1) Synthesis of hydroxylactone represented by formula 7.

参考例2で得たエポキシド化合物150B(0,962
mmal )を含水エタノール[エタノール/水=2/
3、V/V]12m1に溶解し、この溶液にシアン化ナ
トリウム236mgを加え、7時間加熱還流した。減圧
下にエタノールを溜去し、得られた残渣に濃塩酸を加え
てpl(を1〜2に調整した後、塩化メチレンで抽出操
作をした。抽出液を飽和食塩水で洗浄した後、硫酸マグ
ネシウムで乾燥し、溶媒を減圧下に溜去した。得られた
残液をトルエン251に溶解し、これを6時間加熱還流
した。得られた生成液をジエチルエーテルで希訳し、飽
和炭酸水素ナトリウム水溶液および飽和食塩水でこの順
に洗浄後、硫酸マグネシウムで乾燥し、溶媒を減圧下に
溜去した。得られた残渣をシリカゲルカラムクロマトグ
ラフィーに付し、ジエチルエーテル/n−ヘキサン(1
:1、V/V)の溜升から、表題のヒドロキシラクトン
を、無色油状物として56%の収率で得た。
Epoxide compound 150B (0,962
mmal) and water-containing ethanol [ethanol/water = 2/
3, V/V], 236 mg of sodium cyanide was added to this solution, and the mixture was heated under reflux for 7 hours. Ethanol was distilled off under reduced pressure, and concentrated hydrochloric acid was added to the resulting residue to adjust the PL to 1 to 2, followed by extraction with methylene chloride.The extract was washed with saturated brine, and then extracted with sulfuric acid. It was dried over magnesium, and the solvent was distilled off under reduced pressure.The obtained residual liquid was dissolved in toluene 251, and this was heated under reflux for 6 hours.The obtained product liquid was diluted with diethyl ether, and saturated sodium hydrogen carbonate was added. After washing with an aqueous solution and a saturated saline solution in this order, it was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure.The obtained residue was subjected to silica gel column chromatography, and diethyl ether/n-hexane (1
:1, V/V), the title hydroxylactone was obtained as a colorless oil in 56% yield.

IR(y、cm−1)  3350.176ONMR(
δ、ppm ) 1.36 (3H,S)1.66  
(3H,S) 1.73  (3H,S) 2.01〜2.56  (2H,m) 2.59  (2H,S) 2.73  (IH,br、S) 4.34  (IH,dd、  J=8X6 Hz) 5.00〜5.43  (IH,m) (実施例2) 第5式で示されるフラノブテノリドの合成。
IR(y, cm-1) 3350.176ONMR(
δ, ppm) 1.36 (3H,S) 1.66
(3H,S) 1.73 (3H,S) 2.01~2.56 (2H,m) 2.59 (2H,S) 2.73 (IH,br,S) 4.34 (IH,dd , J=8X6 Hz) 5.00-5.43 (IH, m) (Example 2) Synthesis of furanobutenolide represented by formula 5.

前記実施例1で合成したヒドロキシラクトン100mg
 (0,53m+wol )を塩化メチレン5】1に溶
解し、得られた溶液に、水冷下でトリエチルアミン0.
27ml (1,96mmol )およびメタンスルホ
ニルクロリド0.076ml (0,978mmol 
)を加えた。その後、室温で3.5時間撹拌した。得ら
れた生成液を塩化メチレンで希釈し、水、5%塩酸、飽
和炭酸水素ナトリウム水溶液および飽和食塩水で、この
順に洗浄操作し、その後、硫酸マグネシウムで乾燥した
。乾f#後、減圧下に溶媒を溜去して、得られた残渣を
シリカゲルカラムクロマトグラフィーに付し、ジエチル
エーテル/n−ヘキサン(l:3、V/V)の溜升から
定量的に表−の化合物を得た。
100 mg of hydroxylactone synthesized in Example 1 above
(0.53 m+wol) was dissolved in 5.1 methylene chloride, and 0.0.
27 ml (1,96 mmol) and methanesulfonyl chloride 0.076 ml (0,978 mmol
) was added. Thereafter, the mixture was stirred at room temperature for 3.5 hours. The resulting product solution was diluted with methylene chloride, washed in this order with water, 5% hydrochloric acid, saturated aqueous sodium bicarbonate solution and saturated brine, and then dried over magnesium sulfate. After drying, the solvent was distilled off under reduced pressure, the resulting residue was subjected to silica gel column chromatography, and quantitatively extracted from a diethyl ether/n-hexane (l:3, V/V) distillate. The compounds shown in the table were obtained.

