JPS6162011A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPS6162011A
JPS6162011A JP18423684A JP18423684A JPS6162011A JP S6162011 A JPS6162011 A JP S6162011A JP 18423684 A JP18423684 A JP 18423684A JP 18423684 A JP18423684 A JP 18423684A JP S6162011 A JPS6162011 A JP S6162011A
Authority
JP
Japan
Prior art keywords
output
temperature
image
focus detection
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18423684A
Other languages
Japanese (ja)
Inventor
Takeshi Utagawa
健 歌川
Hideyasu Hosaka
保坂 秀康
Yosuke Kusaka
洋介 日下
Kunihisa Hoshino
星野 邦久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP18423684A priority Critical patent/JPS6162011A/en
Publication of JPS6162011A publication Critical patent/JPS6162011A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain a focus detector for detecting a focus accurately without the influence of temperature change by compensating defocusing variable on the basis of an output of a temperature detecting means. CONSTITUTION:The image of an object obtained from an image-forming optical device 1 is led into a photoelectric converter 2 and the focus of the device 1 is detected on the basis of an output from the converter 2. The titled detector is provided with a defocusing variable calculating means 3 for detecting the difference between the image forming surface of the device 1 and a prescribed detecting surface, i.e. a defocusing variable, from the output of the converter 2, a temperature detecting means 4 for generating an output corresponding to a temperature and a compensating means 5 for compensating the calculated contents or output of the means 3 on the basis of the output of the temperature detecting means. The compensating means 3 calculates the changed value of the defocusing variable due to temperature change from the output of the temperature detecting means 4 and sends the calculated value to the means 3 to compensate its calculated contents or compensates the output of the means 3 by the changed value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、カメラ等の結像光学装置の物体像を光電変換
装置上に導き、該光電変換装置の出力から該結像光学装
置の焦点検出を行なう焦点検出装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to guiding an object image from an imaging optical device such as a camera onto a photoelectric conversion device, and converting the output of the photoelectric conversion device to the focal point of the imaging optical device. The present invention relates to a focus detection device that performs detection.

(発明の背景) 従来の焦点検出装置としては、例えば第5図および第6
図に示すようなものがある。
(Background of the Invention) Conventional focus detection devices include, for example, those shown in FIGS.
There is something like the one shown in the figure.

すなわち、焦点検出装置は、カメラのフィルム面11と
ほぼ光学的に等価な位置に設けられた所定検出面6aの
後方に記音され、撮影レンズ12を通過した光束はクイ
ックリターンミラー13を透過し、サブミラー14によ
り光路を下方へ曲げられて所定検出面6aに至る。
That is, the focus detection device is located behind a predetermined detection surface 6a provided at a position approximately optically equivalent to the film surface 11 of the camera, and the light beam that has passed through the photographing lens 12 is transmitted through the quick return mirror 13. , the optical path is bent downward by the sub-mirror 14 and reaches a predetermined detection surface 6a.

焦点検出装置は、所定検出面6a上に形成される撮影レ
ンズ12の一次像を再結像する焦点検出光学装置7と、
焦点検出光学装置7の結像位置に設けられた光電変換装
置2と、光電変換装置2から得られたイメージ出力を処
理して、撮影レンズ12の結像面と所定検出面6aとの
差、即ちデフォーカス量を算出する演算装置3oと、こ
のデフォーカス量に基づいて駆動表示をする駆動表示装
置9とから構成されている。
The focus detection device includes a focus detection optical device 7 that re-images the primary image of the photographing lens 12 formed on a predetermined detection surface 6a;
The photoelectric conversion device 2 provided at the image forming position of the focus detection optical device 7 and the image output obtained from the photoelectric conversion device 2 are processed to determine the difference between the image forming surface of the photographing lens 12 and the predetermined detection surface 6a, That is, it is comprised of an arithmetic device 3o that calculates the amount of defocus, and a drive display device 9 that performs drive display based on this amount of defocus.

第6図に示すように、前記焦点検出光学装置7は、所定
検出面6a上の空中像を光電変換装置2に含まれる一対
の光電変換素子アレイ210,220−ヒに再結像する
一対の再結像レンズ71.72により構成され、前記演
算装置30は光電変換素子アレイ21o。
As shown in FIG. 6, the focus detection optical device 7 includes a pair of photoelectric conversion element arrays 210, 220-1 included in the photoelectric conversion device 2, which re-image an aerial image on a predetermined detection surface 6a. It is constituted by re-imaging lenses 71 and 72, and the arithmetic unit 30 is a photoelectric conversion element array 21o.

220のイメージ出力から光像の相対的ずれ量を検出し
てデフォーカス量を求める。
The amount of relative shift of the optical image is detected from the image output of 220 to determine the amount of defocus.

しかしながら、このような従来の焦点検出装置では、環
境の温度が変化すると、構成部材の伸縮等により光路長
が変化して、焦点検出誤差を生じてしまうという問題点
があった。
However, such a conventional focus detection device has a problem in that when the temperature of the environment changes, the optical path length changes due to expansion and contraction of the constituent members, resulting in a focus detection error.

