JPS6162352A - Phase error compensating method of resolver - Google Patents

Phase error compensating method of resolver

Info

Publication number
JPS6162352A
JPS6162352A JP18285284A JP18285284A JPS6162352A JP S6162352 A JPS6162352 A JP S6162352A JP 18285284 A JP18285284 A JP 18285284A JP 18285284 A JP18285284 A JP 18285284A JP S6162352 A JPS6162352 A JP S6162352A
Authority
JP
Japan
Prior art keywords
phase error
kdelta
resolver
erased
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18285284A
Other languages
Japanese (ja)
Other versions
JPH065173B2 (en
Inventor
Nagahiko Nagasaka
長坂 長彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP18285284A priority Critical patent/JPH065173B2/en
Publication of JPS6162352A publication Critical patent/JPS6162352A/en
Publication of JPH065173B2 publication Critical patent/JPH065173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To compensate the phase error of harmonic wave degree of waves erased including basic wave by controlling an exciting current at equal time interval in every cycle of every step over twice of phase error harmonic wave degree to be erased. CONSTITUTION:A ROM41 in a phase error compensator 4 stores to produce a 8-bit output 32: ideltakcos(kdelta) in response to a 4-bit input kdelta from th K-th phase error kdelta in advance by the measurement. A ROM42 stores to produce 8-bit output 32: ideltaksin(Kdelta) in response to a 4-bit input kdelta. The maximum degree of the phase error to be erased is 8, and an exciting current vector is corrected at 16 equal time points. Thus, the phase error of harmonic wave degree to be erased including a basic wave is compensated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回転体の回転位相を検出するレゾルバとくに
インダクタ形レゾルバの位相誤差を補償する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for compensating phase errors in a resolver that detects the rotational phase of a rotating body, particularly in an inductor type resolver.

〔従来技術の問題点〕[Problems with conventional technology]

インダクタ形しゾルパヤインダクトシン等の毎極の溝数
f導体数の少ない簡嘔な位置検出機には多くの位相誤差
が含まれていて、これを除くことはマシンの構造を複雑
にしても容易なことではない。
Simple position detectors with a small number of grooves and conductors on each pole, such as inductor-type Solpaya Inductosin, contain many phase errors, and removing them would complicate the structure of the machine. It's not easy either.

これらの誤差は再現性つまり繰返えし性が良好なので、
検出側でこれを補償することもできるが、分解能の高い
、高鞘度のものにするには、補償回路が非常に複雑なも
のとなる欠点があった。
These errors have good reproducibility, that is, repeatability, so
Although it is possible to compensate for this on the detection side, there is a drawback that the compensation circuit must be extremely complex in order to achieve high resolution and high coverage.

〔発明の目的〕[Purpose of the invention]

ここにおいて本発明は、従来@置の難点を克服し、基本
波を含め消去したいすべての高調波次数の位相誤差を補
償することができ、回路が簡琳で、補償量が容易に設定
されうるレゾルバの位相誤差補償法を提供することを、
その目的とする。
Here, the present invention overcomes the difficulties of the conventional arrangement, can compensate for phase errors of all harmonic orders to be canceled including the fundamental wave, has a simple circuit, and can easily set the amount of compensation. To provide a resolver phase error compensation method,
That purpose.

〔発明の稜要〕[Criteria of invention]

本発明は、レゾルバ本体の構造に起因する位相誤差を、
励磁電流波形を副軸して?l′Ii償する方式において
、 検出巻線wyと励磁巻線Wα、Wβの相互インダクタン
スをそれぞれMα1Mβとし、 励磁電流を1α、1βとするとき、 1”a + i”/ = conet (一定)1β/
1α =Mβ/Mα とする側脚を、消去する位相誤走高調波次数の少くとも
2倍以上のステップ数毎サイクルで等時間隔に行なうレ
ゾルバの位相誤差補償法である。
The present invention eliminates the phase error caused by the structure of the resolver body.
Using the excitation current waveform as a secondary axis? In the l'Ii compensation method, when the mutual inductance of the detection winding wy and the excitation windings Wα and Wβ is Mα1Mβ, and the excitation currents are 1α and 1β, 1”a + i”/ = conet (constant) 1β /
This is a resolver phase error compensation method in which the side legs of 1α = Mβ/Mα are performed at equal time intervals in each cycle with a step number at least twice the phase error harmonic order to be canceled.

〔発明の原理〕[Principle of the invention]

本発明の原理はこうである。 The principle of the present invention is as follows.

