JPS616184A - Manufacture of fiber ceramic structure - Google Patents

Manufacture of fiber ceramic structure

Info

Publication number
JPS616184A
JPS616184A JP12533284A JP12533284A JPS616184A JP S616184 A JPS616184 A JP S616184A JP 12533284 A JP12533284 A JP 12533284A JP 12533284 A JP12533284 A JP 12533284A JP S616184 A JPS616184 A JP S616184A
Authority
JP
Japan
Prior art keywords
heat
fiber
sheet
fibers
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12533284A
Other languages
Japanese (ja)
Other versions
JPH0475193B2 (en
Inventor
米村 正明
楠田 隆男
喜信 今坂
三原 敏弘
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12533284A priority Critical patent/JPS616184A/en
Publication of JPS616184A publication Critical patent/JPS616184A/en
Publication of JPH0475193B2 publication Critical patent/JPH0475193B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高温用フィルタ、熱交換体、触Is担体等の耐
熱性部品に使用される繊維Cシミツク構造体の製造方法
に関し、更に:、¥ L、 <は耐熱PI 7!!I機
繊維とセラミック原料粉末の凝集スラリーからシートを
作成し、成形、焼成することにJ、っC綴紐しラミック
M%造体を製造する方法に関する。 従来例とその問題点 耐熱性無機繊維を水に分散さけ粉体ど混合しくスラリー
としたのら抄造してシートをl+ノる方法において、耐
熱1ノ1烈機繊紺の平均繊鞘長が長い場合、分散液中、
ひい(はスラリー中に長繊維の絡み合った大きなフロッ
クを多量に生じ、それがシート中に取込まれるため、得
られるシートは表面の凹凸が激しく、ルさや密度のバラ
ツキの大きいものとなっていた。史に、本発明の如く他
の粉体を内添しようとする際にはこのフロックの形成は
署しい悪影響を及ばη原因となっていた。即ら、粉体を
内添するには耐熱性無機U&維と粉体が均一に混合した
スラリーとする必要がある。しかし、フロックを形成し
ている場合、粉体はこの内部へは浸入Uず、均一なスラ
リーは得られない。その軸架、シートに抄造してもその
組成は不均一なものとなっていた。 史に、耐熱1ll−無機!@緒を抄造し−C作られるシ
ートは、その強麿や柔軟性をもたせるためにバルブやス
フ、アクリル、ビニロン等の右tMtMNと共に抄造す
るのが一般的である。即ち、耐熱性無機繊維はそれ自身
、抄造時及びシートとした後も必要となる繊維間の結合
性を右しておらず、また柔軟性に欠()、繊維の表面が
滑らかであるため絡み合いによってシートの強度を得よ
うどげることが困難なためである。従って41機繊維を
長繊維の耐熱性無機繊維中に混入して抄造することで′
シートの形状を維持し、取扱い可能なものとしCいた。 特に長繊維の耐熱性無機繊維を用いて得られたシートを
成形しようと覆る場合、屈曲させようとすると、その箇
所で、lI!ll1l織紺は折損してしまうため抗折強
度の低い状態となっていた。この欠点を補うために有機
繊維を混入して抗折強度を出そうどしているのである。 この場合、用いる有機繊維の種類によってその極性、耐
熱性態1■1との馴染み具合か賃なり、更に、有機繊維
の長さによっても抄造の容易さ、シートの特性等に影響
を!ノえる。 また、有機繊維を1昆入づる際、耐熱性無機繊維と均質
に分散させようとするには特殊な方法を用いねばならな
いなとシート抄造時の工程を繁雑なものとしくいた。有
機繊維を混入する例どしては特開昭56−131365
6などがある。この従来例にd5いては、得られたシー
トを成形してコロイダルシリカ等のケイ酸ゲル原r1を
含浸させた後、有機繊維等の有機物を焼失さけ、ケイ酸
グルのバインダ作用で構造体を保どうとするものである
。この例の如くケイ酸グル等の無償買バインダを含浸さ
ゼる方法では、その乾燥■稈での偏析を抑えること(J
困難で、強度のハンプ−Vを光([りる除因となってい
た。他方、ケイ酸ゲルを用いるため、使用温度範囲は1
000℃以トに限定されていた。史に、ケイ酸ゲルのバ
インダ作用のみでは有機物を焼失させるための焼成1稈
C’ !L l;る耐熱性無機繊維の硬化に伴ない構造
体がちろくなる状態を補うことがぐきず、強度の低いし
のとなっていた。これを補おうとしてケイ酸ゲルの含浸
ωを増加づると空隙率を低下させる結果となっていた。 発明の目的 本発明は耐熱性無機繊維とセラミック原料粉末のスラリ
ーから抄造?人にて無機繊維シートを作成し、成形後に
焼成しく−1?ラミツク化とし繊維セラミック構造体を
製造ケる方法において問題であつたシート組成の不均質
性、有機繊維を混入する繁雑さを解消して、均v1で、
加工成形の容易な無機II緒シー1〜を青、成形、焼成
によって高強度、高空隙率の繊維セラミック構造体を提
供することを目的とする。 発明の構成 本発明の繊維ヒラミック構造体のwA迄り法は、平均繊
維長を10mm以下に調節した耐熱性無殿pA紐をセラ
ミック原料粉末どともに分散し、右機貿結合剤を加えた
後、上記耐熱性無機繊維とセラミック原料粉末を凝集さ
せ、紙状に抄造し、無機縁11[シートとしたものを加
工成形して焼成することを特徴とする。 耐熱性無機繊維の平均繊維長を+Omm以トどし