すなわち、従来の焦点検出装置では、例えば、サブミラ
ー14の位置あるいは傾きが機械的支持部材の熱膨張等
で変化し、フィルム面Fと所定検出面6aとの光路長が
数10g狂えば、その量がそのまま焦点検出誤差となっ
てしまったり、あるいは、−・対の再結像レンズ71.
72および一対の光電変換素子アレイ2]0,220を
保持する機械部品の温度変化にともなう熱膨張の影響や
、再結像レンズ71゜72をプラスチックにより構成し
た場合には特に、それらの温度変化に伴なう熱膨張と屈
設率変化の影響で、前記デフォーカス量が温度変化の影
響を受け、焦点検出誤差を生じてしまうという問題点が
あった。
That is, in the conventional focus detection device, for example, if the position or inclination of the sub-mirror 14 changes due to thermal expansion of the mechanical support member, etc., and the optical path length between the film surface F and the predetermined detection surface 6a deviates by several tens of grams, the amount may directly become a focus detection error, or the re-imaging lens 71.
72 and the pair of photoelectric conversion element arrays 2] 0, 220 due to temperature changes, and especially when the re-imaging lenses 71 and 72 are made of plastic, such temperature changes may occur. There is a problem in that the amount of defocus is affected by temperature changes due to thermal expansion and changes in bending ratio, resulting in focus detection errors.

第7図は前記焦点検出光学装置7の別の従来例であり、
本出願人による特開昭59−42507号公報に開示さ
れた反射型再結像光学系を示している。
FIG. 7 shows another conventional example of the focus detection optical device 7,
This figure shows a reflection type re-imaging optical system disclosed in Japanese Patent Application Laid-Open No. 59-42507 by the present applicant.

この反射型再結像光学系は、透明な4つのブロック71
0,720,730,740により構成され、前記所定
検出面6aに設けられた遮光板750の開口?51から
の光束は、ブロック720の底面の反射面721で反射
され、ブロック730の反射面731で更に反射されて
凹面鏡781,782へ向い、凹面鏡781.7F32
で反射偏向された光束は、光透過部771,772を通
って二次像面検出領域781,782に二次像を形成す
るようにしたものである。
This reflective re-imaging optical system consists of four transparent blocks 71
0,720,730,740, and the opening of the light shielding plate 750 provided on the predetermined detection surface 6a? The light flux from 51 is reflected by the reflective surface 721 on the bottom of the block 720, further reflected by the reflective surface 731 of the block 730, and directed to the concave mirrors 781, 782, and the concave mirror 781.7F32.
The reflected and deflected light flux passes through light transmitting parts 771 and 772 to form secondary images in secondary image plane detection areas 781 and 782.

しかしながら、このような反射型再結像光学系を用いた
場合においても、前記ブロック710〜740の一部を
プラスチック等で構成すると、前記デフォーカス量が温
度変化の影響を受け、焦点検出誤差を生じてしまうとい
う問題点があった。
However, even when such a reflective re-imaging optical system is used, if some of the blocks 710 to 740 are made of plastic or the like, the defocus amount will be affected by temperature changes, resulting in focus detection errors. There was a problem that this occurred.

(発明の目的) 本発明は、このような従来の問題点に着目してなされた
もので、温度変化の影響を受けずに、精度の良い焦点検
出を行なえる焦点検出装置を提供することを目的として
いる。
(Objective of the Invention) The present invention has been made by focusing on such conventional problems, and an object of the present invention is to provide a focus detection device that can perform focus detection with high precision without being affected by temperature changes. The purpose is

(発明の概要) かかる目的を達成するため、この発明では、第1図に示
すように、結像光学装置1の物体像を光電変換装置2」
―に導き、該光電変換装置2の出力から、該結像光学装
置1の焦点検出を行なう焦点検出装置において、前記結
像光学装置1の結像面と所定検出面との差、即ちデフォ
ーカス量を前記光電変換装置2の出力から検出するデフ
ォーカス量演算手段3と、温度に対応した出力を発する
温度検出手段4と、該温度検出手段の出力に基づいて前
記デフォーカス量演算手段3の演算内容または出力を補
正する補正手段5とを設けて成り、前記補正手段5は前
記温度検出手段4の出力から温度変化による前記デフォ
ーカス量の変化量を算出し該変化量を破線矢印で示すよ
うにデフォーカス量演算手段3に送ってその演算内容を
補正したり、または実線矢印で示すようにデフォーカス
量演算手段3からの出力を前記変化量で補正するように
したものである。
(Summary of the Invention) In order to achieve the above object, in the present invention, as shown in FIG.
In a focus detection device that detects the focus of the imaging optical device 1 based on the output of the photoelectric conversion device 2, the difference between the imaging surface of the imaging optical device 1 and a predetermined detection surface, that is, the defocus a defocus amount calculation means 3 for detecting the amount from the output of the photoelectric conversion device 2; a temperature detection means 4 for emitting an output corresponding to the temperature; and a defocus amount calculation means 3 for detecting the amount from the output of the photoelectric conversion device 2; A correction means 5 for correcting the calculation content or output is provided, and the correction means 5 calculates the amount of change in the defocus amount due to temperature change from the output of the temperature detection means 4, and the amount of change is indicated by a broken line arrow. The output from the defocus amount calculating means 3 is sent to the defocus amount calculating means 3 and the calculated contents are corrected, or the output from the defocus amount calculating means 3 is corrected by the amount of change as shown by the solid line arrow.