IR(ν、cm−1) l 755.164o、117
 O NMR(δ、ppm ) 1.63 (3H,S)1.
69 (3H,S) 2.07 (3H,S) 2.20〜2.76 (2H,m) 4.66〜5.26(IH+LH 、m) 5.66〜5.92 (IH,m) この実施例から明らかなように、第7式で示されるヒド
ロキシラクトンからローズフランの原料であると共に第
5式で示されるフラノブテノリドを容易に、かつ、定量
的に合成することができる。
IR (ν, cm-1) l 755.164o, 117
O NMR (δ, ppm) 1.63 (3H,S)1.
69 (3H,S) 2.07 (3H,S) 2.20~2.76 (2H,m) 4.66~5.26 (IH+LH,m) 5.66~5.92 (IH,m) As is clear from this example, furanobutenolide, which is a raw material for rosefuran and is represented by Formula 5, can be easily and quantitatively synthesized from hydroxylactone represented by Formula 7.

(参考例3) 第8式で示されるアリルアルコール化合物の合成。(Reference example 3) Synthesis of allyl alcohol compound represented by formula 8.

アルゴン気流下に、n−ブチルリチウム20mmolを
含有するn−へキサン溶液(濃度;10%)12.8m
lからn−ヘキサンを減圧下に溜去し、得られた残渣に
、N、N、N、N−テトラメチルエチレンジアミン3.
51、ジエチルエーテル12m1およびテトラハイドロ
フラン3mlを添加した。得られた混合物に、水冷下に
β−メタリルアルコ−JL/720mg (10mmo
+ ) 全滴下L、滴下後この混合物を室温で1.5時
間撹拌した0次いで、冷却しながら、3,3−ジメチル
アリルクロリド4.70 g (45mmol )を滴
下し、滴下後そのまま40分間、さらに室温で30分間
撹拌した。得られた生成液をジエチルエーテルで希釈し
、次いで悠和炭酩水素ナトリウム水溶液、木、飽和硫酸
銅水溶液、5%塩酸、水、飽和食塩水で、この順に従っ
てジエチルエーテル層を洗浄した。洗浄後、得られたジ
エチルエーテル層を硫酸マグネシウムで乾燥後、ジエチ
ルエーテルを減圧下に溜去して残渣を得た。この残渣を
シリカゲルカラムクロマトグラフィーに付してジエチル
エーテル/n−ヘキサン(l:4、V/V)の溜升から
、表題のアリルアルコール化合物を30%の収率で得た
Under an argon stream, 12.8 m of n-hexane solution (concentration: 10%) containing 20 mmol of n-butyllithium
N-hexane was distilled off from 1 under reduced pressure, and 3.N,N,N,N-tetramethylethylenediamine was added to the resulting residue.
51, 12 ml of diethyl ether and 3 ml of tetrahydrofuran were added. β-methallyl alcohol-JL/720 mg (10 mmo
+) Total dropwise addition L. After the dropwise addition, the mixture was stirred at room temperature for 1.5 hours. Then, while cooling, 4.70 g (45 mmol) of 3,3-dimethylallyl chloride was added dropwise, and after the dropwise addition, the mixture was stirred for 40 minutes. The mixture was further stirred at room temperature for 30 minutes. The resulting product solution was diluted with diethyl ether, and then the diethyl ether layer was washed with Yuwa carbonated sodium hydrogen aqueous solution, wood, saturated copper sulfate aqueous solution, 5% hydrochloric acid, water, and saturated brine in this order. After washing, the obtained diethyl ether layer was dried with magnesium sulfate, and then the diethyl ether was distilled off under reduced pressure to obtain a residue. This residue was subjected to silica gel column chromatography to obtain the title allyl alcohol compound in a yield of 30% from a distillate of diethyl ether/n-hexane (l:4, V/V).

IR(y、cm−’)3340,1650.90ONM
R(δ 、 pp厘 )  1.62  (3H,S)
1.70 (3H,S) 2.05〜2.30 (4H,m) 1.97 (IH,br) 4.06 (2H,S) 4.80〜5.10 (2H,m) 5.12 (LH,m) MS (m/e )   140 (M  )(参考例
4) 第13式で示されるエポキシド化合物の合成。
IR (y, cm-') 3340, 1650.90ONM
R(δ, pp厘) 1.62 (3H,S)
1.70 (3H,S) 2.05~2.30 (4H,m) 1.97 (IH,br) 4.06 (2H,S) 4.80~5.10 (2H,m) 5. 12 (LH, m) MS (m/e) 140 (M) (Reference Example 4) Synthesis of an epoxide compound represented by Formula 13.

