JPS6162699A - Method of filling container with high-purity monosilane - Google Patents

Method of filling container with high-purity monosilane

Info

Publication number
JPS6162699A
JPS6162699A JP59182773A JP18277384A JPS6162699A JP S6162699 A JPS6162699 A JP S6162699A JP 59182773 A JP59182773 A JP 59182773A JP 18277384 A JP18277384 A JP 18277384A JP S6162699 A JPS6162699 A JP S6162699A
Authority
JP
Japan
Prior art keywords
monosilane
container
storing tank
under reflux
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59182773A
Other languages
Japanese (ja)
Other versions
JPH0459518B2 (en
Inventor
Atsuhiko Hiai
日合 淳彦
Kazuo Wakimura
脇村 和生
Masao Tanaka
田中 将夫
Nobuhiro Fukuda
福田 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59182773A priority Critical patent/JPS6162699A/en
Publication of JPS6162699A publication Critical patent/JPS6162699A/en
Publication of JPH0459518B2 publication Critical patent/JPH0459518B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/037Containing pollutant, e.g. H2S, Cl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To fill a container with high-purity monosilane gas by retaining monosilane under reflux in a storing tank for a liquid monosilane, and then filling the container with the monosilane from the storing tank. CONSTITUTION:Monosilane is formed by reducing chlorosilane group by a reducing agent and reacting alloys such as Mg2Si and the like upon hydrochloric acid or ammonium chloride, and is accompanied by refined hydrogen. The monosilane is condensated and stored in a storing tank. In the storing tank, after the monosilane is retained under reflux, preferably, in the state of boiling to the vicinity of boiling point temperature of the monosilane, the monosilane is drawn out by a pump from the lower portion of the storing tank, and heated by a vaporizer to be filled in a container. The monosilane may be drawn out from the vapor phase portion of the storing tank retained under reflux by a compressor to be filled in the container.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、高純度モノシランの容器充填方法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for filling containers with high purity monosilane.

更に詳しくは、酸素、窒素、水素、アルゴン、ヘリウム
、メタン等のモノシランより沸点の低いガスを含有しな
いモノシランを容器に充填する方法に関する。
More specifically, the present invention relates to a method of filling a container with monosilane that does not contain gases having a boiling point lower than that of monosilane, such as oxygen, nitrogen, hydrogen, argon, helium, and methane.

〔従来技術〕[Prior art]

エレクトロニクス産業市場の急成長に伴いモノシランは
、IC1太陽電池、光感光体ドラム等における半導体薄
膜を形成するための原料ガスとして近年急激に需要が増
加している。モノシランガスの製造方法としては、四塩
化硅素又は三塩化硅素等のクロロシラン類をアルカリ金
属ハイドライド又ハアルキルアルミニウムハイドライド
で還元する方法あるいは、Ml;l、Siと塩酸又は塩
化アンモニウム等を反応させる方法が一般的である。
With the rapid growth of the electronics industry market, demand for monosilane has increased rapidly in recent years as a raw material gas for forming semiconductor thin films in IC1 solar cells, photosensitive drums, and the like. Common methods for producing monosilane gas include reducing chlorosilanes such as silicon tetrachloride or silicon trichloride with an alkali metal hydride or halkyl aluminum hydride, or reacting Ml;l, Si with hydrochloric acid, ammonium chloride, etc. It is true.

これらの方法により得られるモノシランガスは、活性炭
やモレキュラーシープ等の吸着剤を用いて吸着精製した
り、蒸留により精製したり、あるいは、これらを組み合
わせて精製し、実用に供していた。これらの精製法は、
モノシランの沸点(−112℃)よりも高い沸点の不純
物に対しては、充分な精製効果があるが、酸素、窒素、
水素、アルゴン、ヘリウム、メタン等の、モノシランよ
り沸点の低い不純物に対しては、充分な精製効果が得ら
れない。従って、このような微量の不純物の混入したま
ま、ボンベ等の容器に充填されて各種用途に使用されて
いた。
Monosilane gas obtained by these methods has been purified by adsorption using an adsorbent such as activated carbon or molecular sheep, purified by distillation, or purified by a combination of these methods, and used for practical purposes. These purification methods are
It has a sufficient purification effect on impurities with a boiling point higher than that of monosilane (-112°C), but oxygen, nitrogen,
A sufficient purification effect cannot be obtained for impurities having a boiling point lower than that of monosilane, such as hydrogen, argon, helium, and methane. Therefore, it has been filled into containers such as cylinders and used for various purposes with such trace amounts of impurities mixed in.