(実施例) 以下、図面に基づいて本発明の一実施例を説明する。な
お、従来例と同様の部位には同一符号を付する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. Note that the same parts as in the conventional example are given the same reference numerals.

第2図〜第4図は本発明の一実施例を示している。2 to 4 show an embodiment of the present invention.

第2図に示すように、焦点検出装置の焦点検出光学装置
6はカメラのフィルム面11とほぼ光学的に等価な位置
に設けられた所定検出面6aの後方に配置され、撮影レ
ンズ12を通過した光束はクイックリターンミラー13
を透過し、サブミラー14により光路を下方へ曲げられ
て所定検出面6aに至る。
As shown in FIG. 2, the focus detection optical device 6 of the focus detection device is disposed behind a predetermined detection surface 6a provided at a position approximately optically equivalent to the film surface 11 of the camera, and passes through the photographing lens 12. The light flux is the quick return mirror 13
The optical path is bent downward by the sub-mirror 14 and reaches a predetermined detection surface 6a.

撮影レンズ12.クイックリターンミラー13.サブミ
ラー14およびフィルム面11によって前記結像光学装
置1が構成される。
Photography lens 12. Quick return mirror 13. The imaging optical device 1 is constituted by the sub-mirror 14 and the film surface 11.

所定検出面6a−トに形成される撮影レンズ12の一次
像を再結像する焦点検出光学装置7としては、第6図あ
るいは第7図に示すような光学系が用いられる。
An optical system as shown in FIG. 6 or 7 is used as the focus detection optical device 7 for re-imaging the primary image of the photographing lens 12 formed on the predetermined detection surface 6a.

第2図において、2は光電変換装置であり、一対のCC
D系イメージセンサ(以下、単にイメージセンサと呼ぶ
) 21.22が含まれている。
In FIG. 2, 2 is a photoelectric conversion device, and a pair of CC
D-system image sensors (hereinafter simply referred to as image sensors) 21 and 22 are included.

イメージセンサ21,22は焦点検出光学装置7の結像
面に配置され、各イメージセンサ21,22の上にはそ
れぞれ被写体像が形成される。イメージセンサ21.2
2の一部は遮光されてオプティカルブラック部21a 
、 22aが形成されている。
The image sensors 21 and 22 are arranged on the imaging plane of the focus detection optical device 7, and a subject image is formed on each image sensor 21 and 22, respectively. Image sensor 21.2
A part of 2 is shielded from light and becomes an optical black part 21a.
, 22a are formed.

イメージセンサ21,22は、 A/D変換部23を介
してマイクロプロセッサ50のデータメモリ手段51に
接続されており、イメージセンサ21,22のイメージ
出力は所定の蓄積時間の後時系列的に転送され、A/D
変換部23を介してマイクロプロセッサ50のデータメ
モリ手段51に記憶される。
The image sensors 21 and 22 are connected to the data memory means 51 of the microprocessor 50 via the A/D converter 23, and the image outputs of the image sensors 21 and 22 are transferred in chronological order after a predetermined accumulation time. and A/D
The data is stored in the data memory means 51 of the microprocessor 50 via the converter 23.

イメージセンサ21,22は前記の構成を持つ為、オプ
ティカルブラック部21a、22aに相当する画素の出
力が暗電流の大きさを反映している。
Since the image sensors 21 and 22 have the above configuration, the outputs of the pixels corresponding to the optical black portions 21a and 22a reflect the magnitude of the dark current.

イメージセンサ21,22からは第3図に示すような出
力が転送される。第3図において縦軸に出力電圧、横軸
に時間をとると、まず初めイメージセンサ出力を転送す
る為の不図示のシフトシスタ一部の空の出力2Aが現わ
れ、続いてオプティカルブラック部21a、22aの出
力2Bが現われ、最後にイメージセンサ2Cが現われる
。従って暗電流の大きさは正確には第3図のVdで示さ
れる量で、オプティカルブラック部21a、22aの出
力2Bの出力電圧とシフトレジスタ一部の出力2Aの出
力電圧の差として与えられる。
Outputs as shown in FIG. 3 are transferred from the image sensors 21 and 22. In FIG. 3, when the vertical axis is the output voltage and the horizontal axis is time, first an empty output 2A of a part of the shift sister (not shown) for transferring the image sensor output appears, and then the optical black portions 21a and 22a appear. output 2B appears, and finally the image sensor 2C appears. Therefore, the magnitude of the dark current is exactly the amount shown by Vd in FIG. 3, and is given as the difference between the output voltage of the output 2B of the optical black parts 21a and 22a and the output voltage of the output 2A of the shift register part.

