JPS6165155A - Instrument and apparatus for testing material - Google Patents

Instrument and apparatus for testing material

Info

Publication number
JPS6165155A
JPS6165155A JP18718384A JP18718384A JPS6165155A JP S6165155 A JPS6165155 A JP S6165155A JP 18718384 A JP18718384 A JP 18718384A JP 18718384 A JP18718384 A JP 18718384A JP S6165155 A JPS6165155 A JP S6165155A
Authority
JP
Japan
Prior art keywords
size
magnetic
cast steel
macrostructure
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18718384A
Other languages
Japanese (ja)
Inventor
Nobumasa Moriyasu
森安 宣允
Tatsuo Seguchi
瀬口 立雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18718384A priority Critical patent/JPS6165155A/en
Publication of JPS6165155A publication Critical patent/JPS6165155A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure the size of crystal grain non-destructively, easily, accurately and independently of the shape or the like of a member by applying highly intensive magnetic field to a martersitic cast steel material and detecting magnetic flux leaked from a crystal boundary. CONSTITUTION:A fixed electric power per unit volume is supplied from a control box 1 to the martensitic cast steel 6 through an electrode 5 to apply a fixed intense magnetic field. Consequently, magnetic flux is leaked from the crystal grain magnetic powder is attracted to the leaked magnetic flux and a magnetic powder pattern 10 appears. The magnetic powder pattern 10 is detected by an optical detector 8 and displayed on a display device 9. In this case, the peak interval of the reflected light, i.e. the interval of dense parts of the pattern 10, is proprotional to the size of macrostructure. On the other hand, the crystal grain size of the martensitic cast steel has a fixed relation to the size of the macrostructure. Thus, the size of the macrostructure can be found out from the interval of the magnetic powder dense parts of the pattern 10 and the crystal grain size can be calculated from the size of the macrostructure.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はマルテンサイト系鋳鋼材料の結晶粒度を、材料
を破壊・破損することなく測定し得る試験方法及びその
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a test method and apparatus for measuring the grain size of a martensitic cast steel material without destroying or damaging the material.

〔発明の技術的背剣〕[Technical backbone of invention]

ステンレス鋼からなる材料にJjいて、結晶粒の大きさ
は材料の強靭性、延性に直接影響を及ぼし、また、充分
な熱処理が施されているか否かの判断基準ともなる。そ
こで、現在では日本工業規格(JIs  GO5’L1
)等にも結晶粒の大きさを結晶粒度番号として表示して
いる。
For materials made of stainless steel, the size of crystal grains directly affects the toughness and ductility of the material, and also serves as a criterion for determining whether sufficient heat treatment has been performed. Therefore, currently the Japanese Industrial Standards (JIs GO5'L1
) etc. also indicate the grain size as a grain size number.

ところで、ステンレス鋼は全屈組織学的にフェライト系
、マルテンサイト系及びオーステナイト系に分類される
。そして、材料がオーステナイト系又はフェライト系の
場合には、金属顕微鏡組織観察試験におけるるエツチン
グによって結晶粒の粒界が現出するため、100倍程麻
の顕微鏡写真を躍り、この写真を日本工業用r6等の基
準写真と比較することで容易に結晶粒の大きざを測定評
価することができる。また、試験のλ1象どなる材料が
部材製品本体の場合であっても、材料を破壊・破損する
ことなくスンプ法等にて¥4度よく測定することがとき
る。
By the way, stainless steel is classified into ferritic, martensitic, and austenitic based on total bending structure. When the material is austenitic or ferritic, the grain boundaries of crystal grains are exposed by etching in the metallurgical microstructure observation test, so the microscopic photograph of hemp is magnified about 100 times and this photograph is used for Japanese industrial purposes. By comparing with a reference photograph such as r6, the size of the crystal grains can be easily measured and evaluated. In addition, even if the material used in the λ1 test is the main body of a component product, it can be accurately measured by the Sumpp method or the like without destroying or damaging the material.

