JPS6161930A - Engine torque fluctuation controller - Google Patents

Engine torque fluctuation controller

Info

Publication number
JPS6161930A
JPS6161930A JP59183060A JP18306084A JPS6161930A JP S6161930 A JPS6161930 A JP S6161930A JP 59183060 A JP59183060 A JP 59183060A JP 18306084 A JP18306084 A JP 18306084A JP S6161930 A JPS6161930 A JP S6161930A
Authority
JP
Japan
Prior art keywords
torque
engine
electric drive
crankshaft
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59183060A
Other languages
Japanese (ja)
Inventor
Hideki Tanaka
英樹 田中
Shigeki Hamada
浜田 茂樹
Takashige Tokushima
徳島 孝成
Harumi Azuma
東 晴己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59183060A priority Critical patent/JPS6161930A/en
Priority to US06/769,892 priority patent/US4699097A/en
Priority to DE8585110847T priority patent/DE3578715D1/en
Priority to EP85110847A priority patent/EP0175952B1/en
Publication of JPS6161930A publication Critical patent/JPS6161930A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/06Engines with means for equalising torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PURPOSE:To suppress fluctuation of torque effectively by functioning a generator or an electric driver synchronously with periodic fluctuation of engine torque thereby reducing reverse torque to be applied through the generator under heavy load of engine. CONSTITUTION:Two kind of rotary side electromagnetic coils 8, 9 and a magnetic member 10 are provided on the outercircumference of a flywheel 2 fixed to the end of crank shaft 1 while a fixed side electromagnetic coil 7 is provided onto the innercircumferential face of a fixing member 6 secured to a cylinder block 3 around the flywheel 2. An electric driver for applying positive torque onto the crank shaft 1 through power supply to said coils 7, 8 and a generator for applying reverse torque onto the crank shaft 1 through power supply to said coils 7, 8 are constructed. It is controlled such that said reverse torque will be lower than said positive torque under heavy load when compared with low load.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明tit、−rンジンの1〜ルク変動を抑制!J″
るための1〜ルク変動制御装置に関づるものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention suppresses tit and -r engine fluctuations from 1 to 1 lux! J″
This relates to a 1 to 1-lux variation control device for

(従来技術) 一般に自動中等の[クランにおいては、エンジンの作動
に伴っCクランクシャフトに周期的2iトルク変動が生
じ、この1〜ルク変動が振動U音の原因どイJτす、に
た運転壱に不快感を1うえる要素となるので、このJ、
うなトルク変動はできるだ(J抑制することが望Jニジ
い。
(Prior art) In general, in automatic cranks, periodic 2i torque fluctuations occur in the C crankshaft as the engine operates, and this 1 to 1 torque fluctuation is the cause of the vibration U noise. Since this is an element that increases discomfort by 1, this J,
Torque fluctuations like this are possible (it is desirable to suppress the torque).

従来、このようなトルク変動を抑制りる11置としでは
、特開11jl 55 1431号公報に示されるよう
に、クランクシャフトとともに回転する永久磁すiを用
いI〔第1の磁束発生下段と、これに対応して非回転部
に設置′Jられた電磁石からなる第2の磁束発生手段と
を備え、第2の磁束発生手段に通電Jることにより、ク
ランクシ1?71〜に発生する回転トルクとほぼ逆位相
の!l気]−ルクがクランクシャフトに加えられるよう
に」ノたH 首がある。
Conventionally, in an 11-position system for suppressing such torque fluctuations, as shown in Japanese Unexamined Patent Publication No. 11JL 55 1431, a permanent magnet i rotating together with the crankshaft is used. Correspondingly, a second magnetic flux generating means consisting of an electromagnet installed in a non-rotating part is provided, and by energizing the second magnetic flux generating means, rotational torque is generated in the crankshaft 1-71. Almost in opposite phase! There is a ``notaH'' neck so that ``l air'' - lux is added to the crankshaft.

−1−配装W’j G;J:、永久磁石を用いた第1の
磁束発生手段の回転に伴ってクランクシp71−に加え
られる磁気トルクが変動りる、1、うにしたしのであ・
)−(、[磁気1〜ルクが11トルクとなるとき1)逆
トルクと1.するとさl)第2の1柱束発生丁段C゛電
力が泊費(されることどなるが、燃費等の面からは−(
゛きるだ(」「ネル1゛−を演費りることイI〜くトル
ク☆動を抑制Jることが望ましい31、l、]、−(二
の、1、う(2要求の(、土かに、高負荷時にはできる
だ(ノトルク4−増大さく>T出力を高めたいどい“)
:JTj ”J2がある、1(発明の1云l的) 本発明i;1これらの事情にW、み、クランクシ11−
71〜に発生するI〜ルク疫駆動応じて正トルクと逆]
ヘルクどを所定のり・rミンクで加えることに、1、す
1〜ル//変動を抑制づ−ることがひき、しかも逆l・
ルクを加えると≧\に−Lネノ1だ1″−を同数Jるこ
とができて、]−ネルH= −r]スを小さくすること
ができ、イの、[−1]ンジン^1”i 夕1時の出力
を白土!1−ることができるエンジンの1〜ルク変動制
611装買を捏(1(りるちのである。
-1-Arrangement W'j G;J:, The magnetic torque applied to the crankshaft p71- changes with the rotation of the first magnetic flux generating means using a permanent magnet.1.
) - (, [When magnetic 1~luk becomes 11 torque 1) Reverse torque and 1. Then, the second one-column bundle is generated.C゛The electric power is used for lodging expenses (C), but from the point of view of fuel efficiency, etc.
゛Kirda() ``It is desirable to suppress the torque ☆ movement J to perform the performance of the 1゛-, 31, l,], -(2, 1, U(2) of the request (, It can be done under high load (Notorque 4-Increase > Increase T output)
:JTj ``There is J2, 1 (invention 1) This invention i;
71 ~ I ~ Positive torque and reverse torque depending on the torque drive]
By adding Herkudo at a predetermined amount, it is possible to suppress fluctuations in the amount of
If we add 1'' to ≧\, we can add the same number of -Lneno1d1''-, and we can reduce ]-nelH=-r], and the [-1]injin^1 ”i White clay output at 1:00 pm! 1 - The engine that can be used is a 611 engine with a variable torque system.