〔発明の目的〕[Purpose of the invention]

しかしながら、高純度を要求される半導体、太陽電池、
光感光体ドラム等の用途には、製品モノシランガス中の
酸素、窒素、水素、アルゴン、ヘリウム、メタン等の低
沸点物質の不純物の混入は、当該用途における製品の品
質に大きな影響を与える。本発明者らは、とくに、非晶
質シリコン太陽電池用には、原料モノシラン中に酸素や
窒素等の不純物が、非常に微小量存在しただけで該電池
の性能、とくに経日劣化特性に著しい影響を及ぼすこと
を見い出した。
However, semiconductors, solar cells, etc. that require high purity,
For applications such as photoreceptor drums, contamination of impurities with low boiling point substances such as oxygen, nitrogen, hydrogen, argon, helium, and methane in the product monosilane gas has a significant impact on the quality of the product in the application. The present inventors have found that, in particular, for amorphous silicon solar cells, the presence of very small amounts of impurities such as oxygen and nitrogen in the raw material monosilane significantly affects the performance of the cell, especially its aging characteristics. found that it has an effect.

しかして、本発明の目的は、かかる非晶質シリコン太陽
電池のごとき特に高品質な要求される分野に好適に使用
できるように高純度のモノ7ランガスを容器に充填する
方法を提供することである。
Therefore, an object of the present invention is to provide a method for filling a container with high-purity mono-7 run gas so that it can be suitably used in fields where particularly high quality is required, such as amorphous silicon solar cells. be.

〔発明の開示〕[Disclosure of the invention]

本発明の上記目的は、低沸点ガスを含有しないモノシラ
ンを容器に充填するにあたり、液体モノシランの貯槽内
でモノシラ/の還流下に保持した後、該貯槽から容器に
充填することにより達成される。
The above object of the present invention is achieved by filling a container with monosilane that does not contain a low boiling point gas by holding the monosilane under reflux in a liquid monosilane storage tank and then filling the container from the storage tank.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の適用しうるモノシランは1、クロロシラM9.
Siのごとき合金と塩酸又は塩化アンモニウム等を反応
させて製造したものも、いずれでもよい。
The monosilanes applicable to the present invention are 1, chlorosilane M9.
Any material manufactured by reacting an alloy such as Si with hydrochloric acid or ammonium chloride may also be used.

いかなる製造プロセスを経るにせよ、精製された水素を
同伴しているモノシラ/は、凝縮されて製品ホルダー(
貯槽)に貯液される。
Regardless of the manufacturing process, the monosilane containing purified hydrogen is condensed into the product holder (
The liquid is stored in a storage tank).

本発明においては、この貯槽内で、モノシランを還流下
、好ましくは、モノシランの沸点である一112℃付近
に沸騰状態に保持し、しかるのち、貯槽から、好適には
、貯槽の下部から、ポンプで抜き出し、気化器で加熱し
てボンベ等の容器に充填スるものである。ポンプで抜き
出す際には、モノシランを液状で抜出してもよいが、ま
た還流下に保持した貯槽の気相部からモノシランを圧縮
器で抜出し、容器に充填してもよい。
In the present invention, the monosilane is kept under reflux in this storage tank, preferably at a boiling temperature around -112°C, which is the boiling point of monosilane, and then pumped from the storage tank, preferably from the lower part of the storage tank. It is extracted from the gas, heated in a vaporizer, and then filled into a container such as a cylinder. Monosilane may be extracted in liquid form when extracted with a pump, but monosilane may also be extracted with a compressor from the gas phase of a storage tank held under reflux and filled into a container.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

(実施例1) 401の ジャケット付液体シランホルダーに3m1の
伝熱面積を有する逆流コンデンサーを設置した。逆流コ
ンデンサーは、5に9/εt+rGの圧力の液体窒素で
冷却した。ホルダ一部分は、75關厚のウレタンホーム
で保冷した。ジャケットには液体窒素を流さない。この
ホルダーに、毎時10N77/のキアリアガス(窒素1
500ppm、 酸素とアルゴン1100ppを含有す
る水素)を用いて毎時1.2に9のシランを10時間供
給し、液体シラ712に9を貯液した。ホルダー内のシ
ランは沸騰状態に保持され逆流コンデンサーで還流され
る。
(Example 1) A backflow condenser with a heat transfer area of 3 m1 was installed in a 401 jacketed liquid silane holder. The counterflow condenser was cooled with liquid nitrogen at a pressure of 5 to 9/εt+rG. A portion of the holder was kept cool with a 75 mm thick urethane foam. Do not pour liquid nitrogen into the jacket. In this holder, 10N77/hour of Chiaria gas (nitrogen 1
Silane 9 was supplied at a rate of 1.2 per hour for 10 hours using hydrogen containing 500 ppm of oxygen and 1100 ppm of argon, and silane 9 was stored in the liquid silane 712. The silane in the holder is kept at boiling point and refluxed in a counterflow condenser.

この貯槽下部からポンプにより液体シランを抜き出し、
気化させたのち、471ボンベ2本にシランガスを充填
した。ボンベ中の不純物を分析したところ、窒素0.7
ppm、酸素とアルゴンの和0.3ppm、水素5 p
pm5 メタン不検出であった。
Liquid silane is extracted from the bottom of this storage tank using a pump,
After vaporization, two 471 cylinders were filled with silane gas. Analysis of impurities in the cylinder revealed that nitrogen was 0.7
ppm, sum of oxygen and argon 0.3 ppm, hydrogen 5 p
pm5 Methane was not detected.