一方、マルテンサイト系の場合にあっては、金属顕微鏡
1に寮試験におけるエツチングでは結晶粒界が現出しな
いため、浸炭法等の特殊な雰囲気及び特殊な条件下にお
ける熱処理により結晶粒界を現出し易くし、エツチング
によって粒界を現出させ、これを100倍程度の顕微鏡
組織写真に躍って基準写真と比較して結晶粒の大きさを
知るようにしている。
On the other hand, in the case of martensitic materials, grain boundaries do not appear when etching is performed in the dormitory test using a metallurgical microscope 1, so grain boundaries are revealed through heat treatment in a special atmosphere and under special conditions, such as carburizing. The grain boundaries are exposed through etching, which is then taken as a microscopic photograph at a magnification of about 100 times, and compared with a reference photograph to determine the size of the crystal grains.

〔背型技術の問題点] 以上の如く、ステンレス鋼は、金属組織学的にフェライ
ト系、マルテンサイト系及びオーステナイト系に大別さ
れるわけであるが、マルテンサイト系の鋳鋼品としては
水力発電所等に用いる水車ライナー等の大型で複雑形状
の製品がある。
[Problems with back die technology] As mentioned above, stainless steel is metallographically divided into ferritic, martensitic, and austenitic steels, but martensitic cast steel products are used for hydropower generation. There are products that are large and have complex shapes, such as water wheel liners used in places.

ここで、近年水力発電設備の高落差化、高能率化に伴い
、水車ライナーにかかる応力は非常に高くなり、鋳鋼品
としては極めて厳しい条件下で稼動される状況にある。
In recent years, as hydroelectric power generation equipment has become higher in head and more efficient, the stress applied to water turbine liners has become extremely high, and cast steel products are now operated under extremely harsh conditions.

断る条件に耐え得るには材質及び品質に高い水準が要求
され、この水準を有しているか否かの試験が必要となる
。そして、その1つとして充分な熱処理がなされ、所定
の強度を保持しているかの試験として結晶粒の大きさを
検査することが考えられる。
High standards are required for materials and quality in order to withstand the conditions of refusal, and testing is required to determine whether they meet these standards. One possible way to do this is to inspect the size of crystal grains as a test to see if sufficient heat treatment has been performed and a predetermined strength is maintained.

しかしながら、前述したようにマルテンサイト系vj鋼
の結晶粒の大きさを知るには、特殊な雰囲気にお【プる
熱処理を施さなければならず、また斯る熱処理によって
材料(鋳鋼品)が著しく脆化する。したがって製品本体
には実施することができない。
However, as mentioned above, in order to determine the grain size of martensitic VJ steel, it is necessary to perform heat treatment in a special atmosphere, and such heat treatment significantly degrades the material (cast steel). become brittle. Therefore, it cannot be applied to the product itself.

そこで、水車ライナー等のマルテンサイト系鋳鋼品につ
いては、主な部位についての結晶粒の大きさ等を評価す
るために、スンプ法等金属組械試験を実施しているのが
現状である。ところが、水車ライナー等の流水面流路内
で金属顕微鏡組織試験を行う場合、流路が狭いとグライ
ンダ研磨、パフ研磨等の作業が極めて困難で、エツチン
グ作業も含め、特殊技能が要求され、且つ作業自体も危
険を伴う。更に斯る条件下で実施した金属顕微鏡組織試
験においても、前述した如く、結晶粒界が現出しないた
め、目視によるマクロ組織の大きさで結晶粒の大きさを
推定しなければならない。
Therefore, for martensitic cast steel products such as water turbine liners, metal assembly tests such as the Sumpp method are currently being conducted to evaluate the grain size, etc. of the main parts. However, when conducting metallurgical microstructure tests in the flowing water surface channel of a water turbine liner, etc., if the channel is narrow, grinding, puff polishing, etc. are extremely difficult, and special skills are required, including etching. The work itself is dangerous. Furthermore, even in metallurgical microstructure tests conducted under such conditions, as described above, grain boundaries do not appear, so the size of crystal grains must be estimated from the size of the macrostructure visually observed.