(発明の構成) 本発明は、エンジン1こ、)、り駆動され−(クランク
シ11フトに逆トルクを与える発電装置と、クランクシ
ト71へにill t〜ルクをりえる電気駆動装置と、
クランクシ【・)1−に発生する1〜ルクの周期的変動
と同期しで、]・ルク増増大)に上記発電装向を作φ1
1さ1!、1〜ルク減少11、rに1記電気駆動装置を
作動ざ1vるJ、−うにこの両装置i、7の作動時期を
制御ηる作動時期制御T段と、エンジンのT1荷を検出
する負荷検出′「段ど、この0荷検出f段の出力を受G
J、Tンジンの高f″IM時には低イ1荷([、旨こ比
べて、電気駆動装「9(こよりへえられるH二l〜ルク
に対(]発発電量に11、すJjえられる逆1〜ルクを
相対的に小さくするように制御りるトルク量制御f段と
を備えたl)のである。つまり、−[クランの作動にJ
、って生じるクランクシャフトのトルク変動に対し、こ
の変動を抑制+3る。j;うl:1ll−ルクど逆トル
クとを加え、かつ逆1゛・ルクは発電にJ:つ(jJえ
る3」;うにするどど・bに、電気駆動装置に31、る
電力消費祐に対Jる発電装置による発電量の相対値を低
(1荷時には大きく、畠角前峙には小さくM−るように
したーしのである。
(Structure of the Invention) The present invention includes an electric power generating device which is driven by an engine 1, and which gives a reverse torque to the crankshaft 11, and an electric drive device which can send illt to the crankshaft 71.
In synchronization with the periodic fluctuations of 1 to 100 degrees occurring in the crankshaft [1-]
1sa1! , 1~The electric drive device 1 is operated at 11, r, and the operation timing of both devices i and 7 is controlled by the T stage, and the T1 load of the engine is detected. The load detection 'stage receives the output of this 0 load detection stage f.
When the high f''IM of a J and T engine is used, the electric power generated by the electric drive system is increased by 11, compared to the electric drive system's H2l ~ l~k, which can be increased from this. It is equipped with a torque amount control f stage that controls the reverse 1 to relatively small torque.In other words, -[J
This fluctuation is suppressed +3 against the crankshaft torque fluctuation that occurs. The reverse torque is applied to the electric drive, and the reverse torque is applied to the electric drive. The relative value of the amount of power generated by the power generation device with respect to J was set to be low (large when one load is on, and small when in front of Hatake).

上記1b成において、電気駆動装置によりうえられる正
トルクに対【]発電装置dにJζり与えられる逆1〜ル
クを相対的に小さくりるというのは、上記逆1〜ルクを
小さくり−るか、または上記正トルクを大きくし、ある
いはその両方を行うことを意味J−るものである。
In configuration 1b above, relatively reducing the inverse torque given to the power generator d with respect to the positive torque generated by the electric drive device means reducing the inverse torque described above. This means increasing the positive torque, or increasing the positive torque, or both.

(実施例) 第1図乃至843図は本発明Q) l−ルク変動制御装
四に具備される発電装置おJ、び電気駆動装置の構造の
一実施例を示し−Cおり、この実施例では、クランクシ
ャフト1に取fζ1けられたフライホイール2の外周と
、その周囲の非回転部分とに、発電装置および電気駆動
装置を構成する電磁コイルが配設されている。゛すなわ
ら、シリンダブロック3の側方においてクランクシャフ
ト1の側端にはフライホイール2が取イ・Hノられ、そ
の外方にクラッチ機構4が装備されるとともに、フライ
ホイール2の周囲にはクラッチハウジング5を取付ける
取付部材6がシリンダブロック3に固着されでいる。
(Embodiment) Figures 1 to 843 show an embodiment of the structure of the power generation device J and the electric drive device included in the l-lux fluctuation control system (Q) of the present invention. In this case, an electromagnetic coil constituting a power generation device and an electric drive device is arranged on the outer periphery of a flywheel 2 mounted on a crankshaft 1 and a non-rotating portion around the flywheel 2. In other words, a flywheel 2 is installed at the side end of the crankshaft 1 on the side of the cylinder block 3, a clutch mechanism 4 is installed on the outside of the flywheel 2, and a clutch mechanism 4 is installed around the flywheel 2. A mounting member 6 for mounting the clutch housing 5 is fixed to the cylinder block 3.

この部分においで、上配取祠部材6の内周面にサボータ
6Flを介して固定制電1iJI Tlイル(以下[固
定T1イル−1という)7が装備されるとともに、フノ
ーイホイール2の外周面に2秤類の回転制電II −1
イル(以下[回転コイル]という)8,9および磁噴!
(休10が装備されている。またフライホイール2の内
方においてクランクシレフト1の外周部には整流子11
おJ:びスリップリング12が設けられ、イれぞれにブ
ラシ13.14が接触している。<’c a3.15は
ディストリビュータである。
In this part, a fixed antistatic 1iJI Tl wheel (hereinafter referred to as "fixed T1Il-1") 7 is installed on the inner peripheral surface of the upper distribution wheel 6 via a sabot 6Fl, and the outer periphery of the Funoi wheel 2 is Rotating anti-static with two scales on the surface II-1
coil (hereinafter referred to as [rotating coil]) 8, 9 and magnetic jet!
(A commutator 11 is installed on the outer periphery of the crankshaft 1 inside the flywheel 2.)
A slip ring 12 and a slip ring 12 are provided, and brushes 13 and 14 are in contact with each of them. <'c a3.15 is a distributor.

固定コイル7はモータどオルタネータの各固定側コイル
の役目を兼ねるもので、配Ii!構造を概略的に表わし
た第5図おj;び第7図に丞寸j;うに、三相tM造で
蛇行状に配設されており、コントロールコニット20に
接続されている。イしで、後に詳述するように]シトロ
ールユニット20において上記固定]イル7に接続され
る回路が電気駆動■1と発電用どに切換えられるにうに
なっている。
The fixed coil 7 serves as each fixed side coil of the motor and alternator, and is arranged as follows. The structure is schematically shown in FIGS. 5 and 7, and is a three-phase TM structure arranged in a meandering manner and connected to a control unit 20. As will be described in detail later, the circuit connected to the fixed coil 7 in the Citrol unit 20 can be switched between electric drive mode 1 and power generation.