具体的にはこのVdを求める為に、A/D変換の際の基
準レベルとしてシフトレジスタ一部の出力2Aの出力電
圧をホールドして行なうこともできるし、あるいはシフ
トレジスタ一部の出力2Aの電位もA/D変換して読み
とり、マイクロプロセッサ50内で差を求めるようにし
てもよい。
Specifically, in order to obtain this Vd, it is possible to hold the output voltage of a part of the shift register 2A as a reference level during A/D conversion, or to hold the output voltage of a part of the shift register 2A. The potential may also be A/D converted and read, and the difference may be determined within the microprocessor 50.

この実施例ではオプティカルブラック部21a。In this embodiment, the optical black portion 21a.

22aが温度検出手段4として機能しているわけである
が、このオプティカルブラック部21a、22aは第2
図のごとくイメージセンサ21,22の一方の端に設け
られるのが普通であり、通常このオプティカルブラック
部21a、22aの出力はイメージ出力2Cの黒基準と
して用いられる。
22a functions as the temperature detection means 4, and the optical black parts 21a and 22a function as the second temperature detection means 4.
As shown in the figure, it is usually provided at one end of the image sensors 21 and 22, and the outputs of the optical black sections 21a and 22a are usually used as a black reference for the image output 2C.

本実施例のようにオプティカルブラック部21a。As in this embodiment, the optical black portion 21a.

22aの出力から温度をモニターしようとする場合には
、室温で暗電流による蓄積電荷量が検出可能となる程の
蓄積時間をとると、非常に暗い場合を除いてはイメージ
出力2Cの部分は飽和してしまい、ブルーミングやスメ
ア等の問題が生じる。
When trying to monitor the temperature from the output of 22a, if the accumulation time is long enough to make it possible to detect the amount of accumulated charge due to dark current at room temperature, the image output 2C will be saturated unless it is very dark. This causes problems such as blooming and smearing.

これら余剰電荷のまわり込みのオプティカルブラック部
21a、22aへの影響に関してはオプティカルブラッ
ク部21a、22aの出力が転送の初めに出力される場
合の方がイメージ出力の後に送り出される場合より少な
いのでオプティカルブラック部21a、22aの出力を
イメージ出力2Cより先に出力することが好ましい。
Regarding the influence of these surplus charges on the optical black parts 21a and 22a, when the outputs of the optical black parts 21a and 22a are output at the beginning of transfer, there is less influence on the optical black parts 21a and 22a than when they are sent out after image output. It is preferable to output the outputs of the sections 21a and 22a before the image output 2C.

しかしオプティカルブラック部21a、22aがイメー
ジ出力部に隣接している場合は余剰電荷の影響を完全に
は避は難いので両者の間にダミー画素を入れるのが好ま
しく、さらにイメージセンサ部とは全く離れた場所にオ
プティカルブラック部21a。
However, if the optical black parts 21a and 22a are adjacent to the image output part, it is difficult to completely avoid the influence of excess charge, so it is preferable to insert dummy pixels between them, and furthermore, they are completely separated from the image sensor part. The optical black section 21a is located at the location where the optical black section 21a is located.

22aを設ければもっとも良い。It is best if 22a is provided.

又暗電流モニタの感度を一部げるには暗電流モニタ用の
オプティカルブラック部21a、22aの画素の大きさ
を大きくすれば良い。
Further, in order to partially increase the sensitivity of the dark current monitor, the size of the pixels of the optical black portions 21a and 22a for the dark current monitor may be increased.

また、第2図に示すように、前記マイクロプロセッサ5
0には、前記データメモリ手段51の外に、デフォーカ
ス量演算手段3.補正手段5および制御手段52が設け
られている。
Further, as shown in FIG. 2, the microprocessor 5
0, in addition to the data memory means 51, there is a defocus amount calculation means 3. A correction means 5 and a control means 52 are provided.

デフォーカス量演算手段3は、イメージセンサ21.2
2のイメージ出力2Cからイメージセンサ21゜22上
に形成される光像の相対的ずれ量を検出する。
The defocus amount calculation means 3 includes an image sensor 21.2.
The relative shift amount of the optical images formed on the image sensors 21 and 22 is detected from the image output 2C of 2.

前記補正手段5は、前記暗電流に相当する電圧Vdに対
応する値すなわち暗電流対応値Xdをオプティカルブラ
ック部21a、22aに相当するデータの入ったデータ
メモリ手段51のメモリ部からとり出し、この暗電流対
応値Xdから温度tを、暗電流がr ’Cごとに2倍に
なるという関係を用いて、により算出する。ここで、 
toは基準温度、例えば20℃であり、XdOは1=1
0のときのXdの値である。
The correction means 5 takes out a value corresponding to the voltage Vd corresponding to the dark current, that is, a dark current corresponding value Xd, from the memory section of the data memory means 51 containing data corresponding to the optical black parts 21a and 22a, and reads this value. The temperature t is calculated from the dark current corresponding value Xd by using the relationship that the dark current doubles for every r'C. here,
to is the reference temperature, for example 20°C, and XdO is 1=1
This is the value of Xd when it is 0.