特に、水車ランナー等の鋳鋼品はそのΦ岱が数10トン
に及ぶものがあり、且つ肉厚変動が大で複雑形状である
ため、鋳造に際しての凝固冷却効果、及び熱処理効果が
各部位により異り、このため、結晶粒が粗大な部位らあ
れば微細な部位もある。このような鋳鋼品の各部位に前
記の如き精度に劣る試験を施しても期待し得る程の結果
は得られない。
In particular, cast steel products such as water turbine runners have a diameter of several tens of tons, and have complex shapes with large variations in wall thickness, so the solidification cooling effect and heat treatment effect during casting differ depending on each part. Therefore, there are some parts where the crystal grains are coarse and some parts where they are fine. Even if the above-mentioned tests with poor accuracy are applied to each part of such a cast steel product, the expected results will not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マルテンサイト系鋳鋼品の結晶粒の大
きさを、部材(材料)を破壊・破損或いは脆化せしめる
ことなく、また部材の形状等に左右されることなく容易
且つ精度よく測定し得る材料試験方法及びその装置を提
供するにある。
The purpose of the present invention is to easily and accurately measure the crystal grain size of martensitic cast steel products without destroying, damaging, or embrittling the member (material), and without being influenced by the shape of the member. The purpose of the present invention is to provide a material testing method and apparatus for the same.

〔発明の概要〕[Summary of the invention]

上記目的を達成すべく、本発明に係る材料試験方法は、
マルテンサイト系viI4材料に半波整流電力等により
高強度の磁場を与え、結晶粒の粒界がら漏洩する磁束を
検出し、検出した漏洩磁束の分布間隔から結晶粒度を算
出するようにしたことをその概要とする。
In order to achieve the above object, the material testing method according to the present invention includes:
A high-intensity magnetic field is applied to the martensitic viI4 material using half-wave rectified power, the magnetic flux leaking from the grain boundaries of the crystal grains is detected, and the crystal grain size is calculated from the distribution interval of the detected leakage magnetic flux. This is an overview.

また、本発明に係る材料試験装置は、マルテンサイト系
鋳鋼材料に単位体積当り一定の電力を通電して一定の磁
場を与える電極と、該材料に磁粉を散布する磁粉散布装
置と、磁粉模様を検出する光学的検出装置と、或いは前
記磁粉数イ[装置及び光学的検出装置の代りとなる磁電
変換素子と、前記光学的検出装置又は!l電変換素子か
らの信号を受けて結晶粒度を表示する表示装置とからな
ることをその概要とする。
Further, the material testing device according to the present invention includes an electrode that applies a constant electric power per unit volume to a martensitic cast steel material to apply a constant magnetic field, a magnetic powder scattering device that scatters magnetic powder on the material, and a magnetic powder pattern. An optical detection device for detecting the number of magnetic particles, or a magnetoelectric transducer that replaces the magnetic particle number [device and the optical detection device, and the optical detection device or! The outline of the device is that it consists of a display device that receives a signal from an electric conversion element and displays the crystal grain size.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を添付図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係る材料試験装置の概略図であり、コ
ントロールボックス1内には交流電源2、半波整流器3
及び電流計4が内装されている。コントロールボックス
1から導出された電極5,5は材料であるマルテンサイ
ト系鋳鋼6に接続され、このマルテンサイト系Vi鋼6
の上方には、単位時間当り一定量の磁粉をマルテンサイ
ト系vi鋼6の上面に散布する非破壊検査装置で、アー
ク溶接器に似た磁粉散布装置7が臨んでいる。この磁粉
散布装置7は、2μ以下の磁粉を貯溜しておく撹拌タン
ク7aと、このタンク7aに高圧空気を送るパイプ7b
と、タンク7aから送られた磁粉のうち、重いものを除
去する除磁粉タンク7c等を有し、軽い磁粉はタンク7
Cに取付番プられたノズル7dから鋳鋼6上で散布され
る。また、マルテンサイト系鋳鋼6の上方には光学的検
出装置8を配設しており、この光学的検出装置8はπt
 1lll1表示器9に接続されるとともに、マルテン
サイト系鋳鋼6上面と一定の間隔を保持しつつ電極5.
5を結ぶ線と直交方向に走査可能とされ、且つ光学的検
出装置8から発せられる細光線はマルテンサイト系鋳鋼
60表面においてその(¥が0.1mm+″1度のもの
とされる。
FIG. 1 is a schematic diagram of a material testing apparatus according to the present invention, in which a control box 1 includes an AC power source 2, a half-wave rectifier 3,
and an ammeter 4 are installed inside. Electrodes 5, 5 led out from the control box 1 are connected to martensitic cast steel 6, which is the material, and this martensitic Vi steel 6
Above is a magnetic powder dispersing device 7, which is a non-destructive inspection device that scatters a fixed amount of magnetic powder per unit time onto the upper surface of the martensitic VI steel 6, and resembles an arc welder. This magnetic powder dispersing device 7 includes a stirring tank 7a that stores magnetic particles of 2μ or less, and a pipe 7b that sends high-pressure air to this tank 7a.
Among the magnetic particles sent from the tank 7a, there is a demagnetizing powder tank 7c for removing heavy particles, and the lighter magnetic particles are stored in the tank 7.
It is sprayed onto the cast steel 6 from the nozzle 7d with the mounting number C. Further, an optical detection device 8 is disposed above the martensitic cast steel 6, and this optical detection device 8
The electrode 5.
5, and the thin light beam emitted from the optical detection device 8 is assumed to be 0.1 mm + 1 degree on the surface of the martensitic cast steel 60.