前記参考例3で合成したアリルアルコール化合物を原料
にして、参考例2と同様にして、表題のエポキシド化合
物を81%の収率で得た。
Using the allyl alcohol compound synthesized in Reference Example 3 as a raw material, the title epoxide compound was obtained in a yield of 81% in the same manner as in Reference Example 2.

I R(ν、 cm−1) 3440.89ONMR(
δ、ppm ) 1.6゛1 (3H,S)1.68 
(3H,S) 1.75〜2.35 (3H,m) 2.68 (IH,d、J=4.5 Hz) 2.88 (IH,d、J=4.5 Hz) 3.58〜3.83 (2H,m) 0.90 N1.40 (2H,m) MS (m/e )    156 (M+)(実施例
3) 第6式で示されるヒドロキシラクトンの合成。
IR(ν, cm-1) 3440.89ONMR(
δ, ppm) 1.6゛1 (3H,S)1.68
(3H, S) 1.75-2.35 (3H, m) 2.68 (IH, d, J=4.5 Hz) 2.88 (IH, d, J=4.5 Hz) 3.58 ~3.83 (2H, m) 0.90 N1.40 (2H, m) MS (m/e) 156 (M+) (Example 3) Synthesis of hydroxylactone represented by formula 6.

前記参考例4で合成したエポキシド化合物を原料にして
、実施例1と同様にして、表題のヒドロキシラクトンを
64%の収率で得た。
Using the epoxide compound synthesized in Reference Example 4 as a raw material, the title hydroxylactone was obtained in a yield of 64% in the same manner as in Example 1.

I R(y 、 am−’) 3410.178ONM
R(δ、PP!I ) 0.90〜1.30 (2H,
m)162 (3H,S) 1.68 (3H,S) 1.80〜2.23 (2H1m) 2.55 (2H,S) 4.18 (zH,s) 4.85 (L H,br) 5.10 (IH,m) MS (m/e )   166 (M  −18)分
子量(C1oH1603として) 計算値、184.1099、 実測値;184.1100 (実施例4) 第4式で示されるフラノブテノリドの合成。
I R(y, am-') 3410.178ONM
R(δ, PP!I) 0.90~1.30 (2H,
m) 162 (3H,S) 1.68 (3H,S) 1.80~2.23 (2H1m) 2.55 (2H,S) 4.18 (zH,s) 4.85 (L H,br ) 5.10 (IH, m) MS (m/e) 166 (M -18) Molecular weight (as C1oH1603) Calculated value: 184.1099 Actual value: 184.1100 (Example 4) Shown by the 4th formula Synthesis of furanobutenolide.

前記実施例3で合成したヒドロキシラクトンを原料にし
て、前記実施例2と同様にして表題のフラノブテノリド
を92%の収率で得た。
Using the hydroxylactone synthesized in Example 3 as a raw material, the title furanobutenolide was obtained in a yield of 92% in the same manner as in Example 2.

IR(y、c、m−’) 1780.1745.163
5.885 NMR(δ、ppm ) 1.63 (3H,S)1.
70 (3H,S) 2.20〜2.60 (4H,m) 4.68 (2H,d、 J =1.5Hz) 4.90〜5.31 (LH,m) 5.75〜5.92 (IH,m) MS (III/I! )   166 (M+−18
)この実施例から明らかなように、第6式で示されるヒ
ドロキシラクトンから、ペリレンの合成原料であると共
に第4式で示されるフラノブテノリドを容易に、かつ、
高収率で合成することができる。
IR(y,c,m-') 1780.1745.163
5.885 NMR (δ, ppm) 1.63 (3H,S)1.
70 (3H, S) 2.20-2.60 (4H, m) 4.68 (2H, d, J = 1.5Hz) 4.90-5.31 (LH, m) 5.75-5. 92 (IH, m) MS (III/I!) 166 (M+-18
) As is clear from this example, furanobutenolide, which is a raw material for perylene synthesis, and which is represented by Formula 4, can be easily produced from hydroxylactone represented by Formula 6, and
It can be synthesized in high yield.