なお、前記暗電流対応値Xdを求める際に、シフトレジ
スタ部の電位を基準としていない場合には、シフ)・レ
ジスタ部の出力2Aに相当するデータを差し引いて暗電
流対応値Xdを求める。
Note that when determining the dark current corresponding value Xd, if the potential of the shift register section is not used as a reference, the dark current corresponding value Xd is determined by subtracting data corresponding to the output 2A of the shift register section.

また、補正手段5は、温度tから温度変化によるデフォ
ーカス誤差ΔPを算出する。
Further, the correction means 5 calculates a defocus error ΔP due to temperature change from the temperature t.

ΔP = f (t)であり、この関数形f (t)は
誤差の発生原因により異なるので最終的には実験的に求
め、その求められた関係形を記憶しておいて温度tに対
するデフォーカス誤差ΔPを求める。
ΔP = f (t), and since this functional form f (t) differs depending on the cause of the error, it is ultimately obtained experimentally, and the obtained relational form is memorized and used for defocusing with respect to temperature t. Find the error ΔP.

しかし怜通は基準温度tOのL下の20〜30’Oの使
用範囲では温度tとデフォーカス誤差ΔPとの関係は線
形に近似できるのでその場合には ΔP  =  k(t−to ) となる。ここでkは焦点検出装置とか結像光学装置によ
り決まる比例定数であり、基準温度toの時にデフォー
カス誤差ΔPが零となるように焦点検出装置は調整され
ているものとする。
However, in the usage range of 20 to 30'O below L of the reference temperature tO, the relationship between the temperature t and the defocus error ΔP can be approximated linearly, so in that case, ΔP = k(t-to). . Here, k is a proportionality constant determined by the focus detection device or the imaging optical device, and it is assumed that the focus detection device is adjusted so that the defocus error ΔP becomes zero when the reference temperature is to.

さらに、前記補正手段5はデフォーカス誤差ΔPを記憶
しておき、デフォーカス昂−演算手段3の出力(デフォ
ーカス量P)にデフォーカス誤差ΔPを加算して補正す
る。
Furthermore, the correction means 5 stores the defocus error ΔP, and corrects it by adding the defocus error ΔP to the output (defocus amount P) of the defocus calculation means 3.

前記制御手段52はセンサー駆動手段24を介して光電
変換装置2に接続されており、暗電流測定の為の電荷蓄
積時間Tdをカウンターにセットしてセンサー駆動手段
24に蓄積開始を指示し、上記カウンターが零となった
詩にセンサー駆動手段24に転送開始を指示する。セン
サー駆動手段24はこの指示にもとずいて光電変換装置
2の駆動を制御する。
The control means 52 is connected to the photoelectric conversion device 2 via the sensor drive means 24, sets the charge accumulation time Td for dark current measurement in a counter, instructs the sensor drive means 24 to start accumulation, and performs the above-described operation. When the counter reaches zero, the sensor driving means 24 is instructed to start the transfer. The sensor drive means 24 controls the drive of the photoelectric conversion device 2 based on this instruction.

前記マイクロプロセッサ50には、リセット手段8と、
補正手段5により補正されたデフォーカス@prにより
撮影レンズ12の駆動あるいはその駆動方向の表示を行
なう駆動表示手段90とが接続されている。
The microprocessor 50 includes a reset means 8;
A drive display means 90 is connected to drive the photographing lens 12 or to display its drive direction based on the defocus @pr corrected by the correction means 5.

次に、1−記構成を有する焦点検出装置の動作を第4図
のフローチャートを用いて説明する。
Next, the operation of the focus detection device having the configuration described in 1- will be explained using the flowchart of FIG.

まず、ステップ■では、リセット手段8によりマイクロ
プロセッサ50がリセットされる。
First, in step (2), the microprocessor 50 is reset by the reset means 8.

次いでステップ■では、制御手段52は暗電流測定の為
の電荷蓄積時間Tdをカウンターにセットしてセンサー
駆動手段24に蓄積開始を指示し、上記カウンターが零
になった時にセンサー駆動手段24に転送開始を指示す
る。センサー駆動手段24はこの指示にもとづいて光電
変換装置2の駆動を制御する。
Next, in step (2), the control means 52 sets the charge accumulation time Td for dark current measurement in the counter, instructs the sensor drive means 24 to start accumulation, and when the counter becomes zero, transfers the charge to the sensor drive means 24. Instruct to start. The sensor drive means 24 controls the drive of the photoelectric conversion device 2 based on this instruction.

ステップ■では、光電変換装置2からのデータがAID
変換部23を介してデータメモリ手段51に転送され、
記憶される。
In step ■, the data from the photoelectric conversion device 2 is
is transferred to the data memory means 51 via the converter 23,
be remembered.