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a fiber C stain structure used for heat-resistant parts such as high-temperature filters, heat exchangers, and contact carriers, and furthermore:, ¥L, < is heat-resistant PI 7! ! This invention relates to a method for manufacturing a lamic M% structure by forming a sheet from an agglomerated slurry of machine fibers and ceramic raw material powder, forming it, and firing it. Conventional examples and their problems In the method of dispersing heat-resistant inorganic fibers in water and mixing them with powder to form a slurry and then forming a sheet into a sheet, the average fiber sheath length of the heat-resistant 1-no-1 resistant fiber navy blue If long, in the dispersion,
Because the slurry produced a large amount of large flocs with intertwined long fibers, which were incorporated into the sheet, the resulting sheet had a highly uneven surface and large variations in roughness and density. Historically, when attempting to internally add other powders as in the present invention, the formation of flocs had a significant negative effect and caused η. It is necessary to create a slurry in which the inorganic fibers and powder are evenly mixed.However, if flocs are formed, the powder will not penetrate into the inside of the flocs, making it impossible to obtain a uniform slurry. Even when paper is made into racks or sheets, the composition is non-uniform.In history, the sheets made by making heat-resistant 1 liter inorganic! It is common to make paper together with right tMtMN such as bulb, sufu, acrylic, vinylon, etc. In other words, heat-resistant inorganic fibers themselves control the bonding properties between fibers that are required during paper making and after forming into a sheet. This is because the surface of the fibers is smooth and it is difficult to obtain the strength of the sheet by intertwining them. By mixing it into the fiber and making paper
The shape of the sheet was maintained and it was made easy to handle. In particular, when covering a sheet obtained using long-fiber heat-resistant inorganic fibers for molding, if you try to bend it, the lI! Since the ll1l woven navy blue was broken, its bending strength was low. In order to compensate for this drawback, attempts are being made to increase the bending strength by mixing organic fibers. In this case, depending on the type of organic fiber used, its polarity and degree of compatibility with heat resistance state 1. Noel. In addition, when adding one ounce of organic fiber, a special method must be used to homogeneously disperse it with the heat-resistant inorganic fibers, making the sheet-making process complicated. An example of mixing organic fibers is JP-A-56-131365.
6 etc. In d5 of this conventional example, after forming the obtained sheet and impregnating it with a silicate gel raw material r1 such as colloidal silica, the structure is formed by the binder action of the silicate gel to avoid burning out organic substances such as organic fibers. It is something that we try to preserve. In the method of impregnating a freely purchased binder such as silicate glue as in this example, it is necessary to suppress segregation in the dried culm (J
It was difficult to remove the strong hump-V from light.On the other hand, since silicic acid gel is used, the operating temperature range is 1.