+4:/、ニフライホイール2の外周に装備された2種
類の回転=1イル8,91tそれぞれモータのアーマチ
コア]イルおJ:びオルタネータのフィールドコイ−〇
 − ルの役[二Iを宋す〜L)ので、第1回転コイル8は第
4図に示すように、七−タのアーマチコアニ]イルど同
等の所定の配FA構′)i’47−整流子11に接続2
Xれ、第2回転コイル9は第6図(、二示す、J、−)
に蛇行状(、二配設され−(、スリップリンゲ12に接
続されている。こrしらの回り1人コイル8,91;二
は、1121こiT述り−る31:うに」ン1へロール
コニット20からそれぞれ所定時に通X1f(\れろ、
j、うになっている1、イl]で、第5図に示Jように
、−]ン1〜[1−ル]ニツ1〜20から端子aを介1
ノで固定−1イル7および第1回転−1イル8に通電さ
Jllごどさく41、固定子側(取f−1部16の内周
)と回転子側(フライホイール2の外周)とが所定の1
4−11で磁化されることにより、これらがモータの役
[1を果し、クランクシl1)l−1に正トルクを加え
る電気駆動装量16を構成づる。
+4: /, two types of rotation equipped on the outer periphery of the Nifly wheel 2 = 1 Il 8, 91t, respectively, the armature core of the motor] and the role of the field coil of the alternator. ~L) Therefore, as shown in FIG.
X, the second rotating coil 9 is shown in Fig. 6 (, 2, J, -)
The coils 8 and 91 are arranged in a meandering manner and connected to the slip ring 12. From Rollconit 20 to each specified time X1f (\Rero,
As shown in FIG. 5, the terminals 1 to 20 are
energize the fixed 1st wheel 7 and the 1st rotation 1st wheel 8 with 41, the stator side (inner periphery of the handle f-1 part 16) and the rotor side (outer periphery of the flywheel 2). is the predetermined 1
4-11, they act as a motor and form an electric drive unit 16 which applies a positive torque to the crankshaft 11).

また第7図に示1Jように、端了すを介1ノで第2回転
コイル9に通7]1されるどどもに固定」イル7がコン
トロールユニツ1〜20内の整流回路30に接続された
ときは、こわらが発雷装@17を(M成し、第2同転=
lイル9の回転に伴って発電が行われ、これに、1、っ
てクランクシャフト1に逆1〜ルクが加えられる、j、
うになっている。
In addition, as shown in FIG. 7, the coil 7 is connected to the rectifier circuit 30 in the control units 1 to 20, which is fixed to the second rotary coil 9 through the terminal end 1. When it was done, Kowara set up a torpedo weapon @17 (M formed, 2nd synchronization=
Electric power is generated as the oil 9 rotates, and to this, a reverse 1 to 1 torque is applied to the crankshaft 1.
It's becoming a sea urchin.

第8図(jトルク変動制御装胃の回路構造を示しており
、この図においC121はスター1−スイッチ21 a
お」:びイグニツシニ1ンスイツブ21bを含む1−−
スイッチ、22【1バツデリでパある3、この図に示づ
゛にうに]ンI−ロール]ニツ1−20は、キースイッ
チ21を介1ノでバッテリ22に接続された切換回路2
3と、この切換回路23に接続された第1駆動回路2 
’I A3よび第2駆動回路2 Fiと、この各駆動回
路2A、25の駆動タイミングをそれぞれ制御・Jる各
タイミング制御回路26.27と、電気駆動用おJ、び
発電用の各電流調整回路28.29と、113流回路3
0どを備えている。
Figure 8 (j shows the circuit structure of the torque fluctuation control device, in this figure C121 is the star 1-switch 21a
"O": 1-- including ignition 1 switch 21b
The switch 22 (as shown in this figure) is connected to the switching circuit 2 connected to the battery 22 via the key switch 21.
3, and the first drive circuit 2 connected to this switching circuit 23
'I A3 and the second drive circuit 2 Fi, each timing control circuit 26, 27 that controls and controls the drive timing of each of these drive circuits 2A and 25, respectively, and each current adjustment for electric drive and power generation. Circuit 28, 29 and 113 flow circuit 3
It is equipped with 0 etc.

上記第1駆動回路24は、駆動状態どなったどきに固定
フ1イル7と電流調整回路28A3 、J:び第1回転
コイル8を接続lノτごJlらに通電し、つ21′り第
5図に示1ノた電気駆動装置16を作動させるように<
K □)”Cいる。まlここの第1駆り1回路24が非
駆動状態にあるどきには固定=lイル7が整流回路30
を介してバッテリ22に接続され、充電用の回路が形成
されるように17っている。一方、第2駆動回路25は
駆動状態どイアつだときに第2回転コイル9に通電し、
従って第1駆動回路24が非駆動状態にAリー)で第2
Pp動回6+325が駆動状態どなつ1.:どき、第7
図に示した発電装置1Vが作動して、バッテリ22に充
電されるにうになっている。
The first drive circuit 24 energizes the fixed film 7, the current adjustment circuits 28A3, J: and the first rotating coil 8 when the driving state changes, and connects the fixed film 7, the current adjustment circuits 28A3, J: and the first rotating coil 8 to the terminals τ, Jl, etc. To operate the electric drive device 16 shown in FIG.
K □)"C is present. When the first drive 1 circuit 24 here is in the non-drive state, it is fixed = l Ill 7 is the rectifier circuit 30.
17 so as to be connected to the battery 22 via the battery 22 to form a charging circuit. On the other hand, the second drive circuit 25 energizes the second rotating coil 9 when in the drive state,
Therefore, the first drive circuit 24 is in the non-drive state (A) and the second drive circuit 24 is in the non-drive state.
What is the driving state of Pp rotation 6+325?1. : Doki, 7th
The power generator 1V shown in the figure is activated to charge the battery 22.