電流励磁のレゾルバのマシン定数はM叡のとMβ(θ)
で表わされる。
The machine constants of the current-excited resolver are M and Mβ(θ)
It is expressed as

検出巻線に鎖交する磁束 σは ハ=1α・Mα(軒1β・M〆0) ・・・・・・・・
・ (1)検出電圧eI5は ea =a3’l/at  (tハ時1a’りであるか
ら Cグ =11α/A t −Mα(θト←d1β/at
−M、6イθ) ・・・(2)これより、 ベクトル(11α/it、i1β/it)は、 ベクト
ル(Mα(グ)1Mβ(θ))と直交したとき、  グ
=Oとなる。
The magnetic flux σ interlinking with the detection winding is H=1α・Mα (eaves 1β・M〆0) ・・・・・・・・・
・(1) Detection voltage eI5 is ea = a3'l/at (Since t is 1a', Cg = 11α/A t - Mα (θt←d1β/at
-M, 6i θ) ...(2) From this, when the vector (11α/it, i1β/it) is orthogonal to the vector (Mα(g)1Mβ(θ)), gu=O.

ところで、位相変調方式ではこの検出電圧 θ=0の時
間を計測する。
By the way, in the phase modulation method, the time during which the detection voltage θ=0 is measured.

1 = i e ’ −定f 6 ルト、  σ=oの
とき、ベクトル(1α、1β)はベクトル(Mα(σ)
1 = i e ' - constant f 6 Root, when σ = o, the vector (1α, 1β) is the vector (Mα (σ)
.

Mパθ))に平行になる。M path becomes parallel to θ)).

故に、 1β/1α=M〆θVytα(丙  ・・・・・・・・
団・・・・・旧・・ (3)ここで位相誤差は tan   CM β(6)/ M a (σ)〕−〇
であるが、電流の位相から求めたθは、tan(iβ/
1α〕なので、 tan    [:Mβ(ヴ)/ M a (σ):l
 −tan    Ciβ/4α )  =  。
Therefore, 1β/1α=M〆θVytα(丙 ・・・・・・・・・
Group... Old... (3) Here, the phase error is tan CM β(6)/M a (σ)]-〇, but θ found from the phase of the current is tan(iβ/
1α], so tan [:Mβ(v)/M a (σ):l
-tan Ciβ/4α) = .

となる。becomes.

〔実施例〕〔Example〕

本発明の一実雄例における回路構成を表わすブロック図
を図に示す。
A block diagram showing a circuit configuration in an example of the present invention is shown in the figure.

lは16f8の周波数を発生する発振器、2は基準時間
軸をつくるl/16分周器、3は出力段は4ピツトで1
6ステツプからなる計数器、5はに=0゜■、・・・、
 15でδ=2π/16とするとき計数器5からの4ピ
ツト人力にδに対応して8ピツト15iakδの出力を
出すように予め記憶されたROM。
l is an oscillator that generates a frequency of 16f8, 2 is an l/16 frequency divider that creates a reference time axis, and 3 is an output stage with 4 pits.
Counter consisting of 6 steps, 5=0゜■,...
15, the ROM is stored in advance so that when δ=2π/16, an output of 8 pits 15iak δ is output corresponding to δ in response to the 4 pits human power from the counter 5.

6は4ピツト人力にδに対応して8ビツト1 cosk
δの出力を出すように予め記憶されたROM。
6 is 4 bits human power and δ corresponds to 8 bits 1 cosk
ROM pre-stored to output δ.

7および8はD / A変換器、9および10は加減算
器、11および12は電流アンプ、13はレゾルバで1
βはβ相励磁電流・1αはα相励磁゛電流・ θは検出
電圧、14Fiバンドパスフイルタ、15Vil/16
分周器2からの基準時間軸に対応してバンドパスフィル
タ14の出力を同期整流する同期整流器、16は位相出
力、4は位相誤差の補償回路である。
7 and 8 are D/A converters, 9 and 10 are adders/subtractors, 11 and 12 are current amplifiers, and 13 is a resolver.
β is β-phase excitation current, 1α is α-phase excitation current, θ is detection voltage, 14Fi bandpass filter, 15Vil/16
A synchronous rectifier synchronously rectifies the output of the band pass filter 14 in accordance with the reference time axis from the frequency divider 2, 16 is a phase output, and 4 is a phase error compensation circuit.

この補償回路4は次の要素から成る。This compensation circuit 4 consists of the following elements.

41は予め測定によって得たに番目の位相誤差δkから
4ピツトの人力にδに対応して8ピツトの出力32・1
δkcos (km)を出力するように記憶したRoM
、42は4ピツトの入力にδに対応して8ビツトの出力
32・1δksin(km)を出力するように記憶し九
ROM、43および祠はD/A変換器、45および46
は入力をl/32に減衰させる減衰器である。
41 is the output 32·1 of 8 pits corresponding to δ from the 2nd phase error δk obtained by measurement in advance.
RoM stored to output δkcos (km)
, 42 is a 4-pit input so as to output an 8-bit output 32·1 δksin (km) corresponding to δ; 9 ROM; 43 and a shrine are D/A converters;
is an attenuator that attenuates the input to l/32.