It was limited to temperatures below 000°C. Historically, only the binder action of silicic acid gel is sufficient to burn out the organic matter in one culm C'! It was not possible to compensate for the weakening of the structure due to the hardening of the heat-resistant inorganic fibers, resulting in a sheet with low strength. In an attempt to compensate for this, increasing the impregnation ω of the silicic acid gel resulted in a decrease in the porosity. Purpose of the Invention The present invention produces paper from a slurry of heat-resistant inorganic fibers and ceramic raw material powder? Is it possible to create an inorganic fiber sheet by hand and then bake it after shaping? By solving the problem of non-uniformity of the sheet composition and the complexity of mixing organic fibers, which were problems in the method of manufacturing fiber ceramic structures by laminating,
The object of the present invention is to provide a fiber ceramic structure having high strength and high porosity by molding, molding, and firing an inorganic ceramic material that is easy to process and mold. Structure of the Invention The fiber helical structure of the present invention is produced by dispersing heat-resistant non-stainless PA strings with an average fiber length of 10 mm or less together with ceramic raw material powder, adding a binder, and then adding a binder. , the heat-resistant inorganic fiber and the ceramic raw material powder are agglomerated, formed into paper, processed into an inorganic edge 11 [sheet], and fired. Increase the average fiber length of heat-resistant inorganic fiber by +0mm

【いる
ので、耐熱性無機繊維の分散か均一にt′ゴなわれ、セ
ラミック原料粉末どの混合も充分に、11つ均一に行な
わせることができる。従って、次の]−程で凝集させス
ラリーを作成しIJ場合(もフロックを形成せず耐熱性
無機繊維とセラミック原料粉末の均質なスラリーを得る
ことができ、抄造して製造される無機繊維シートも均質
イiらのとづることができる。また、平均繊維長さが1
0mm以下に調節されているために、右(幾繊絹を用い
ることなく成形性の良好なシーi〜とづ−ることが可能
となった。 このシートを用いて成形、焼成を行ないけラミック化す
ることに五り密麿、強度、組成のバラツキの(示め−(
少41<均質4c繊ll1l?ラミック構迄体を得るこ
とかできる。 実施例の説明 耐熱性無機繊維には、シリカ繊維、シリカ−アルミナ繊
維、アルミノ−繊維、シル]ニア繊維、アルミノ小口シ
リケート繊維などを、よi:、しラミック原料粉末には
組成としてシリカ、アルミノ、マグネシアなとを/l成
づる成分を含有する粘」或いはセラミック原料化合物を
用いることができる。 本発明の繊維セラミック構造体の製造は次の1稈で行な
われる。 1)平均繊頼長10mm以下に調節した耐熱性無機繊維