」−記切換回路23おJ:びタイミング制御回路2G、
27はCPjJ 31にJζつて制御され、CP U3
1にはクランク角ゼン1132からのクランク角検出信
Y)と、¥4/、η検出f段どしての負圧はンサ33か
らの吸気0圧検出(i’i号とが入力されCいる。
” - switching circuit 23 and timing control circuit 2G,
27 is controlled by Jζ by CPjJ 31, and CPU U3
1, the crank angle detection signal Y) from the crank angle sensor 1132, and the negative pressure at the There is.

そして、Tクランの始動蒔には電気駆動装置16が連続
的に作動し゛(スタータの役目を宋すように、切換回路
23を介して第1駆動回路24がバッテリ22に接続さ
れる++ :した始動後は、各タイミング制御回路26
.27の出力に応じ−(各駆動回路24.25が動くよ
うに各駆動回路2/I、25どバッテリ22との接続状
態が切換えられ、CP(J31により各タイミング制御
回路26.27を介lJI侶駆動回路24.25の駆動
タイミングが制御されるようにしている。
To start the T-clan, the electric drive device 16 operates continuously. After starting, each timing control circuit 26
.. According to the output of CP (J31, the connection state with the battery 22 is changed so that each drive circuit 24.25 operates, and the connection state of each drive circuit 2/I, 25, etc. The drive timing of the second drive circuits 24 and 25 is controlled.

こうして、CP U 31および各タイミング制御回路
26.27にJ、す、トルク変動に応じて電気駆動装置
16および発電装置17の作動時期を制御りる作動時期
制御手段が構成され、この制御手段(、(1、クランク
シ11フト1に発生づるトルク変動を抑制する。1:う
に上記各装置16.17の作動タイミングを制御してい
る。つJ[す、例えば4気筒4リ−イクルエンジンでは
、第9図(Δ)に示′1jJ、うにクランクシャフト1
の発生りるトルクがクランク角で1800の周期をもっ
て増減Jるので、CP U 31 ニa3 イT I;
t、第9図(B ) JLにr)” (C)に示Jよう
に、発生トルクの増大時と減少時(逆I〜ル//発生時
)とにス・1応1ノ゛るように発電装置17ど電気駆動
装置16の名作動タイミングを設定し、例λばイれぞれ
の作動始期Oa、θSおよび伯動期間O1a、 D U
3をクランク角で設定でする。そして、クランク角I!
ンサ32により検出されたクランク角に応じ、名タイミ
ング制御回路2(i、27おJ。
In this way, the CPU 31 and each timing control circuit 26, 27 are configured with operation timing control means for controlling the operation timing of the electric drive device 16 and the power generation device 17 according to torque fluctuations, and this control means ( , (1. Suppresses torque fluctuations occurring in the crankshaft 11. 1. Controls the operating timing of each of the above devices 16 and 17. For example, in a 4-cylinder 4-cycle engine, Figure 9 (Δ) shows '1jJ, sea urchin crankshaft 1
The torque generated by the CPU increases and decreases with a cycle of 1800 depending on the crank angle.
t, Fig. 9 (B) JL to r)" As shown in (C), there is a difference between 1 and 1 when the generated torque increases and decreases (when reverse I~R// occurs). Set the operation timings of the power generator 17 and the electric drive device 16 as shown in FIG.
Set 3 by crank angle. And crank angle I!
According to the crank angle detected by the sensor 32, the timing control circuit 2 (i, 27 and 27) is activated.

び名駆φ1j回路2/1.2Ei?ffl介し、電気駆
動1JiffJ’?16おj、び発電装置ζ717をイ
れf゛れ設定しI、:タイミングでv1動づるよ−)に
しでいる、1さらに上記CI:) tJ 31は、f1
傭に対応−りる前記0圧センリ3:3からの吸気()1
「検出(14月に応じ、電気駆動装置16 M J、る
i[トルクど発電装置17による逆トルクどの化を制御
りるよ:)にしCトルクF11制御手段を構成し、例え
ばf”i ’Mi (吸気t* tr >に応じ′C次
のように発電装置17および電気駆動装置16の各作動
期間/71a、01sを設定変更する、j−うにしくい
る。′つまり、バララリ22の過放電を防11!Iるた
め通常は電気!!Ij動1ムIt 16の1り躬1 !
II間θII S J、すt)発電装置17の作動期間
θ1aを良く設定1ノ、どくに出力が要、J2され4「
い低f1イ1jl ll’、7には第9図(1’3)お
、J:び(0)に実線で示りように発電装fl?l 1
7の作動1!11間//Iaを艮り17、電気駆動装P
?16の作動期間01Sを知くするが、エンジンのイ’
l Aが高くイTるにつれてこねらの図に破線で゛示1
ノように発電装置17 (1’) 1’r動期間θ1a
をグ0縮し、電気駆動装置16の作動期間IISを増大
するように1、り定1ノでいる。このJ、うに各作動期
間/7tS、/7118を制御覆る脇合、これに対応さ
1!′て作動始期Da。
Binaka φ1j circuit 2/1.2Ei? Through ffl, electric drive 1JiffJ'? 16, and the power generator ζ717 are set to f1.
Intake from 0 pressure sensor 3:3 ()1
Detection (according to 14 months, the electric drive device 16 M J, Rui [torque power generation device 17 controls the reverse torque generation device 17:) and constitutes the C torque F11 control means, for example f”i' Mi (according to the intake air t* tr >'C) The settings of each operating period/71a, 01s of the power generating device 17 and the electric drive device 16 are changed as follows. To prevent 11! I usually use electricity!!
Between II θII S J, ST) Set the operating period θ1a of the generator 17 well.
Low f1 1jl ll', 7 is the generator set fl? l 1
Operation of 7 between 1 and 11 // Ia is installed 17, electric drive system P
? 16 operating period 01S, but the engine's
l As A becomes higher, the dashed line in the diagram shows 1
Like this, the power generation device 17 (1') 1'r operating period θ1a
1 and set at 1 to reduce the current and increase the operating period IIS of the electric drive 16. This J, the armpit that controls each operating period /7tS, /7118, corresponds to this 1! 'The operation start time Da.