ステップ■では、補正手段5が、暗電流に相当する゛重
圧Vdに対応する暗電流対応値Xdを、オプティカルブ
ラック部21a、22aに相当するデータの入ったデー
タメモリ手段51のメモリ部からとり出す。
In step (2), the correction means 5 takes out the dark current corresponding value Xd corresponding to the heavy pressure Vd corresponding to the dark current from the memory section of the data memory means 51 containing data corresponding to the optical black parts 21a and 22a. .

ステップ■では、補正手段5が、前記(1)式に基づい
て暗電流対応値Xdから温度tを算出する。
In step (2), the correction means 5 calculates the temperature t from the dark current corresponding value Xd based on the equation (1).

ステップ■では、補正手段5が温度tからデフォーカス
誤差ΔPを、前述した方法あるいは前記(2)式に基づ
いて算出する。
In step (2), the correction means 5 calculates the defocus error ΔP from the temperature t based on the method described above or the equation (2).

ステップ■ではこうして求められたデフォーカス誤差Δ
Pを補正手段5に記憶しておき、これ以後各回のデフォ
ーカス量Pの演算結果にこの値を加算して補正する。
In step ■, the defocus error Δ obtained in this way is
P is stored in the correction means 5, and thereafter this value is added to the calculation result of the defocus amount P each time for correction.

ステップ■、■、[相]は通常の焦点検出の動作である
。この通常動作においての蓄積時間の決定は公知の方法
にもとすいて行なわれる。
Steps ■, ■, and [phase] are normal focus detection operations. The accumulation time during normal operation is determined using a known method.

即ち、光電変換デバイスがイメージセンサに蓄積された
平均電荷をモニタしてこれが所定量になると自動的に電
荷蓄積を終了して転送するようにしてもよいし、前回の
結果を用いて次回の積分時間をソフトウェアでコントロ
ールしてもよい。
That is, the photoelectric conversion device may monitor the average charge accumulated in the image sensor, and when it reaches a predetermined amount, it may automatically end charge accumulation and transfer the charge, or the previous result may be used to calculate the next integration. The time may be controlled by software.

いずれにせよ、このようにしてデフォーカス量Pがデフ
ォーカス量演算手段3によりステップ[相]で求められ
ると、補正手段5はステ・ンプ■で補正されたデフォー
カス量FTをFT=P+ΔPにより算出する。そしてス
テ・ンプ@でこのデフォーカスri+rP T I外部
へ出力する。駆動表示手段80はこのFTの値により9
動表示を行なう。
In any case, when the defocus amount P is determined in step [phase] by the defocus amount calculation means 3 in this way, the correction means 5 calculates the defocus amount FT corrected in step (step) by FT=P+ΔP. calculate. Then, this defocus ri+rP T I is outputted to the outside using STEP@. The drive display means 80 displays 9 based on the value of FT.
Performs dynamic display.

その後は再びステップ■にもどって同じサイクルをくり
返す。
After that, go back to step ■ and repeat the same cycle.

暗電流モニタ用の電荷蓄積時間Tdはデバイスにもよる
が、例えば0.1〜1 sec程度の値である。
The charge accumulation time Td for dark current monitoring depends on the device, but is, for example, a value of about 0.1 to 1 sec.

上記の実施例では、電荷蓄積時間Tdとして1つの値の
みを用いたが、初めは電荷蓄積時間Td〇−0,1se
cとして暗電流をモニタし、暗電流出力が不十分な時に
は電荷蓄積時間Td’ = 1 secとして再度暗電
流をモニタする等、複数回蓄積時間を変えて行なうこと
も可能である。
In the above embodiment, only one value was used as the charge accumulation time Td, but initially the charge accumulation time Td〇-0, 1se
It is also possible to monitor the dark current as c, and when the dark current output is insufficient, to monitor the dark current again with the charge accumulation time Td' = 1 sec, for example, by changing the accumulation time a plurality of times.

この場合、電荷蓄積時間TdOの蓄積時間を基準に(1
)式が作られているとすれば、他の蓄積時間の場合に適
用する為にはTdoの場合に換算した値を使えばよく、
蓄積時間が電荷蓄積時間Td’の時にはその時の暗電流
対応値Xdの値にTd0/Tdlを掛けたものを新たに
暗電流対応値Xdとして(1)式に代入すればよい。
In this case, (1
) formula has been created, in order to apply it to cases of other accumulation times, it is sufficient to use the value converted to the case of Tdo,
When the accumulation time is the charge accumulation time Td', the value of the dark current corresponding value Xd at that time multiplied by Td0/Tdl may be substituted into equation (1) as a new dark current corresponding value Xd.

また、暗いときには蓄積時間Tが長くなっているので、
ステップ■〜■の通常のループにおけるオプティカルブ
ラック部2+a、22aの出力2Bに関する暗電流対応
値Xdを用いても温度を決めることが可能である。
Also, when it is dark, the storage time T is longer, so
The temperature can also be determined using the dark current corresponding value Xd regarding the output 2B of the optical black portions 2+a and 22a in the normal loop of steps ① to ②.