を水に分散させ、一方、セラミック原料粉末の懸濁水を
混合させる工程。 2)有機質結合剤をT稈1)の懸濁水に添加して混合さ
せる工程。 3)工程2)ぐ(qられる懸濁水に凝集剤を添加して耐
熱性無機繊維、セラミック原11粉末、有機結合剤を凝
集させつつ懸濁させる二[稈。 4)工程3)で得られる凝集懸濁液を通常の抄ffl 
gIぐ抄造してシー1〜を作成する一1稈、。 5)シートを例えば]コルゲートによって段ボールのよ
うな形状に成形し、その成形体を1000℃〜1600
°Cに燃焼して耐熱性無機繊組及びセラミック原11粉
末を共にセラミック化ケる一1丁稈。 上記工程1)で(ま平均繊維長10 m m以下に調節
された耐熱性無機繊維を用いる。これは、耐熱↑)1,
1県別tJ&雑を水に分散5ま濁させる場合、縄紺良の
長いものは互いり絡まり合ってフロックを形成し易い。 このフロックの大きさは繊維長に依存し、長いしの楔入
ぎくなり易いもの(ある。)1コツクが形成されている
分散懸濁水中にセラミック原料粉末の懸濁水を混合して
も、フロック内部には全くヒラミック原料粉末か取込ま
れないことか観察された。 このフ[−1ツタを形成している懸濁水を用いて抄造さ
れたシートは組成のバラン4−が大きく、強度、密度に
も名しいバラツキをターじるものぐあった。 そこで、平均wX紺長を各種変えたものをぞれぞれ水に
分散させ観察した結果、平均繊H長が10mm以下であ
れば)[1ツクの形成は観察されず、セラミック原わ1
粉末とのlfu合ム合弁充分なうことがでさることか判
明した。更に、シートから成形体を0成ηる際、艮fM
 t([を用いると、例えばシートを折曲げたりすると
、耐熱性無機繊維の剛性のためその箇所C繊組が折損し
たり、イ1機賀結含剤で接看した箇所か外れたり覆るた
め取扱いか難しくなつCいた。イれを補うためにイif
m繊耗の混入が必要であった。しかし、短繊維を用いた
場合、繊維は各接点で右(幾’II+結合剤によって結
合されているため、その有機質結合剤の柔軟性によって
耐熱性態(幾縄緒の折損や外れを抑制することができ成
形性に優れた特性を承りものである。また、工程2)で
有機質結合剤を添加した後、J稈3)で凝集さ  ′せ
るため耐熱性無機繊維の表面及び、特にその接点に有機
質結合剤が沈着凝集しU rr3す、二(−稈4)で得
られるシートは取扱いに充分な強度、抗折強度を右する
ものとなるのである。 一方、セラミック原El粉末はJ稈1)で耐熱性無機繊
維と共に懸濁混合され、工程3)で凝集剤により耐熱性
態muANの表面及び特にその接点に凝集付着づる。■
稈4)′C゛シー1〜に抄造されてもこの状態は維持さ
れ、工程5)で行なわれる焼成によって耐熱性態■■1
に焼結結合りる。狛に耐熱性無機繊維の接点ては、繊維
を互いに結合し、結合剤どじでの役割を果たしている。 また、例えばガラス質の耐熱性無機繊維は焼成により結
晶負を含むようになり、繊維の弾痕は名しく低F ’I
るのか一般的であるか、内添により耐熱性無機繊維の表
面に凝集付着したセーノミックIe、 11粉末がセラ
ミック化しつつ耐熱tit無機繊維と反応焼結してゆき
、その強度の([を下を防止する効宋を発揮しくいるも
のである。 [実施例1] 耐熱性無機繊維としでシリカ−アルミナ楳頼を用いた。 この繊維は平均繊絹径は約3μIIlぐ初期の長さは6
0〜120mmと比較的長いものである。このシリカ−
アルくす繊軒1をカッタで平均繊肩1艮6IIllIl
に調節したものを20Φ量部材も)シて水1000重Φ
部に懸濁さυk1.一方、セラミック原料粉末としてカ
オリナイト、スボジ」メン、非結晶質の酸化クイ素粉末
を22゛1の割合で混合させた混合物の6重量部を50
重量部の水に懸濁させた。このV&翰懸濁液とレノミッ
ク原料杓未懸濁液を攪拌しつつ混合しIご、1次に有機
質結合剤としてポリ上スプルjイスパージョン液を1手
ω部を加え充夕)攪1′1′混8さUた後、凝集剤とし
てIQ、粉溶液を加えて島相、セラミックlJ?i籾粉
末及び有機質結合剤をqいに凝集させた。こうして得ら
れた凝集懸濁液を水で3000重昂部に稀釈して通常の
丸網j(抄紙機ぐ約0.7mmのシートを抄造した。こ
こぐ(17られたシートを通常の段ボール製j外機を用
いC1一部は蒸気や水噴霧で適麿に湿らせた後コルゲー
ト形状を付し、平板状のままの他方のシートど接着剤で
貼り合わせたものを積層したり、接着剤を塗イri シ
ながら芯に巻き付(プで成形体を作成した。次にこの成
形体を電気炉中で1350°C2時間焼成して繊組セラ
ミック荀l)へ体を得た。芯に巻き付()て[、)られ
た繊維セラミックハニカム(14造体を添イ1図面に示
す。 添付図面において符号1はシートと同一組成で造られた
芯、符号2及び3はそれぞれコルゲートシート、平板状
シートの焼成物であり、各接点はないに焼結結合して一
体化した4M ’Lとなっている。 本実施例で用いl〔シリカ−アルミナ4tV G(Eは