θs 43制御J−ることが望ましい。これら作動期間
eta、1)tsおJ:び作動始期0a、 0s17]
設定伯は、予め1292回転数等に対応づ【」I、ニマ
ップどしく一図外のメモリに記憶さ1!てお【”ノばJ
、く、またCP【ノ31内で演nに、J−り求めるよう
にしてもよい。
It is desirable to control θs43. These operating periods eta, 1) ts and J: and operating start times 0a, 0s17]
The setting number corresponds to 1292 rotation speed etc. in advance and is stored in a memory outside the map. ["Noba J
, , or J- may be calculated for the function n in CP.

なa3、上記名作動1111間Ots、 Otaのうら
のいヂれか一方のみを0荷に応じて制御1ノで、他方は
一定どしておいてb J:い。
A3, during the above-mentioned operation 1111, only one of Ots and Ota is controlled at 1 according to the zero load, and the other is kept constant.

J:た、−「クラン回転数が比較的低いどきは、爆発力
に起因1ノだ爆発トルク駆動に、■、−)τ第10図に
実線で示1J、う/i l〜ルク変動どなるが、122
2回転数がある程度高<4rるど、ビスI−ン系の慣1
ノ1力に起因lノだ+&j性トルクが増大J°ることに
より、第10図に破線で示Jように低回転+1.’lど
比べてクランク角で900位相がずれ/:: l−ルク
駆動が生じ、]ンクラ回転数とI〜ルク変動帛どの関係
を示1ノ第11図において1〜ルク変動品が極小どなる
回転数r 1を境に、i−れ31、り低回転側と高回転
側とで1゜記のような1ヘル//モ′動のIf/相のず
れが生じる3、このため、後にノ11−ヂ+−−1−(
=示(1制御の具体例では、ト記回転数r1をtjχ(
、二電気駆動装置16おJ、び発7R装置1η17の作
動タイミングを変えるように【]でいる。さらに]1−
ンジン回転が極めで高い領域では1〜ルク変動制御の要
求が乏しく、かつ制御が勤1ノいため、1〜ルク変動制
御のト限回転数rOを設定し、この上段目11t、数r
Oを超え<’にい範囲でトルク変動制御を行)ように」
ノている。
J: - "When the crank rotation speed is relatively low, it is due to the explosive force and the explosive torque drive, ■, -) τ is shown by the solid line in Figure 10. But 122
2 If the number of rotations is high to some extent < 4r, the rotation speed of the screwdriver system 1
Due to the increase in the torque caused by the 1 force, the low rotational speed is increased by 1, as shown by the broken line in FIG. 900 phase shift at crank angle compared to 'l/:: l-luk drive occurs,] shows the relationship between engine rotation speed and I~ Luk fluctuation. After the rotation speed r1, a shift in If/phase of 1 Her//Mo' motion occurs between the low rotation side and the high rotation side as shown in 1 degree3.For this reason, laterノ11-di+--1-(
= Indication (In the specific example of 1 control, the rotation speed r1 is expressed as tjχ(
, the two electric drive devices 16 and 7R, and the activation timing of the electric drive device 1η17 are changed in [ ]. Furthermore] 1-
In the region where the engine rotation is extremely high, the demand for 1~luke variation control is weak and the control is difficult to perform.
Exceed O<'Torque fluctuation control within the range)'
It's there.

このトルク変動制御装fillにJ、る制御の具体例を
第12図のフローアヤ−1・によ・)で次に説明する。
A specific example of the control performed by this torque fluctuation control device will be explained next with reference to flowchart 1 in FIG. 12.

この711−ブt/−1−においては、先ずエンジン始
動の際の処理どして、ステップS1でクランク角の周期
計測等に基づい−(求められる1292回転数[くを読
込み、スラーツゾS2でスター1−スイッチ21aがO
Nか否かを調べる。スター1〜スイツチ21aがONど
なったどきはTクラン回転数Rが所定値R81J、り大
きい完爆状態になるまで、始動用の回路を選択して固定
−1イル7および第113 一 回転=ニイル8に通電しくステップ゛S3〜S5 )、
′つまり、前記切換回路23を介して第1駆動回路24
を連続的に駆動さゼ、固定−1イル7ど第1回転−1イ
ル8どを用いた電気駆動装置16をスタータとし“C鋤
か1!る。ぞし−(°[クラン回転数Rが所定前R1J
、り大きくなったどき(、LステップS7に移る。なお
、ステップS2でスター1−スイッチ21aがONどl
−、っていないことを判別したどきは、エンジン回転数
Rが所定値R21ス下であるどステップ$1に戻り、所
定値R2より大ぎいどステップS7に移る(ステップS
o)。
In this 711-but/-1-, first, the process for starting the engine is carried out, and in step S1, the required 1292 rotation speed is read, and the engine is started using the slurry engine S2. 1-Switch 21a is O
Check whether it is N or not. When the star 1~switch 21a is turned on, select the starting circuit and fix it until the T-crank rotation speed R reaches the predetermined value R81J or more and reaches a complete explosion state. Steps (S3 to S5) to energize the coil 8,
'In other words, the first drive circuit 24 via the switching circuit 23
The electric drive device 16 using the fixed 1st rotation 7th rotation 1st rotation 8th is used as a starter to continuously drive the ``C plow or 1!''. is before the predetermined R1J
, when it becomes large (L, move on to step S7. In addition, in step S2, the star 1 switch 21a is turned ON).
-, if it is determined that the engine speed R is not below the predetermined value R21, the process returns to step $1, and if it is greater than the predetermined value R2, the process proceeds to step S7 (step S7).
o).

次に始動後の処理どして、ステップ$7でイグニッショ
ンスイッチ21bがONとなっているか否かを調べる。
Next, in the post-start processing, it is checked in step $7 whether or not the ignition switch 21b is turned on.