以上において、コントロールボックス1を介して、電極
5,5からマルテンサイト系鋳鋼6に単位体積当り一定
の電力を通電しく電極間隔200mmでDC250OA
)一定の…揚を与える。ここで磁場は一般の非破壊検査
の際に与える磁場に比較し、極めて強く設定し、磁気飽
和をはるかに超えた磁場にしておく。これは、非破壊検
査で検出する不連続部に比べ、結晶粒界からの漏洩磁束
は著しく弱く、旦つ細いものとなるからであり、この条
件を大きく外れると、乾式磁粉を使用した場合、結晶粒
界からの漏洩磁束を精度よく検出できないことによる。
In the above, a constant electric power per unit volume is applied from the electrodes 5, 5 to the martensitic cast steel 6 via the control box 1, and the DC 250 OA is applied with an electrode spacing of 200 mm.
) give a certain amount of...age. The magnetic field here is set to be extremely strong compared to the magnetic field applied during general non-destructive testing, far exceeding magnetic saturation. This is because the leakage magnetic flux from grain boundaries is significantly weaker than discontinuities detected by non-destructive testing, and becomes increasingly thinner.If this condition is significantly exceeded, when dry magnetic powder is used, This is due to the inability to accurately detect magnetic flux leakage from grain boundaries.

そして、上記の如くマルテンサイト系鋳鋼6に一定の高
強度の磁場をあたえることで、結晶粒界から磁束が漏洩
し、この漏洩磁束に磁粉が吸着され磁粉模様10を現出
する。この磁粉模様10は電極5,5の間に設置された
前記光学的検出装置8によって、その間隔及び密集度が
反射光の強さとして検出され、この検出値は信号として
表示装置9に送られ、グラフ或いはデジタル式に表示さ
れる。
Then, by applying a constant high-intensity magnetic field to the martensitic cast steel 6 as described above, magnetic flux leaks from the grain boundaries, magnetic particles are attracted to this leaked magnetic flux, and the magnetic particle pattern 10 appears. The spacing and density of this magnetic particle pattern 10 are detected as the intensity of reflected light by the optical detection device 8 installed between the electrodes 5, 5, and this detected value is sent as a signal to the display device 9. , displayed graphically or digitally.