、当初は非晶質からなっ刀いるが、31雑セラミック構
造体とするため焼成1稈を経ることにより、ムライト質
、クリストバライト貿を晶出して結晶化していることが
X線回折の結果判明した。本実施例で得られた繊維セラ
ミック構造体の材れは曲げ強1.12kg/cm2.8
0%の空隙率を右Jるものであった。 [実施例2] 耐熱性無機繊維として実施例1ど同様にシリカ−アルミ
ナ繊維を用い平均繊維長を約1mmに調節したもの20
1 ffi部を水1000fi1部に懸濁さけた。 シリカ−アルミノ系のしシミツク原利粉末とじで焼結性
の良いセリサイト粘土、ベタライ1−10中早部を50
重間部の水に懸濁させた後、繊維懸濁液に添加して攪拌
混合づる。次に有磯質結合剤として酢酸ビニル ノノク
リルハ手合1マルシ】ン1小帛部を加え混合し、塩化ア
ルミニウム溶液を添加した後、アンしニア水(゛中和し
て水酸化アルミニウムのコロイドを/1成させる。この
=]コロイドよって繊組、セラミック原′FA粉末、h
機貿結合剤を一次凝集させる。この水酸化アルミニウム
−]【]イトによる凝集IJ特に有Iff貿結合剤の−
[マルジJンに対しCは有効である。次に澱粉溶液を添
加して凝集を完結させた後、3000小吊部に稀釈して
実施例1と同様に抄造してシートを作成し成形する。本
実施例iては1250℃で焼成を行なった。本実施例で
得られた繊維セラミック構造体の材料は空隙率約75%
を示づものであり、一般のt?シミンク材料に較べて極
めて高い空隙率を有するものである。 [実施例3] 耐熱性無機繊維にアルミナ繊維を用いてアルミナ質の繊
維セラミック構造体を本鈍明の方法で作成した。 平均線M長を10mm以トに調節したアルミナ繊紺25
重(6)部と微mのマグネシアを含むγ−アルミナ粉末
10Φω部をそれぞれ水1000i1[部、り0重間部
に懸濁させた後混合した1、この懸濁歌にn酸ヒニルエ
マルジョン、ポリビニルアルコール、−[ブレン−酢酸
ビニル共重合体エマルションの混合した右槻買結合剤を
添加しC均一どなるJ、うに充分攪拌した。次に、凝集
剤として澱粉溶液を加え(アルミナ繊維、セラミック原
料粉末、僧旧:(結合81+をともに凝集させ、この状
態て懸濁させた。この懸濁液を2000手n部に稀釈し
て長網式(′ν紙機或いは丸網代抄組勢を用い(シー1
〜を抄造した。このシートを用いて実施例1ど同様の1
ノ法(成形体をつくり、+600’C酸化′r;吐気て
焼成を行なった。本実施例3はアルミナ質の繊維しノミ
ツク描造休をを成づるものであるか、実施例1,2とI
C+1様に空隙率か高く、)′ルミプ負であることから
1500°C雰囲気での使用に耐えるものである。 発明の詳細 な説明したように本発明は有機質結合剤を加えた後に耐
熱性無機mNとセラミック原料粉末を凝集させて抄造さ
せているため有m質結含剤は無駄なく均一に耐熱性無機
繊維に付着しており、シートとしたときの特性のバラツ
キもなく安定して成形を行なうことができる。 一方、セラミック原料粉末も上記有機質結合剤と共に凝
集さけて内添する方法をとっているためセラミック原料
粉末は均等に分布しており、焼成によって得られる繊維
セラミック構造体は均質で安定した組成を右する。 また、本発明の製造法によって1qられるllNセラミ
ック構造体は、繊維構造の特徴である多孔性を損うこと
なく、1000℃以上の高温度に耐え、更に、例えば各
種の触媒担体やフィルタ、断熱lll1造体、熱交換体
等として用いるのに充分な強度を右する優れた特徴を有
づるものである。
As a result, the heat-resistant inorganic fibers can be uniformly dispersed, and any ceramic raw powder powder can be mixed sufficiently and uniformly. Therefore, in the case of IJ, a homogeneous slurry of heat-resistant inorganic fibers and ceramic raw material powder can be obtained without forming flocs, and an inorganic fiber sheet can be produced by paper-making. It can also be said that the average fiber length is 1.
Because the thickness is adjusted to 0 mm or less, it is now possible to create a sheet with good moldability without using silk. It is important to understand the variations in strength and composition.