そしてイグニッションスイッチ21b/)<ONであれ
ば、エンジン回転数rおよび吸気負圧■を読込み(ステ
ップ$8)、次にエンジン回転数rがトルク変動制御の
」〕限段設定値QJス手か否かを調べる(ステップ89
)。そして上限設定値1・0より人ぎ1プれば発電用の
回路を選択して第2回転]イル9に通電しくステップS
1o、S11)、つまり第1駆動回路24を非駆ψ)l
状態と116とともに第2駆動回路25を駆動状態とり
る(二とに。1、【9発電、J、I: iff l 7
をfl+かμる。
If the ignition switch 21b/)<ON, read the engine speed r and intake negative pressure (step $8), and then set the engine speed r to the limit stage setting value QJ for torque fluctuation control. Check whether or not (step 89)
). Then, if the upper limit setting value is 1.0, select the circuit for power generation and turn on the power to the circuit 9. Step S
1o, S11), that is, the first drive circuit 24 is not driven ψ)l
The second drive circuit 25 is set to the drive state along with the state and 116.
fl+ or μ.

ま/j Iクラン回転数がトルク変動制御の1−附設定
値rQ以]・であl’1. l;r:、トルク変動制御
のための処理を行う。この%l埋どしCは、ステップ$
9に続いC−「クラン回転数[゛が前記のトルク変動員
が111!小どなる回転数r1木嵩か占かを」1べ(ス
ーテツブ512)、この回転数11未満の低速域に(1
すると;さくよ電気駆動3!、訪16および発電装置1
7の各v1動始朋θs、/7aをそれぞれ低速域での1
〜ルク変動に応じた値θs4 、Oalに設定しくスラ
ップ513)、この回転数11以上の高速域にあるとき
は上記各作動始期/7 s、 D ;l@ぞれぞれにl
l速連載゛のトルク変動に応じた値17s2.082に
設定−りる(ステップS 14 ) 、、これらの飴は
現実の運転状態に応じてマツプから読出1ノ、あるいは
演算にJ、り求めればよい。次に、発電装置17 i1
’j 、及び71N気駆動Vi f 16の各作動期間
/)Ia、 19tsヲTンシン回転数rと吸気負圧V
とに応じた舶ra(r、■)−15= 、fs(r、v)に設定り−る(ステップS15.S+
6)、、こ11.らの11自「a (r、v)、rs 
(r、v)1)マツプり目)読出し、d’>るいは、エ
ンジン回転数[・と吸気0圧Vの関数どし−C氾1粋に
より求めれぽJ、い。’i Iy−(この場合に、前述
のJ、うにエンジンのf(’/4Iが高<t′J:るは
と、111λば発電装置17の作動期間Otaを短く“
(するどともに電気非動1ム置16の作動期間OISを
I−i <刀ることによって各作動期間Or、IISの
比0ta101sを小さくりるj、うに設定り−る、1 次に、ステップ5317でクランク角0を入力する。
When the I-crank rotation speed is equal to or higher than 1 - the attached set value rQ of torque fluctuation control], l'1. l;r: Performs processing for torque fluctuation control. This %l fill C is step $
9 is followed by C- "Cran rotation speed [゛ is the above-mentioned torque fluctuation member is 111! A small rotation speed r1 Kitake or fortune telling" 1be (Suitetsubu 512), in the low speed range below this rotation speed 11 (1
Then; Sakuyo Electric Drive 3! , visit 16 and power generation device 1
7, each v1 starting point θs, /7a is 1 in the low speed range.
~ value θs4 according to the torque fluctuation, set to Oal (slap 513), and when the rotation speed is in the high speed range of 11 or more, the above operation start time /7 s, D ; l @ l respectively.
A value of 17s2.082 is set in accordance with the torque fluctuation of the 1st speed series (step S14). Bye. Next, the power generation device 17 i1
'j, and each operating period of 71N air drive Vi f 16/)Ia, 19tswoT engine rotation speed r and intake negative pressure V
Set ship ra(r, ■)-15=, fs(r,v) according to (step S15.S+
6),,this 11. et al.'s 11th "a (r, v), rs
(r, v) 1) Mapping) Read, d'>or, the function of the engine speed [. and the intake pressure 0 V. 'i Iy- (In this case, if the aforementioned J, f('/4I of the sea urchin engine is high <t'J: 111λ, the operating period Ota of the power generator 17 is shortened.
(Set the operating period OIS of the electric stationary motor 16 as I-i <), then reduce the ratio of each operating period Or, IIS to 1, and set it to 1. Next, step At 5317, input crank angle 0.

イしく、クランク角θが発電装置rr 1γの作動!l
O朋0ト1から作動終期(1)a+01:a):l、で
の=(1定9わ囲にあろ状T1ど<<ったどきに1.L
、クイミング制御回路27を介して第2駆動回路25を
駆動さけることによV)第2回転−1イル91.7通電
りろ(スラップS1a、51q)。J−にクランク角O
が電気駆動波d16 (f) f’l−動胎朋Os カ
ラ作i1’JI 終期(Os−+θIS)までの1.9
定qh囲にある状態とイj−)たときには、タイミンク
゛制御回路26を介して第11!I7動回路24をバ1
ス褒ノ(キ11ることに、j、り固定−lイル7および
第1回転:lイル8((通電りる(ステップS20.S
2+)、。
It is interesting that the crank angle θ is the activation of the power generator rr 1γ! l
0 to 1 to the end of operation (1) a + 01: a): l, = (1 constant 9 around T1 << when 1.L
, by avoiding driving the second drive circuit 25 via the swimming control circuit 27. Crank angle O to J-
is the electric drive wave d16 (f)
When the state is within the constant qh range, the 11th! I7 operating circuit 24
Particularly, the first rotation is 7 and the first rotation is 8 ((energized) (step S20.
2+),.

クランク角θが一1記名設定範囲にイ【いどきにはステ
ップS7に戻−)でそれ以下の処理を繰返”J’ o 
<r’Jiイグニッションスイップ211)がOF +
−にさ41てエンジンが停止1−するど、ステップS7
でこれが判別されて制御動作が終了する。
When the crank angle θ is within the specified setting range (return to step S7 at any time), repeat the process below.
<r'Ji ignition switch 211) is OF +
- When the engine stops 1-, step S7
This is determined and the control operation ends.