ここで、反射光のピーク間隔つまり磁粉模様10の密集
部の間隔とマクロ組織の大きざとの関係は第2図に示す
如く比例関係にある。またこの関係は顕微鏡写真である
参考図面(A)(マクロ組織大)及び(B)(マクロ組
織小)に示すように、マクロ組織が大きい程、磁粉模様
が粗く濃く且つ明瞭であることからも是認される。つま
り、結晶粒界等の電磁気的不連続部にり磁束が漏洩し、
この漏洩の程度は結晶粒の大きざに比例するということ
である。
Here, the relationship between the peak interval of the reflected light, that is, the interval between the dense parts of the magnetic particle pattern 10, and the size of the macrostructure is proportional as shown in FIG. This relationship can also be understood from the fact that the larger the macrostructure, the rougher, denser, and clearer the magnetic particle pattern is, as shown in reference drawings (A) (large macrostructure) and (B) (small macrostructure), which are micrographs. Approved. In other words, magnetic flux leaks through electromagnetic discontinuities such as grain boundaries,
The degree of this leakage is proportional to the size of the crystal grains.

一方、マルテンサイト系鋳鋼の結晶粒度は、結晶粒径が
2〜3Mに達するものもあるが、平均的には2〜3μで
あり、マクロ組織の大きさとの関係は第4図に示すよう
な関係にある。
On the other hand, the grain size of martensitic cast steel is 2 to 3μ on average, although some grain sizes reach 2 to 3M, and the relationship with the size of the macrostructure is as shown in Figure 4. In a relationship.

したがって、計測表示器9にて表示ξれた反射光のピー
クとピークとの間隙、つより…粉密集部間隔(fJ)と
マクロ組織の大きさくS)及び結晶粒度(N>との関係
は1.Q=kNS(kは定数)として表わされる。
Therefore, the relationship between the gap between the peaks of the reflected light ξ displayed on the measurement display 9, the tension...the powder dense part spacing (fJ), the size of the macrostructure (S), and the crystal grain size (N>) is 1. Expressed as Q=kNS (k is a constant).

そこで、磁粉模様10の磁粉密集部の間隔からマクロ組
織の大きさを求め、このマクロ組織の大きさから第4図
に基いて結晶粒度を知ることができる。
Therefore, the size of the macrostructure is determined from the spacing between the magnetic particle dense areas of the magnetic particle pattern 10, and the crystal grain size can be determined from the size of the macrostructure based on FIG. 4.

尚、以上は本発明の実施の一例を示したちのであり、本
発明は上記した例に限定される乙のでitない。
It should be noted that the above is an example of the implementation of the present invention, and the present invention is not limited to the above-described example.

例えば、実施例にあっては、電極5.5の間隔を一定に
設定したため、必ずしも電流を常時監視する必要はなく
一定に保てばよいが、電極5.5の間隔を任意に変更し
得る構成とした場合に(よ、電極の間隔に応じて出力電
流を制御するコン1−ロール装置を組込めばよい。更に
半波整流器或い(ま磁粉散布装置をaill wJする
ような構成としてもよい。
For example, in the embodiment, the interval between the electrodes 5.5 is set constant, so it is not necessarily necessary to constantly monitor the current and it is sufficient to keep it constant, but the interval between the electrodes 5.5 can be changed arbitrarily. In this case, it is possible to incorporate a control device that controls the output current according to the spacing between the electrodes.Furthermore, it is possible to install a half-wave rectifier or a magnetic powder dispersion device. good.

また、実施例にあっては、光学的検出装置F((ミクロ
フォトメータ)により直接的に磁粉模様10を解析する
ものを示したが、磁粉模様10をセロハンテープ等に転
写し、これを解析するようにした間接的な方法し考えら
れる。この場合は、光学的手段を用いるとすれば、反(
ト)光ばかりでなく透過光を利用することも可能であり
、また光学的手段によらず、直接基準写真と比較して結
晶粒度を知ることもでき、更に鉄粉の分布であるため、
他の面会分析方法によることも可能である。
In addition, in the embodiment, the magnetic particle pattern 10 is directly analyzed using an optical detection device F (microphotometer), but the magnetic particle pattern 10 is transferred to cellophane tape or the like and analyzed. In this case, if optical means are used, the opposite (
g) It is possible to use not only light but also transmitted light, and it is also possible to know the crystal grain size by directly comparing it with a reference photograph without using optical means. Furthermore, since it is the distribution of iron powder,
It is also possible to use other interview analysis methods.