Small 41 < homogeneous 4c fiber ll1l? It is possible to obtain a ramic structure. Description of Examples Examples of heat-resistant inorganic fibers include silica fibers, silica-alumina fibers, alumino fibers, silica fibers, alumino small-sized silicate fibers, etc.; A viscosity or a ceramic raw material compound containing a component consisting of magnesia and magnesia can be used. The fiber ceramic structure of the present invention is manufactured in the following one culm. 1) A process of dispersing heat-resistant inorganic fibers with an average fiber length of 10 mm or less in water, and mixing water in which ceramic raw material powder is suspended. 2) A step of adding an organic binder to the suspension water of T culm 1) and mixing it. 3) Step 2) A flocculant is added to the suspended water to agglomerate and suspend the heat-resistant inorganic fibers, ceramic raw material 11 powder, and organic binder. 4) Obtained in step 3) The agglomerated suspension is subjected to ordinary papermaking ffl
11 culms, which are made into sheets to create Sea 1~. 5) Form the sheet into a cardboard-like shape using, for example, corrugate, and heat the formed product at 1000°C to 1600°C.
11 culms that can be burned at °C to turn heat-resistant inorganic fibers and ceramic raw powder into ceramics. In the above step 1), heat-resistant inorganic fibers whose average fiber length is adjusted to 10 mm or less are used.
When dispersing tJ & miscellaneous in water and making it cloudy, long ropes tend to get entangled with each other and form flocs. The size of these flocs depends on the fiber length, and there are cases where long fibers tend to become wedged.Even if the suspension water of the ceramic raw material powder is mixed into the dispersion suspension water in which a single lump has been formed, the flocs will not form. It was observed that no Hiramic raw material powder was taken into the interior. The sheet made using the suspended water forming the ivy had a large compositional balance, which caused notable variations in strength and density. Therefore, as a result of dispersing and observing various types of fibers with different average w x dark blue lengths in water, we found that if the average fiber H length was 10 mm or less, no formation of 1 twig was observed, and ceramic raw material 1
It has been found that the LFU joint venture with powder is sufficient. Furthermore, when forming a molded body from a sheet, fM
When using t([, for example, when the sheet is folded, the stiffness of the heat-resistant inorganic fibers may cause the C fibers to break at that location, or the locations touched by the binding agent may come off or be covered). It became difficult to handle.I made it to compensate for the problem.
It was necessary to incorporate m wear. However, when short fibers are used, the fibers are bonded at each contact point by a binder, so the flexibility of the organic binder maintains a heat-resistant state (prevents breakage and detachment of the cord). In addition, after adding the organic binder in step 2), it is coagulated in J culm 3), so that the surface of the heat-resistant inorganic fibers and especially their contact points are The organic binder is deposited and agglomerated, and the sheet obtained in U rr3,2 (-culm 4) has sufficient strength and bending strength for handling. On the other hand, the ceramic raw El powder is suspended and mixed with heat-resistant inorganic fibers in J culm 1), and in step 3) is coagulated and adhered to the surface of heat-resistant muAN and especially its contact points by a flocculant. ■
This state is maintained even when the culm is made into paper from 1 to 4)'C, and the heat-resistant state ■■ 1 is maintained by firing in step 5).
Sintered and bonded. The contact points of the heat-resistant inorganic fibers in the shield bind the fibers to each other and act as binders. In addition, for example, glassy heat-resistant inorganic fibers come to contain negative crystals when fired, and the bullet holes in the fibers are known to have low F'I.
Is it common that the senomic Ie, 11 powder that has coagulated and adhered to the surface of the heat-resistant inorganic fiber by internal addition reacts and sinters with the heat-resistant tit inorganic fiber while turning it into a ceramic? [Example 1] A heat-resistant inorganic fiber made of silica-alumina is used. This fiber has an average fiber diameter of about 3μIIl and an initial length of 6.
It is relatively long, ranging from 0 to 120 mm. This silica
Arkussenken 1 with a cutter, average fiber shoulder 1 艉6IIllIl
Add 20 Φ parts adjusted to 1000 Φ with water.
Suspended in parts υk1. On the other hand, 6 parts by weight of a mixture of kaolinite, subojimen, and amorphous silicon oxide powder mixed at a ratio of 22゛1 as ceramic raw powder was added to 50 parts by weight.