以1−のフローチャートに従った制御により、°[クラ
ン始動後でトルク疫動制御が行4つれるべ2(運転状態
にあるとき(,1、発電装置17おJ、び電気駆動装置
l¥16がそれぞれ所定のタイミングC”作動され、前
述のJ、うにクランクシ1?71−1に発生り−る]〜
ルクが第9図(Δ)の、1、うに27る場合は第9図(
B)および(C)に承りように設定されたタイミングで
上記各トル:青17,16が作動される。従って、第9
図(D )に示1−ように、発生1〜ルクの増大時に発
電装置17から逆1−・ルクが加えられ、発生トルクが
逆トルクどなるときに電気駆動装置16から正トルクが
加えられることどなり、これらのイ」加1〜ルクにJ、
す、トルク変動が第9図(△)に1cd鎖線で承t J
、うに抑制される。そして、逆トルクが加えら[しるど
きは発電が行われるのでエネル:1″−−が回収さ41
、トルク変動抑制のためのエネルギーロスが小さくなる
By controlling according to the flowchart in 1- below, the torque fluctuation control is performed four times after starting the crank. 16 are operated at predetermined timings C'', and the above-mentioned J, uni crankshaft 1?71-1 occurs]~
If the value is 1, sea urchin 27 in Figure 9 (Δ), then Figure 9 (
Each of the above-mentioned torques: blue 17 and 16 is activated at the timing set to accommodate B) and (C). Therefore, the ninth
As shown in Figure (D), when the generated torque increases, a reverse torque is applied from the generator 17, and when the generated torque becomes a reverse torque, a positive torque is applied from the electric drive device 16. Roaring, these voices
The torque fluctuation is indicated by the 1cd chain line in Fig. 9 (△).
, suppressed by sea urchins. Then, when a reverse torque is applied, energy is recovered because power is generated (1").
, energy loss due to torque fluctuation suppression is reduced.

まIこ、どくに−[クランの負荷に応じた制御とl)で
、出力が要求されイCい低C−1(rJ時に(、L電気
駆a口・ム「916の作動期間01Sに対して相対的に
発電装置17の作動期間Otaが長くされることにより
過放電が防11される。一方、出力が要求される高ず1
荷時には相対的に発電装置17の作動期間Otaが短く
されて?1イ気駆動装置16の作動期間/71Sが長く
されることに、1:す、第9図(D)に破線で・示すJ
、うに、イー1加1〜ルクのう!5の正トルクが大きく
され−(逆トルクが小ざくされ、全体としU (=1加
]−ルクが増加さ41て出力が高められることと4Tる
When the output is requested and low C-1 (rJ), the output is requested by the control according to the load of the crank. On the other hand, overdischarge is prevented by lengthening the operating period Ota of the power generating device 17. On the other hand, over-discharge is prevented by increasing the operating period Ota of the power generating device 17.
Is the operating period Ota of the power generator 17 relatively shortened during loading? 1. Since the operating period/71S of the drive device 16 is lengthened, 1.
, Sea urchin, Yi1ka1~Rukunou! The positive torque of 5 is increased, the reverse torque is decreased, and the overall torque is increased by 41 and the output is increased by 4T.

イ【お、本発明にお【ノる電気駆動装置16おJ−び発
電焚fl?717の具体的構造は上記実施例に限定され
ず、1Φ々変更可能である。例えばクランクシャフトに
ギヤを介して連結した回転軸とその周囲の非回転部とに
これらの装置を構成1Jる電磁コイルをFjj! iJ
) 17τ1)、1、く、11刃こ・般の−[クランに
貝1!されA: ’I:+のど同様のスクータおよびA
ルタネータを利用し−(、こねに対1Jる通電を制御す
ることに、にりトルク制御を行うようにし、あるいはス
ター々およびAルタオ−タど(11別(1−トルク制御
のたV)の電気駆動装置16お、1、び発電装V117
を設(jるにうにしても」、い。
Is this invention applicable to electric drive device 16 and electric power generation fl? The specific structure of 717 is not limited to the above embodiment, and can be changed by 1Φ. For example, an electromagnetic coil that constitutes these devices is attached to a rotating shaft connected to the crankshaft via a gear and a non-rotating part around it. iJ
) 17τ1), 1, ku, 11 blades/general-[1 shellfish in the clan! and A: 'I: + a scooter similar to the throat and A
Using a alternator to control the energization to the kneading machine, torque control can be performed, or by using a star and an alternator (11 (1- V for torque control)). Electric drive device 16, 1, and power generator V117
Even if you set it up, it's okay.