(比較例1) ホルダーのジャケットに液体窒素を通して、−120°
Cに保持した以外は実施例1と同様にしてモノシランを
ボンベに充填した結果、ボンベ中の不純物は、窒素12
ppm、酸素とアルゴンの和4ppmであった。
(Comparative Example 1) Pass liquid nitrogen through the jacket of the holder and heat it to -120°.
As a result of filling a cylinder with monosilane in the same manner as in Example 1 except that it was kept at C, the impurities in the cylinder were nitrogen 12
ppm, and the total of oxygen and argon was 4 ppm.

〔発明の効果及び産業上の利用可能性〕本発明方法によ
れば、例えば477ボンベに10に9のモノシランを充
填した場合、窒素の混入量は、ippm以下、酸素の混
入量は、0.5ppm以下とすることができ、水素も1
0 ppm以下となり、さらに、アルゴン、ヘリウム、
メタン等は不検出、というような超高純度シリコンを容
器に充填することが可能となる。したがって、このよう
にして容器に充填されたモノシランは、IC1太陽電池
、光感光体ドラム等の用途に、効果的に供されるもので
ある。
[Effects of the invention and industrial applicability] According to the method of the present invention, for example, when a 477 cylinder is filled with 9 parts of monosilane, the amount of nitrogen mixed in is ippm or less, and the amount of oxygen mixed in is 0.5 ppm or less. It can be reduced to 5 ppm or less, and hydrogen is also 1
0 ppm or less, and furthermore, argon, helium,
It becomes possible to fill a container with ultra-high purity silicon that does not detect methane or the like. Therefore, the monosilane filled into the container in this manner can be effectively used for IC1 solar cells, photosensitive drums, and the like.

Claims (1)

【特許請求の範囲】[Claims] (1)低沸点ガスを含有しないモノシランを容器に充填
するにあたり、液体モノシランの貯槽内でモノシランの
還流下に、保持した後、該貯槽から容器に充填すること
を特徴とする高純度モノシランの容器充填方法。
(1) A high-purity monosilane container characterized in that when filling the container with monosilane that does not contain a low-boiling point gas, the monosilane is held under reflux in a liquid monosilane storage tank, and then the container is filled from the storage tank. Filling method.
JP59182773A 1984-09-03 1984-09-03 Method of filling container with high-purity monosilane Granted JPS6162699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182773A JPS6162699A (en) 1984-09-03 1984-09-03 Method of filling container with high-purity monosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182773A JPS6162699A (en) 1984-09-03 1984-09-03 Method of filling container with high-purity monosilane

Publications (2)

Publication Number Publication Date
JPS6162699A true JPS6162699A (en) 1986-03-31
JPH0459518B2 JPH0459518B2 (en) 1992-09-22

Family

ID=16124164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182773A Granted JPS6162699A (en) 1984-09-03 1984-09-03 Method of filling container with high-purity monosilane

Country Status (1)

Country Link
JP (1) JPS6162699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539990A (en) * 2016-07-22 2018-01-05 南京大学 A kind of porous silicon nano material and its production and use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539990A (en) * 2016-07-22 2018-01-05 南京大学 A kind of porous silicon nano material and its production and use

Also Published As

Publication number Publication date
JPH0459518B2 (en) 1992-09-22

Similar Documents

Publication Publication Date Title
RU2368568C2 (en) Method of obtaining silicon
US3020128A (en) Method of preparing materials of high purity
US4112057A (en) Process for purifying halogenosilanes
EP2812279A1 (en) Liquid phase synthesis of trisilylamine
US7740822B2 (en) Method for purification of disilicon hexachloride and high purity disilicon hexachloride
TW200302205A (en) Purification of group IVb metal halides
US3041145A (en) Production of pure silicon
US20220348477A1 (en) Tungsten hexafluoride manufacturing method, tungsten hexafluoride purification method, and tungsten hexafluoride
JP2719211B2 (en) Manufacturing method of higher order silane
JP3878278B2 (en) Method for producing polycrystalline silicon with low phosphorus content
JPS6162699A (en) Method of filling container with high-purity monosilane
TW460626B (en) A process for producing high-purity nitrogen trifluoride gas
JPS6163517A (en) Method of purifying monosilane
JP2000072442A (en) Purifying method of tungsten hexafluoride
JPH02196014A (en) Production of high purity dichlorosilane
JPS6163516A (en) Method of storing high-purity monosilane
JPS6163515A (en) Production of monosilane
JP2015113250A (en) Method for purifying tetrachlorosilane
JPH11124386A (en) Stabilization of trimethoxysilane
RU2174950C1 (en) Method of preparing silane
JPH04231317A (en) Refining method of dichlorosilane
JP2000072438A (en) Purifying method of germanium tetrafluoride
JP2003128412A (en) Method for purifying silicon tetrafluoride
US20220153606A1 (en) Tungsten hexafluoride manufacturing method, tungsten hexafluoride purification method, and tungsten hexafluoride
JP2001048519A (en) Purification of fluorosilane gas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term