It was suspended in parts by weight of water. This V&Ken suspension and the Renomic raw material suspension were mixed with stirring.Firstly, as an organic binder, 1 part of the sprue on polyester was added and stirred. After mixing for 8 minutes, add IQ as a flocculant and a powder solution to form an island phase and ceramic lJ? The rice powder and the organic binder were aggregated to a large extent. The agglomerated suspension thus obtained was diluted with water to 3,000 parts by weight, and a sheet of about 0.7 mm was made using an ordinary circular paper machine. Using an outside machine, one part of C1 is properly moistened with steam or water spray, and then a corrugated shape is applied, and the other sheet, which remains flat, is laminated with adhesive. A molded body was created by wrapping it around a core while coating it. Next, this molded body was fired in an electric furnace at 1350°C for 2 hours to obtain a body. The attached fiber ceramic honeycomb (14 structures are shown in the attached drawing). In the attached drawing, numeral 1 is a core made of the same composition as the sheet, and numerals 2 and 3 are a corrugated sheet and a flat plate, respectively. It is a fired product of a shaped sheet, and each contact point is sintered to form an integrated 4M'L. However, as a result of X-ray diffraction, it was found that mullite and cristobalite were crystallized by firing one culm to form a 31 miscellaneous ceramic structure. The resulting fiber ceramic structure has a bending strength of 1.12 kg/cm2.8
It had a porosity of 0%. [Example 2] Silica-alumina fiber was used as the heat-resistant inorganic fiber in the same manner as in Example 1, and the average fiber length was adjusted to about 1 mm20.
1 part of ffi was suspended in 1 part of 1000fi of water. Sericite clay with good sinterability, made of silica-alumino based Noshimitsuku powder, Betarai 1-10 medium early part 50
After suspending the mixture in water, it is added to the fiber suspension and mixed by stirring. Next, 1 small part of vinyl acetate nonocryl is added as an aqueous binder and mixed. After adding an aluminum chloride solution, anhydrous aqueous solution (neutralized to form a colloid of aluminum hydroxide) is mixed. 1.This=] colloid forms a fiber, a ceramic raw material'FA powder, h
Primary agglomeration of machine binder. This aluminum hydroxide-][]-ite aggregates IJ, especially the Iff trade binder.
[C is valid for Marji J. Next, a starch solution is added to complete the aggregation, and then the mixture is diluted to a size of 3,000 ml and formed into a sheet in the same manner as in Example 1. In this example i, firing was performed at 1250°C. The material of the fiber ceramic structure obtained in this example has a porosity of approximately 75%.
It shows the general t? It has an extremely high porosity compared to shimmink materials. [Example 3] An alumina-based fiber ceramic structure was created by the method of this author using alumina fiber as the heat-resistant inorganic fiber. Alumina fiber navy blue 25 with average line M length adjusted to 10 mm or more
10 Φω parts of γ-alumina powder containing (6) parts by weight and minute m of magnesia were each suspended in 1000 parts of water and then mixed. , polyvinyl alcohol, and a binder mixed with a brene-vinyl acetate copolymer emulsion were added to the mixture and stirred thoroughly until uniformly mixed. Next, a starch solution was added as a coagulant (alumina fiber, ceramic raw material powder, and bond 81+ were coagulated together and suspended in this state. This suspension was diluted to 2000 parts. Using the Fourdrinier method ('ν paper machine or the Maru Ajiro Shogumi-mei (sea 1)
~ was made into paper. Using this sheet, perform the same procedure as in Example 1.
(A molded body was made and fired at +600'C oxidation rate.Example 3 was a method for forming alumina fibers with a spherical pattern.Examples 1 and 2 and I
Like C+1, it has a high porosity and negative Lumip value, so it can withstand use in an atmosphere of 1500°C. As described in detail, in the present invention, heat-resistant inorganic mN and ceramic raw material powder are aggregated and made into paper after adding an organic binder, so that the organic binder is uniformly formed into heat-resistant inorganic fibers without waste. It adheres to the surface of the sheet, and when it is made into a sheet, it can be formed stably without any variation in properties. On the other hand, since the ceramic raw material powder is added internally together with the above-mentioned organic binder without agglomeration, the ceramic raw material powder is evenly distributed, and the fiber ceramic structure obtained by firing has a homogeneous and stable composition. do. In addition, the 1q 1N ceramic structure produced by the manufacturing method of the present invention can withstand high temperatures of 1000°C or more without impairing the porosity that is a characteristic of the fiber structure, and can also be used as a material for various catalyst carriers, filters, heat insulation, etc. It has excellent characteristics that give it sufficient strength to be used as a heat exchanger, etc.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の製造方法で製造した繊維セラミック
ハニカム構造体の一実施例を示ずFliJi図である。 1・・・芯  2・・・コルゲートシート3・・・平扱
状シート 特許出願人 松下電器産業株式会社 図而
The attached drawing is a diagram showing an example of a fiber ceramic honeycomb structure manufactured by the manufacturing method of the present invention. 1...Core 2...Corrugated sheet 3...Flat handling sheet Patent applicant: Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 平均繊維長を10mm以下に調節した耐熱性無機繊維を
セラミック原料粉末とともに分散し、有機質結合剤を加
えた後、上記耐熱性無機繊維とセラミック原料粉末を凝
集させ、紙状に抄造し、無機繊維シートとしたものを加
工成形、焼成することを特徴とする繊維セラミック構造
体の製造方法。
Heat-resistant inorganic fibers with an average fiber length adjusted to 10 mm or less are dispersed together with ceramic raw material powder, an organic binder is added, and then the heat-resistant inorganic fibers and ceramic raw material powder are agglomerated and formed into a paper-like form to obtain inorganic fibers. A method for manufacturing a fiber ceramic structure, characterized by processing, forming and firing a sheet.