(発明の効果) 以上の、1、うに本発明は、クランクシシフトに発生り
るトルク変動1.:、 1iil朋り、−(、介11h
 +ヘルク増大時に発電装置を作動さ11゛(逆トルク
を加え、発(1トルク減少時に電気駆動装置を作動さけ
てif トルクを加えるようにしているため、トルク駆
動を抑制して騒?3ニヤ〕不快感を軽減りることができ
、しかも逆1〜ルクを加えるどきに−iネルギーを回収
りることができで、Tネルl” −r]スを少イj<づ
ることができる。その土、エンジンの高負荷時には低負
荷時と比べ、電気駆動具V1(2−よる1[トルクに対
して発電装置による逆1〜ルクを相対的に小ざくしでい
るlζめ、高t1荷1hにf=l加i〜ルク母が増加さ
れて出力が高められ、負荷変動に対し一〇も適正<’に
制御を行うことができるものである。
(Effects of the Invention) In accordance with the above, the present invention has the following advantages: 1. Torque fluctuations occurring in the crankshaft shift. :, 1iil friend, -(, 11h
+ When the herque increases, the power generator is activated (reverse torque is applied, and when the torque is decreased, the electric drive device is not activated and the if torque is applied, so the torque drive is suppressed and the noise is increased.) ] It is possible to reduce the discomfort, and also to recover the -i energy when applying the reverse 1 to 1 -r, so that the T channel l'' -r] can be reduced to a small extent. At that time, when the engine is under high load, compared to when it is at low load, the electric drive V1 (2-by 1 [torque] is relatively smaller than the reverse 1 to 1 torque generated by the generator). 1h, f=l+i~lux is increased to increase the output, and it is possible to control load fluctuations even more appropriately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にお(Jる発電装置Nおよび電気駆動装
置の構造の一実施例を示づ要部の縦断正面図、第2図は
同縦断側面図、第3図は同概略斜視図、第4図乃至第7
図は発電装置および電気駆動装置を構成する=1イルの
配線椛造を示り一概略図、第8図ば]・ルク変動制御装
買の回路構成の実施例を示づブロック図、第9図(△)
、(F3)、(C)。 (1))は発生I・ルク変動ど発電装置お31;び電気
駆動装置の各作動タイミングどイτ1加i・ルクどの関
係説明図、第10図は低速域と高速域とにdハノる発生
1〜ルク変動の特性図、第11図はエンジン回転数どト
ルク変動吊どの関係を示J説明図、第12図は制御の7
0−ブ1ノー1−である。 16・・・電気駆動装置、17・・・発電装置、20・
・・コン1〜口−ルユニツl−124,25・・・駆f
i11 回M、26.27・・・タイミング制御回路、
31・・・CP U 。 −2〇 − 第  1  図 第  2  図 48工ぎ輩 8 二余さ停事y−
Fig. 1 is a longitudinal sectional front view of the main parts showing one embodiment of the structure of the power generation device N and electric drive device according to the present invention, Fig. 2 is a longitudinal sectional side view of the same, and Fig. 3 is a schematic perspective view of the same. Figures 4 to 7
The figure shows a schematic diagram of the wiring structure of the power generating device and the electric drive device. Figure (△)
, (F3), (C). (1)) is an explanatory diagram of the relationship between the generated I, the power generation unit, and the operating timing of the electric drive device, τ1, the power supply, and the electric drive. Characteristic diagram of occurrence 1 to torque fluctuation, Figure 11 is an explanatory diagram showing the relationship between engine speed and torque fluctuation, Figure 12 is control diagram 7.
0-b1 no 1-. 16... Electric drive device, 17... Power generation device, 20.
・・Con 1~口−Luunits l−124,25・・・・Drive f
i11 times M, 26.27...timing control circuit,
31...CPU. -2〇 - Figure 1 Figure 2 Figure 48 Engineer 8 Suspension y-

Claims (1)

【特許請求の範囲】[Claims] 1.エンジンにより駆動されてクランクシャフトに逆ト
ルクを与える発電装置と、クランクシャフトに正トルク
を与える電気駆動装置と、クランクシャフトに発生する
トルクの周期的変動と同期して、トルク増大時に上記発
電装置を作動させ、トルク減少時に上記電気駆動装置を
作動させるようにこの両装置の作動時期を制御する作動
時期制御手段と、エンジンの負荷を検出する負荷検出手
段と、この負荷検出手段の出力を受け、エンジンの高負
荷時には低負荷時に比べて、電気駆動装置により与えら
れる正トルクに対し発電装置により与えられる逆トルク
を相対的に小さくするように制御するトルク量制御手段
とを備えたことを特徴とするエンジンのトルク変動制御
装置。
1. a power generator driven by the engine to provide a reverse torque to the crankshaft; an electric drive device to provide a positive torque to the crankshaft; operating timing control means for controlling the operating timing of both devices so as to operate the electric drive device when the torque decreases; a load detecting means for detecting the load of the engine; and receiving the output of the load detecting means; Torque amount control means for controlling the reverse torque given by the power generating device to be relatively smaller when the engine is under high load compared to when the engine is under low load with respect to the positive torque given by the electric drive device. Engine torque fluctuation control device.
JP59183060A 1984-08-31 1984-08-31 Engine torque fluctuation controller Pending JPS6161930A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59183060A JPS6161930A (en) 1984-08-31 1984-08-31 Engine torque fluctuation controller
US06/769,892 US4699097A (en) 1984-08-31 1985-08-27 Means for suppressing engine output torque fluctuations
DE8585110847T DE3578715D1 (en) 1984-08-31 1985-08-28 AGENT FOR SUPPRESSING TORQUE VARIATION OF MACHINE PERFORMANCE.
EP85110847A EP0175952B1 (en) 1984-08-31 1985-08-28 Means for suppressing engine output torque fluctuations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183060A JPS6161930A (en) 1984-08-31 1984-08-31 Engine torque fluctuation controller

Publications (1)

Publication Number Publication Date
JPS6161930A true JPS6161930A (en) 1986-03-29

Family

ID=16129037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183060A Pending JPS6161930A (en) 1984-08-31 1984-08-31 Engine torque fluctuation controller

Country Status (1)

Country Link
JP (1) JPS6161930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020491A (en) * 1988-08-12 1991-06-04 Hitachi, Ltd. Method and apparatus for controlling power generation in internal combustion engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020491A (en) * 1988-08-12 1991-06-04 Hitachi, Ltd. Method and apparatus for controlling power generation in internal combustion engines

Similar Documents

Publication Publication Date Title
US4699097A (en) Means for suppressing engine output torque fluctuations
JP3351042B2 (en) Internal combustion engine starter for vehicles
JPWO2014147904A1 (en) Generator motor unit and generator motor control method
US6800953B2 (en) Engine starting apparatus and method for controlling the same
JPS6161930A (en) Engine torque fluctuation controller
US6856032B2 (en) Starter/alternator assembly of internal combustion engine and method for controlling thereof
JPH08116699A (en) Electric power generator for vehicle
JPS6161925A (en) Engine torque fluctuation controller
JPS6161932A (en) Engine torque fluctuation controller
JP2001057710A (en) Running gear
JPH0559253B2 (en)
JPS6165024A (en) Torque fluctuation control device of engine
JPH0562230B2 (en)
JPS6161929A (en) Engine torque fluctuation controller
JPH0559251B2 (en)
JPH0562231B2 (en)
KR101703591B1 (en) Device for controlling alternator and method for controlling alternator using the same
JP2969941B2 (en) Internal combustion engine torque fluctuation reduction device
JPS6161922A (en) Engine torque fluctuation controller
JPS62255534A (en) Torque fluctuation suppression device for internal combustion engine
JP2000027720A (en) Control device for fuel pump of internal combustion engine
JPH0612074B2 (en) Engine torque fluctuation control device
JPS6161931A (en) Engine torque fluctuation controller
JPS6161964A (en) Control device of engine
JP6948845B2 (en) Electronic control device