Claims (1)

【特許請求の範囲】 第1式 ▲数式、化学式、表等があります▼・・・(1) (ただし、前記第1式中、R_1はメチル基および4−
メチル−3−ペンテニル基のいずれかを示し、R_2は
、R_1がメチル基のとき3−メチル−2−ブテニル基
であり、R_1が4−メチル−3−ペンテニル基のとき
水素原子である。)で示されるヒドロキシラクトン類。
[Claims] Formula 1 ▲ Numerical formulas, chemical formulas, tables, etc. ▼...(1) (However, in the first formula, R_1 is a methyl group and 4-
It represents any methyl-3-pentenyl group, and R_2 is a 3-methyl-2-butenyl group when R_1 is a methyl group, and a hydrogen atom when R_1 is a 4-methyl-3-pentenyl group. ) Hydroxylactones.
JP59187153A 1984-09-06 1984-09-06 Hydroxylactone Pending JPS6165877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59187153A JPS6165877A (en) 1984-09-06 1984-09-06 Hydroxylactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59187153A JPS6165877A (en) 1984-09-06 1984-09-06 Hydroxylactone

Publications (1)

Publication Number Publication Date
JPS6165877A true JPS6165877A (en) 1986-04-04

Family

ID=16201046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59187153A Pending JPS6165877A (en) 1984-09-06 1984-09-06 Hydroxylactone

Country Status (1)

Country Link
JP (1) JPS6165877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025182A (en) * 2015-07-21 2017-02-02 長谷川香料株式会社 Flavor composition comprising 4-(4-methyl-3-pentenyl)-2(5h)-furanone as active ingredient
WO2022085379A1 (en) * 2020-10-20 2022-04-28 長谷川香料株式会社 Lactone compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025182A (en) * 2015-07-21 2017-02-02 長谷川香料株式会社 Flavor composition comprising 4-(4-methyl-3-pentenyl)-2(5h)-furanone as active ingredient
WO2022085379A1 (en) * 2020-10-20 2022-04-28 長谷川香料株式会社 Lactone compound
JP2022067156A (en) * 2020-10-20 2022-05-06 長谷川香料株式会社 Lactone compound

Similar Documents

Publication Publication Date Title
Keck et al. A useful Wittig reagent for the stereoselective synthesis of trans-. alpha.,. beta.-unsaturated thiol esters
CN108473454B (en) A process for the preparation of formula (1) and intermediates therefor
Nishiyama et al. Phenylselenodesilylation of allylsilanes and regiospecific transformation of allylsilanes to allylic alcohols via allylselenides
JPH03109384A (en) Production of (s)-4-hydroxymethyl-gamma-lactone
Houllemare et al. Use of phenylselenium trichloride for simple and rapid preparation of α-phenylselanyl aldehydes and ketones
JP3626500B2 (en) “Production of bis (4-alkylthiophenyl) disulfide”
JPS6165877A (en) Hydroxylactone
US4107181A (en) Useful prostaglandin intermediates
EP0010799A1 (en) A process for the preparation of 3-azabicyclo(3.1.0)hexane derivatives and modifications thereof
JPS5846510B2 (en) 13,14-dehydro-11-deoxy-prostaglandin and its production method
US5654441A (en) Synthesis of 1,3-oxathiolane sulfoxide compounds
US4133948A (en) Monosaccharides and products resulting therefrom
US4163106A (en) Prostaglandin precursors and processes for preparing the same
US4052434A (en) Prostaglandin intermediates
US4058567A (en) Cyclopentene sulfoxides
JPS61289077A (en) Production of 2,3,5-trisubstituted pyridine derivative
JP4516831B2 (en) Method for producing cis-jasmon
US5258559A (en) Process for the preparation of [1R-(1β(R*), 3aα, 4β, 7aβ)] octahydro-1-(5-hydroxy-1,5-dimethylhexyl)-7a-methyl-4H-inden-4-one
JPS6253982A (en) 1-alkoxy-1,4a,5,6,7,7a-hexahydro-7-methylene-6-oxocyclopenta(c)pyran-4-carboxylic acid alkyl ester and production thereof
JPS6348269B2 (en)
JPS6045613B2 (en) Method for producing cis-3-hexene-1,6-diol
SU1085978A1 (en) Process for preparing 5-alkyl-1,3-diheterocycloalanes
US4169199A (en) Precursors for prostaglandin analogue and process for preparing the same
CN117247369A (en) Preparation method of 2, 3-dihydrobenzo [ b ] thiophene 1, 1-dioxide derivative
Knight et al. Preparation of some allylic sulphones; base-catalysed isomerisation and deuteriation of cyclohex-2-enyl p-tolyl sulphones