JP12533284A 1984-06-20 1984-06-20 Manufacture of fiber ceramic structure Granted JPS616184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12533284A JPS616184A (en) 1984-06-20 1984-06-20 Manufacture of fiber ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12533284A JPS616184A (en) 1984-06-20 1984-06-20 Manufacture of fiber ceramic structure

Publications (2)

Publication Number Publication Date
JPS616184A true JPS616184A (en) 1986-01-11
JPH0475193B2 JPH0475193B2 (en) 1992-11-30

Family

ID=14907484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12533284A Granted JPS616184A (en) 1984-06-20 1984-06-20 Manufacture of fiber ceramic structure

Country Status (1)

Country Link
JP (1) JPS616184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414143A (en) * 1987-07-07 1989-01-18 Inax Corp Production of ceramic sheet
US4989664A (en) * 1988-07-07 1991-02-05 United Technologies Corporation Core molding composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136656A (en) * 1980-03-26 1981-10-26 Nichias Corp Carrier for catalyst and its production
JPS5924111A (en) * 1982-07-29 1984-02-07 Matsushita Electric Ind Co Ltd Burner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136656A (en) * 1980-03-26 1981-10-26 Nichias Corp Carrier for catalyst and its production
JPS5924111A (en) * 1982-07-29 1984-02-07 Matsushita Electric Ind Co Ltd Burner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414143A (en) * 1987-07-07 1989-01-18 Inax Corp Production of ceramic sheet
JPH0524105B2 (en) * 1987-07-07 1993-04-06 Inax Corp
US4989664A (en) * 1988-07-07 1991-02-05 United Technologies Corporation Core molding composition

Also Published As

Publication number Publication date
JPH0475193B2 (en) 1992-11-30

Similar Documents

Publication Publication Date Title
US4608361A (en) Catalyst carriers and process for preparation of the same
EP0133307B1 (en) Process for preparing ceramic molding
WO2000015574A1 (en) Bonded fibrous materials
JP3090462B2 (en) Method for producing sheet from aqueous dispersion
JPS6255600B2 (en)
US7858554B2 (en) Cordierite fiber substrate and method for forming the same
JPS616184A (en) Manufacture of fiber ceramic structure
JPH042673A (en) Production of high temperature-resistant material
JPH0238533B2 (en)
JPH05311596A (en) Ceramic sheet and its production and heat insulator using the same sheet
JPS61168582A (en) Manufacture of inorganic formed body
JPS62125060A (en) Heat insulating material and its production
JPH06316467A (en) Production of incombustible molding
JPH0627026B2 (en) Ceramic substrate firing sheet
JPS60231899A (en) Heat resistant sheet and its production
AU2001275758A1 (en) Bonded fibrous materials
JP2001330375A (en) Fireproof insulating material
JPS62207778A (en) Manufacture of multilayer ceramic filter
JPH0648860A (en) Production of porous heat resistant material
JPS59169989A (en) Manufacture of heat resistant fiberous formed body
JPS62283884A (en) Fibrous ceramic heat insulator
JPH04357179A (en) Heat-resistant inorganic composition and production of porous heat-resistant material using the same
JP2002179474A (en) Refractory heat-insulating material and its production process
JPH0476339B2 (en)
JPS60208238A (en) Heat-resistant sheet and manufacture thereof