消去しようとする位相誤差の最高次数を8とし、等時間
隔16点で励磁電流ベクトルに補正を加えるものとする
The highest order of the phase error to be erased is assumed to be 8, and the excitation current vector is corrected at equal time intervals of 16 points.

このためには、まずMα(θ)、M7yF)を測定し、
σに=にδに対して、 Mα(km)+jMβ(km)=M(km) =M(:
GXI))”kδ+δk)ところで、Mは実数、a+T
=δでωは平均励磁電流角周波数である。
For this purpose, first measure Mα(θ), M7yF),
For σ = for δ, Mα (km) + jMβ (km) = M (km) = M (:
GXI))"kδ+δk) By the way, M is a real number, a+T
= δ and ω is the average excitation current angular frequency.

すなわち、電流ベクトルは、各時点で検出した位相から
位相誤差δにだけずれた方向に加えてヤれは良い。
That is, the current vector has a good deviation in addition to a direction that is shifted by the phase error δ from the phase detected at each time point.

δk(δ=ωτであるから 1〔e:rp〕j(′+δk )=1[e xp ] 
j km f (1+jδk)従ッテ、補(Itffl
’d 1(exp)”””、 jδにとなる。
δk (Since δ = ωτ, 1 [e: rp] j ('+ δk ) = 1 [e xp ]
j km f (1+jδk)
'd 1(exp)""", jδ becomes.

ここでδkが 1°=−1−Io、016  rad であったとし、これを に補償によって低減させようとすれば、の分解能が要る
Here, assuming that δk is 1°=−1−Io, 016 rad, if this is to be reduced by compensation, a resolution of is required.

kδの設定に8ビツト、δにの補正に8ピツトを1/3
2 に減衰して用いれば13ピツトの分解能がより、1
αに対してΔiα=−1δksin (kδ)・1βに
対してΔ1β=1δkcO5(kδ)を加えれば良い。
8 bits for setting kδ, 1/3 8 bits for correcting δ
If used with attenuation to 2, the resolution of 13 pits will be better,
It is sufficient to add Δiα=−1δksin (kδ) to α and Δ1β=1δkcO5(kδ) to 1β.

図で破線で囲んだ14の部分がこの補償回路である。A portion 14 surrounded by a broken line in the figure is this compensation circuit.

Mが連続的に変化しているのに対し、1がステップ状に
しか加えられないため生じる16倍の高調波は検出側に
バンドパスフィルタ14を入れることによシ除去する。
While M changes continuously, 1 is added only in a stepwise manner, and the 16 times higher harmonic generated is removed by inserting a bandpass filter 14 on the detection side.

本発明の他の実施例として、励磁回路や信号処理回路の
アンバランスやオフセット等を補償するには、ROM4
1.ROM42の中にこの分を含めてδに+Δkを入れ
てヤれは良い(Δkがその補償分)。
As another embodiment of the present invention, in order to compensate for unbalance, offset, etc. of the excitation circuit and signal processing circuit, the ROM4
1. By including this amount in the ROM 42 and adding +Δk to δ, the damage is good (Δk is the compensation amount).

これを自動的に計測し、チューニングすることもできる
This can also be automatically measured and tuned.

本発明の別の実施例として次の手段が考えられる。The following means can be considered as another embodiment of the present invention.

■ 図は原理図であるから複雑なノ・−ドウエアになっ
ているが、マイコンを使ってソフトで処理すれば非常に
)711なものになる。
■ The figure is a diagram of the principle, so it is complicated software, but if you process it with software using a microcomputer, it will become extremely complex.

■ 振幅変調方式においても同様な補償を行なうことが
できる。
(2) Similar compensation can be performed in the amplitude modulation method.

@ 図は電流励磁としているが、電圧励磁でも同様な方
式が可能である。
@ The figure shows current excitation, but a similar method is possible with voltage excitation.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、次のように数多くの効果が得
られ、当該分野に益するところが大きい。
Thus, according to the present invention, a number of effects can be obtained as described below, and the present invention will be of great benefit to the field concerned.

[株] インダクタ形レゾルバやインダクトシン等の検
出機の製造が容易になシ、精度の高いものが安くつくれ
る。
[Co., Ltd.] Detectors such as inductor resolvers and inductosin can be manufactured easily and with high accuracy at low cost.

■ 検出機の構造が簡単で良いから、非常に小形のもの
が可能になる。またリニアタ・ずプも容易に実現できる
■ Since the structure of the detector is simple and good, it is possible to make it extremely small. In addition, a linear type can be easily realized.

■ インダクタ形レゾル・くでは抵抗の畠度要化の影響
は受けない構成なので、温度補正が不要である。
■ Temperature correction is not necessary because the structure is not affected by the temperature change of inductor type resol/resistance.