更に、漏洩磁束に磁粉を吸着せしめることなく、ホール
素子、マグネットダイオード等を検田器として使用する
フラックスメータを走査せしめるようにしても前記同様
、結晶粒度の測定が可能である。
Furthermore, the crystal grain size can be measured in the same manner as described above by scanning with a flux meter using a Hall element, a magnet diode, etc. as a field detector without attracting magnetic particles to the leakage magnetic flux.

〔発明の効果) 以上説明した如く、本発明によれば、マルテンサイト系
鋳鋼材料に通電することで…揚を与え、結晶粒界からの
漏洩磁束を磁粉模様等として形成し、これを光学的検出
装置等を介して検出することで結晶粒度を測定するよう
にしたもので、従来の如く、材料を破壊、破損或い(:
1脆化ぜしめるこことなく、精度よく結晶粒度を測定す
ることができ、水車ランナー等の大型で複雑形成のマル
テンサイト系鋳鋼品の検査にルめてイ1効く・ある。ま
た本発明によれば別途の制御装置を設【プることにより
、一般の磁粉探傷試験と併行して月利の結晶粒度の測定
が行えるので、極めて効率がよい等多くの効果を秦する
[Effects of the Invention] As explained above, according to the present invention, by applying electricity to martensitic cast steel material, ... The crystal grain size is measured by detecting it with a detection device, etc., and unlike conventional methods, it does not destroy or damage the material.
It is possible to measure the grain size with high accuracy without causing any embrittlement, and is extremely effective in inspecting large and complex martensitic cast steel products such as water wheel runners. In addition, according to the present invention, by installing a separate control device, the monthly crystal grain size can be measured in parallel with the general magnetic particle flaw detection test, thereby achieving many effects such as extremely high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る材料試験装置の概略構成図、第2
図は磁扮密集部の間隔とマクロ組織の大きさとの関係を
示しlζグラフ、第3図は結晶粒度とマクロ組織の大き
さとの関係を示すグラフである。 1・・・コントロールボックス、2・・・交流電源、3
・・・半波整流器、4・・・電流計、5・・−電極、6
・・・マルテンサイト系鋳鋼、7・・・磁粉散布装置、
8・・・光学的検出装置、9・・・計測表示器10・・
・磁粉模様。 出願人代理人  猪  股    清 第2図 +o−2to−’     +o’     to’マ
クロ組織の大きさSmm2
Fig. 1 is a schematic configuration diagram of a material testing device according to the present invention;
The figure is a lζ graph showing the relationship between the spacing of magnetically dense areas and the size of the macrostructure, and FIG. 3 is a graph showing the relationship between the crystal grain size and the size of the macrostructure. 1...Control box, 2...AC power supply, 3
...Half-wave rectifier, 4...Ammeter, 5...-electrode, 6
... Martensitic cast steel, 7... Magnetic powder scattering device,
8... Optical detection device, 9... Measurement display 10...
・Magnetic powder pattern. Applicant's representative Kiyoshi Inomata Figure 2 +o-2to-'+o'to' Macro structure size Smm2

Claims (1)