この場合も、(1)式が電荷蓄積時間TdOの蓄積時間
を基準に作られているとしたなら、蓄積時間Tの時の暗
電流対応値Xdの値にTd0/Tを掛けた値を(1)式
における暗電流対応値Xdとして計算すればよい。
In this case as well, if equation (1) is created based on the accumulation time of the charge accumulation time TdO, then the value obtained by multiplying the value of the dark current corresponding value Xd at the accumulation time T by Td0/T is ( It may be calculated as the dark current corresponding value Xd in equation 1).

なお、上記実施例では、デフォーカス量の油質結果に対
して補正を加える場合を述べたが、もちろんデフォーカ
ス量が算出される前の段階すなわち像ずれ隈に対して温
度による補正を加えてからデフォーカス量を演算しても
よい。
In the above embodiment, a case has been described in which correction is made to the oil quality result of the defocus amount, but of course correction based on temperature is added to the image shift area before the defocus amount is calculated. The defocus amount may be calculated from.

(発明の効果) 本発明に係る焦点検出装置によれば、温度に対応した出
力を検出する温度検出手段と、この温度検出手段の出力
に基づいてデフォーカス量を補正する補正手段とを設け
たので、温度変化の影響を受けずに、精度のよい焦点検
出が可能である。
(Effects of the Invention) According to the focus detection device according to the present invention, a temperature detection means for detecting an output corresponding to temperature, and a correction means for correcting a defocus amount based on the output of the temperature detection means are provided. Therefore, accurate focus detection is possible without being affected by temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を明示するための全体構成図、第
2図〜第4図は本発明の一実施例を示しており、第2図
は全体的な配置図、第3図はCCD系イメージセンサの
出力図、第4図は動作を説明するためのフローチャート
、第5図および第6図は従来例を示しており、第5図は
全体的な配置図、第6図は焦点検出光学装置を示す該略
図、第7図は焦点検出光学装置の他の例を示す斜視図で
ある。 1・・・結像光学装置   2・・・光電変換装性3・
・・デフォーカス量演算手段 4・・・温度検出手段   5・・・補正手段8a・・
・所定検出面 第1図 第2図 第3図 1r 第4図 ■ ソヒ伴 ■監積時旬ATdl:ずb ■ 協墳終JやEうξり転進( ■ ロPC秘−jボξ1ト、と9ヒニタ′1ろr  暗
a胤量に;昌胆− 第5図 第6図 第7図
Fig. 1 is an overall configuration diagram for clearly showing the configuration of the present invention, Figs. 2 to 4 show an embodiment of the invention, Fig. 2 is an overall layout diagram, and Fig. 3 is an overall configuration diagram. An output diagram of a CCD image sensor, FIG. 4 is a flowchart for explaining the operation, FIGS. 5 and 6 show conventional examples, FIG. 5 is an overall layout diagram, and FIG. 6 is a focus diagram. FIG. 7 is a perspective view showing another example of the focus detection optical device. 1... Imaging optical device 2... Photoelectric conversion equipment 3.
...Defocus amount calculating means 4...Temperature detection means 5...Correction means 8a...
・Predetermined detection surface Fig. 1 Fig. 2 Fig. 3 Fig. 1r Fig. 4 ■ Sohi ban ■ Accumulation time ATdl: zub ■ Collaborative burial mound final J and E U ξ turn (■ Ro PC secret - jbo ξ1 to , and 9 hinita'1ror to the amount of dark seeds; Chang'an - Figure 5 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)結像光学装置の物体像を光電変換装置上に導き、
該光電変換装置の出力から、該結像光学装置の焦点検出
を行なう焦点検出装置において、前記結像光学装置の結
像面と所定検出面との差、即ちデフオーカス量を前記光
電変換装置の出力から検出するデフオーカス量演算手段
と、温度に対応した出力を発する温度検出手段と、該温
度検出手段の出力に基づいて前記デフオーカス量演算手
段の演算内容または出力を補正する補正手段とを設けた
ことを特徴とする焦点検出装置。
(1) Guide the object image of the imaging optical device onto the photoelectric conversion device,
A focus detection device that detects the focus of the imaging optical device calculates the difference between the imaging plane of the imaging optical device and a predetermined detection surface, that is, the amount of defocus, from the output of the photoelectric conversion device. A defocus amount calculation means for detecting from the temperature, a temperature detection means for emitting an output corresponding to the temperature, and a correction means for correcting the calculation content or output of the defocus amount calculation means based on the output of the temperature detection means. A focus detection device featuring:
(2)前記光電変換装置はCCD形イメージセンサを有
しており、前記温度検出手段は該イメージセンサの暗電
流をモニタすることを特徴とする特許請求の範囲第1項
に記載の焦点検出装置。
(2) The focus detection device according to claim 1, wherein the photoelectric conversion device has a CCD type image sensor, and the temperature detection means monitors a dark current of the image sensor. .
JP18423684A 1984-09-03 1984-09-03 Focus detector Pending JPS6162011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18423684A JPS6162011A (en) 1984-09-03 1984-09-03 Focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18423684A JPS6162011A (en) 1984-09-03 1984-09-03 Focus detector