■ 回路が比教的簡琳であり、コストが簀い。■ The circuit is simple and simple, and the cost is low.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例における回路構成を示すブロック
図である。 1・・・発振器、2・・・分周器、3・・・計数器、4
・・・補償回路、41 、42・・・FtOM、43.
・14・・・D/A変換器、45 、46・・・減衰器
、5.6・・・ROM、7.8・・・D/A変換器、9
.10・・・加減鎧器、11 、12・・・電流アン7
’、13・、・レゾルバ、14・・・バンドパスフィル
タ、15・・・同期整流器、16・・・出力。
The figure is a block diagram showing a circuit configuration in an embodiment of the present invention. 1... Oscillator, 2... Frequency divider, 3... Counter, 4
...Compensation circuit, 41, 42...FtOM, 43.
・14...D/A converter, 45, 46...Attenuator, 5.6...ROM, 7.8...D/A converter, 9
.. 10... Adjustment armor, 11, 12... Current Anne 7
', 13... Resolver, 14... Band pass filter, 15... Synchronous rectifier, 16... Output.

Claims (1)

【特許請求の範囲】 1、レゾルバ本体の構造に起因する位相誤差を励磁電流
波形を制御して補償する方式において、検出巻線wθと
励磁巻線wα、wβの相互インダクタンスをそれぞれM
α、Mβとし、 励磁電流をiα、iβとするとき、 i^2α+i^2β=const(一定) i^2α/iα=Mβ/Mα とする制御を、消去する位相誤差高調波次数の少くとも
2倍以上のステップ数毎サイクルで等時間隔に行なうこ
とを特徴とするレゾルバの位相誤差補償法。
[Claims] 1. In a method of compensating the phase error caused by the structure of the resolver body by controlling the excitation current waveform, the mutual inductance of the detection winding wθ and the excitation windings wα and wβ is set to M
When α and Mβ are excitation currents and iα and iβ are excitation currents, i^2α+i^2β=const (constant) i^2α/iα=Mβ/Mα. A phase error compensation method for a resolver characterized by performing the steps at equal time intervals every cycle at least twice the number of steps.
JP18285284A 1984-09-03 1984-09-03 Resolver phase error compensation method Expired - Lifetime JPH065173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18285284A JPH065173B2 (en) 1984-09-03 1984-09-03 Resolver phase error compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18285284A JPH065173B2 (en) 1984-09-03 1984-09-03 Resolver phase error compensation method

Publications (2)

Publication Number Publication Date
JPS6162352A true JPS6162352A (en) 1986-03-31
JPH065173B2 JPH065173B2 (en) 1994-01-19

Family

ID=16125581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18285284A Expired - Lifetime JPH065173B2 (en) 1984-09-03 1984-09-03 Resolver phase error compensation method

Country Status (1)

Country Link
JP (1) JPH065173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854983B4 (en) * 1997-11-28 2012-03-01 Mitutoyo Corp. Phase-delay correction system
JP2013221827A (en) * 2012-04-16 2013-10-28 Denso Corp Signal processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854983B4 (en) * 1997-11-28 2012-03-01 Mitutoyo Corp. Phase-delay correction system
JP2013221827A (en) * 2012-04-16 2013-10-28 Denso Corp Signal processor

Also Published As

Publication number Publication date
JPH065173B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
US6934654B2 (en) System and method for exact compensation of fundamental phasors
EP0117514B2 (en) Method for controlling induction motor and apparatus therefor
AU662975B2 (en) Automatic calibration of magnetic compasses
CA1181800A (en) Rotating field machine drive
US7030532B2 (en) Variable reluctance resolver
US5341081A (en) Vector control apparatus for induction motor
US7187309B2 (en) Angle computation method and apparatus for variable reluctance resolver
US6972976B2 (en) Compensation method for a voltage unbalance
JPS6162352A (en) Phase error compensating method of resolver
US5488280A (en) Adaptive control of a multiphase induction motor having concentrated phase windings
JP3279045B2 (en) Quadrupole mass spectrometer
KR0129561B1 (en) Induction motor vector control
US5861740A (en) Load loss standard for calibrating power loss measurement systems
JPH07298687A (en) Inverter with constant measuring and setting function
JP2003042805A (en) Magnetic induction type rotary position detector
JPS5815068B2 (en) Omega navigation receiver
SU853560A1 (en) Automatic ac bridge
SU769329A1 (en) Magnetic cource measuring device
JPH08327312A (en) Apparatus for correcting error of antenna angle
JPH0755900A (en) Inverter device
SU1582157A1 (en) Method of calibrating selective measuring instruments
SU409268A1 (en) ANGLE CONVERTER - PHASE - CODE
SU849387A1 (en) Method of secondary symmetrization of sine-cosine rotary transformer
JPS61167828A (en) Detection system for torque of induction motor
SU1596948A1 (en) Method of tuning a self-generating quantum magnetometer