【特許請求の範囲】 1、マルテンサイト系鋳鋼材料に高強度の磁場を与え、
結晶粒の粒界から漏洩する磁束を検出し、この検出した
漏洩磁束の分布間隔に基いて結晶粒度を測定するように
したことを特徴とする材料試験方法。 2、マルテンサイト系鋳鋼材料に接続され該材料に単位
体積当り一定の電力を通電して一定の磁場を与える電極
と、該材料に単位時間当り一定量の磁粉を散布する磁粉
散布装置と、該材料の結晶粒の粒界から漏洩した磁束に
よって形成される磁粉模様を検出すべく材料と一定間隔
を保持しつつ走行可能とされた光学的検出装置と、この
光学的検出装置からの信号により結晶粒の大きさを直接
又は間接的に表示する表示装置とからなる材料試験装置
[Claims] 1. Applying a high-strength magnetic field to martensitic cast steel material,
A material testing method characterized by detecting magnetic flux leaking from grain boundaries of crystal grains and measuring crystal grain size based on the distribution interval of the detected leakage magnetic flux. 2. An electrode that is connected to a martensitic cast steel material and applies a constant electric power per unit volume to the material to apply a constant magnetic field, and a magnetic powder scattering device that scatters a fixed amount of magnetic powder onto the material per unit time; In order to detect the magnetic particle pattern formed by the magnetic flux leaking from the grain boundaries of the crystal grains of the material, there is an optical detection device that can travel while maintaining a constant distance from the material, and a signal from this optical detection device detects the crystal. A material testing device consisting of a display device that directly or indirectly displays the particle size.
JP18718384A 1984-09-06 1984-09-06 Instrument and apparatus for testing material Pending JPS6165155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18718384A JPS6165155A (en) 1984-09-06 1984-09-06 Instrument and apparatus for testing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18718384A JPS6165155A (en) 1984-09-06 1984-09-06 Instrument and apparatus for testing material

Publications (1)

Publication Number Publication Date
JPS6165155A true JPS6165155A (en) 1986-04-03

Family

ID=16201557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18718384A Pending JPS6165155A (en) 1984-09-06 1984-09-06 Instrument and apparatus for testing material

Country Status (1)

Country Link
JP (1) JPS6165155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255658A (en) * 2011-06-07 2012-12-27 Nsk Ltd Overhead detection method for quenching steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255658A (en) * 2011-06-07 2012-12-27 Nsk Ltd Overhead detection method for quenching steel

Similar Documents

Publication Publication Date Title
Raj et al. Practical non-destructive testing
Zilberstein et al. MWM eddy-current arrays for crack initiation and growth monitoring
Vourna et al. An accurate evaluation of the residual stress of welded electrical steels with magnetic Barkhausen noise
US4207519A (en) Method and apparatus for detecting defects in workpieces using a core-type magnet with magneto-sensitive detectors
Tomita et al. Nondestructive estimation of fatigue damage for steel by Barkhausen noise analysis
JPS6165155A (en) Instrument and apparatus for testing material
IT9021358A1 (en) FIELD INTENSITY INDICATOR IN MAGNETOSCOPIC INSPECTION.
Angani et al. Magnetic leakage testing using linearly integrated hall and GMR sensor arrays to inspect inclusions in cold-rolled strips
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
CN108982651A (en) Exchange leakage field sensor based on ferromagnetic butt plates welding seam crack detection and the method using its progress crack detection
Jun et al. Nondestructive evaluation of a crack on austenitic stainless steel using a sheet type induced current and a Hall sensor array
US20110169485A1 (en) Magnetic particle inspection apparatus and method
JP2007331140A (en) Repairing method of mold containing magnetic body
JPH10170503A (en) Evaluation method for creep life of tempered martensite heat-resisting steel
Carreon Evaluation of Thermoelectric Methods for the Detection of Fretting Damage in 7075-T6 and Ti-6Al-4V Alloys
KR102387444B1 (en) Automatic magnetic particle spraying and magnetization device with spray nozzle on an electrode for nondestructive inspection
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JPS60117148A (en) Characteristic measuring apparatus for inspection liquid for detecting flaw and flaw detection of steel material
Biruu High Sensitivity Two-Dimensional Electron Gas (2DEG) Quantum Well Hall Effect Sensors for Novel Pre-Failure Engineering Stress Analysis and Non-Destructive Testing Systems
Barton et al. Advanced Nondestructive Testing Methods for Bearing Inspection
Vértesy et al. Influence of the size of sample in magnetic adaptive testing
JP3317195B2 (en) Fatigue crack detection method
Burdekin NON-DESTRUCTIVE TESTING OF WELDED STRUCTURAL STEELWORK.
Krause et al. Nondestructive Evaluation 1
JPH02186260A (en) Detection of flaw