JPS6161843B2 - - Google Patents

Info

Publication number
JPS6161843B2
JPS6161843B2 JP57217505A JP21750582A JPS6161843B2 JP S6161843 B2 JPS6161843 B2 JP S6161843B2 JP 57217505 A JP57217505 A JP 57217505A JP 21750582 A JP21750582 A JP 21750582A JP S6161843 B2 JPS6161843 B2 JP S6161843B2
Authority
JP
Japan
Prior art keywords
hot water
well
rare elements
solvent
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57217505A
Other languages
Japanese (ja)
Other versions
JPS59105805A (en
Inventor
Yoshitaro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP57217505A priority Critical patent/JPS59105805A/en
Publication of JPS59105805A publication Critical patent/JPS59105805A/en
Publication of JPS6161843B2 publication Critical patent/JPS6161843B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は地下深部に賦存するクラーク数の低い
希少元素の採取法であつて、その目的とする処は
簡単で、かつ、効果的に希少元素を採取する方法
を提供すると共にコストの低廉な採取法を提供す
ることにある。 従来地下の有用元素を採取するには、極く一部
の露天掘りを除き、多くは地下に総延長数百メー
トルから数千メートルに達する坑道を掘削し、人
力又は機械力によつて採掘し、地上に運搬後破
砕、粉砕等の物理的選鉱を経た後、有用元素を浸
出処理に始まる各種湿式精錬によつて採取してい
る。 しかし、前述方法は鉱石中の含有量の多い元素
の採取には適していても、クラーク数の低い希少
元素では含有率が微量なために、分離採取の経済
的、技術的困難性が伴なうと云う欠点がある。 本発明者は地熱発電に使用する地熱蒸気採取に
当り、これに随伴して採取される熱水につき研究
した結果、特許請求の範囲に記載される構成によ
つて希少元素を簡単に、かつ、効果的に採取でき
る方法を得ることができた。 即ち、本発明は地熱蒸気に熱水が随伴する熱水
随伴型地熱井に於て、還元井から還元する熱水に
希少元素を選択的に溶解する溶剤を混合し、該熱
水を生産井と還元井とを循環させて希少元素を濃
縮した後、分離回収することを特徴とする希少元
素の採取法である。 熱水随伴型(又は熱水卓越型)の地熱井では地
熱蒸気に随伴して大量の熱水が採取されている
が、かゝる熱水随伴型の地熱井では熱水を地熱蒸
気から分離した後還元井によつて地下深部へ還元
している。そして茲で地下深部へ還元される熱水
は地熱蒸気貯留部へ還流し、再たび地熱蒸気に随
伴して採取される。 本発明では前記の如き熱水の挙動に着目し、希
少元素を選択的に溶解する溶液又は溶剤を地下へ
注入することによつて希少元素を溶液状態として
回収することができた。 図面は本発明の一実施例を示したものである
が、以下図示例に基づいて本発明を説明する。熱
水随伴型の地熱蒸気井は生産井1と還元井2が取
付けられており、生産井1より採取される蒸気と
熱水との二相流体を採取し、セパレーター3によ
つて蒸気と熱水とを分離し、蒸気はパイプ4によ
つてタービン(図示省略)に送られる。 他方、セパレーター3で蒸気と分離した熱水
は、還元井2へ送られて地下へ還元されている
が、本発明は還元井2から還元される熱水に、溶
剤添加装置5から適宜溶剤を添加して還元する。
茲で使用する溶剤は地下に賦存している希少元素
を選択的に溶解できるものを使用する。 第1表は熱水随伴型の地熱井から採取された熱
水中の希少元素の含有量を示したものである。
The present invention is a method for collecting rare elements with a low Clark number that exists deep underground, and its purpose is to provide a method for collecting rare elements that is simple and effective, and is inexpensive. The goal is to provide a collection method. Conventionally, in order to extract useful elements from underground, except for a very small number of open-pit mines, most of the methods involve excavating tunnels with a total length of several hundred meters to several thousand meters underground, and mining them manually or mechanically. After being transported to the ground and undergoing physical beneficiation such as crushing and pulverization, useful elements are extracted through various hydrometallurgical processes starting with leaching. However, although the above-mentioned method is suitable for extracting elements with a high content in ores, the rare elements with a low Clark number have a trace amount of content, which is accompanied by economic and technical difficulties in separating and collecting them. There are some drawbacks. The present inventor conducted research on the hot water collected in conjunction with geothermal steam extraction used for geothermal power generation, and found that rare elements can be easily and We were able to find a method that allows for effective collection. That is, in a hydrothermal geothermal well in which geothermal steam is accompanied by hot water, the present invention mixes a solvent that selectively dissolves rare elements with the hot water returned from the reinjection well, and uses the hot water in the production well. This is a rare element collection method that is characterized by circulating the rare elements through a recirculation well and a reinjection well to concentrate the rare elements and then separating and recovering them. In hydrothermal-associated (or hydrothermal-dominated) geothermal wells, a large amount of hot water is extracted along with geothermal steam, but in such hydrothermal wells, the hot water is separated from the geothermal steam. After that, the water is returned deep underground through a reinjection well. The hot water that is returned to the deep underground by the slag flows back into the geothermal steam storage area and is collected again along with the geothermal steam. In the present invention, we focused on the behavior of hot water as described above, and by injecting a solution or a solvent that selectively dissolves rare elements underground, we were able to recover rare elements in a solution state. Although the drawings show one embodiment of the present invention, the present invention will be explained below based on the illustrated example. A hydrothermal-associated geothermal steam well is equipped with a production well 1 and a return well 2. A two-phase fluid of steam and hot water is collected from the production well 1, and the separator 3 separates the steam and heat. The steam is separated from water and sent to a turbine (not shown) through a pipe 4. On the other hand, the hot water separated from the steam by the separator 3 is sent to the reinjection well 2 and is returned underground. However, in the present invention, an appropriate solvent is added to the hot water reduced from the reinjection well 2 from the solvent addition device 5. Add and reduce.
The solvent used in the potting process is one that can selectively dissolve rare elements found underground. Table 1 shows the content of rare elements in hot water collected from hydrothermal geothermal wells.