Publications (1)

Publication Number Publication Date
JPS6162011A true JPS6162011A (en) 1986-03-29

Family

ID=16149757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18423684A Pending JPS6162011A (en) 1984-09-03 1984-09-03 Focus detector

Country Status (1)

Country Link
JP (1) JPS6162011A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288806A (en) * 1988-05-16 1989-11-21 Minolta Camera Co Ltd Device for correcting lens back fluctuation in camera
JPH04132151U (en) * 1991-05-28 1992-12-07 厳市 小野 Separator extension aid for concrete building construction
JPH05125832A (en) * 1991-08-20 1993-05-21 Kobe Kizai:Kk Filler type cone and method for filling hole in structure of concrete placed by using the same
US7454133B2 (en) 2004-08-26 2008-11-18 Canon Kabushiki Kaisha Solid-state image sensor and automatic-focus camera using the same
US9779390B1 (en) 2008-04-21 2017-10-03 Monster Worldwide, Inc. Apparatuses, methods and systems for advancement path benchmarking
US9959525B2 (en) 2005-05-23 2018-05-01 Monster Worldwide, Inc. Intelligent job matching system and method
US10181116B1 (en) 2006-01-09 2019-01-15 Monster Worldwide, Inc. Apparatuses, systems and methods for data entry correlation
US10387839B2 (en) 2006-03-31 2019-08-20 Monster Worldwide, Inc. Apparatuses, methods and systems for automated online data submission
US11995613B2 (en) 2014-05-13 2024-05-28 Monster Worldwide, Inc. Search extraction matching, draw attention-fit modality, application morphing, and informed apply apparatuses, methods and systems

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288806A (en) * 1988-05-16 1989-11-21 Minolta Camera Co Ltd Device for correcting lens back fluctuation in camera
JPH04132151U (en) * 1991-05-28 1992-12-07 厳市 小野 Separator extension aid for concrete building construction
JPH05125832A (en) * 1991-08-20 1993-05-21 Kobe Kizai:Kk Filler type cone and method for filling hole in structure of concrete placed by using the same
US7454133B2 (en) 2004-08-26 2008-11-18 Canon Kabushiki Kaisha Solid-state image sensor and automatic-focus camera using the same
US9959525B2 (en) 2005-05-23 2018-05-01 Monster Worldwide, Inc. Intelligent job matching system and method
US10181116B1 (en) 2006-01-09 2019-01-15 Monster Worldwide, Inc. Apparatuses, systems and methods for data entry correlation
US10387839B2 (en) 2006-03-31 2019-08-20 Monster Worldwide, Inc. Apparatuses, methods and systems for automated online data submission
US9779390B1 (en) 2008-04-21 2017-10-03 Monster Worldwide, Inc. Apparatuses, methods and systems for advancement path benchmarking
US9830575B1 (en) 2008-04-21 2017-11-28 Monster Worldwide, Inc. Apparatuses, methods and systems for advancement path taxonomy
US10387837B1 (en) 2008-04-21 2019-08-20 Monster Worldwide, Inc. Apparatuses, methods and systems for career path advancement structuring
US11995613B2 (en) 2014-05-13 2024-05-28 Monster Worldwide, Inc. Search extraction matching, draw attention-fit modality, application morphing, and informed apply apparatuses, methods and systems

Similar Documents

Publication Publication Date Title
US4643557A (en) Exposure control apparatus
US4473287A (en) Focus detecting device for camera
US8315513B2 (en) Focus detection apparatus and control method thereof
JPH0373847B2 (en)
JPS6162011A (en) Focus detector
CN104935806A (en) Focus detection apparatus, and method of controlling the same
US7042491B2 (en) Image signal output method, image signal output device, rangefinder, and imaging device
JPH0410051B2 (en)
JP2001016496A (en) Digital image pickup device and temperature compensation method for its optical system
JP2023083980A (en) Distance measuring device, distance detection art and imaging device
JPS626206B2 (en)
JPH0762732B2 (en) Focus detection device
JPH10161014A (en) Automatic focus detector using two-dimensional sensor
JPH03196106A (en) Camera focus detector
US5187516A (en) Device for indicating distance measuring zone of camera
US6137956A (en) Shake detecting/correcting device for use in an optical apparatus and a shake detecting/correcting method
US20100241385A1 (en) Method and system for measurement and correction of thermally induced changes of boresight, effective focal length, and focus
JPS6122316A (en) Focus detecting device
JPH11218674A (en) Objective lens, image pickup device, and photographing system provided with them
JPS63198818A (en) Distance detecting device
JP2740749B2 (en) Auto focus device
JP2006184321A (en) Focus detecting device and optical equipment equipped with focus detecting device
TWI512351B (en) Multi-camera imaging system, and compensation method for image reconstruction
JPS60178413A (en) Focus correcting device of camera
JP2964586B2 (en) Camera image blur detection device