【表】 即ち、前記熱水中には多数の希少元素を含むこ
とが認められる。従つて、例えばLi,Rb,Cs,
Srを採取する場合には、溶剤としてNaCl,
NaNO3等を使用でき、またエタノール、アセチ
ルアセトン等の溶媒を前記溶剤と併用することに
より、さらに高濃度のものを抽出できる。 もつとも、これら地下鉱物中の希少元素はその
化合物又は結晶状態等によつて採取量に若干変動
が生ずるも、かゝる場合でも適宜溶剤を選択して
採取することができる。また、茲で使用する溶剤
は粉末状のものを使用してもよくまた適宜溶剤を
水に溶解して水溶液状態として添加してもよい。
また、前記溶剤は必らずしも希少元素の一のみの
溶剤を選択する必要はなく、希少元素の2以上を
同時に溶解できるものであつてもよく、この場合
は、さらに有効に希少元素を採取できる点で有利
である。 前述のように適宜溶剤を添加した熱水は還元井
2から地下に還元され、地熱により加熱されつゝ
断層(不整合部)6の上部に賦存する地下鉱脈7
内へ浸透し、地下鉱脈7中の希少元素を選択的に
溶解抽出した後亀裂8を経て生産井1から地熱蒸
気と共に噴出し採取される。 この場合地下における熱水の挙動及び流量等は
例えば放射性物質等のトレーサーを使う湧出テス
トによつて知ることができ、これによつて生産井
1と還元井2との位置決定ができる。 また、一般に熱水随伴型の地熱井では数年間に
亘つて操業を続行する場合、還元井2から注入す
る熱水は地下鉱物7中に熱水流路(透水層)が形
成され、しかも流路の拡大等によつて熱水が生産
井1に到達するのが容易になることが確認されて
おり、生産井1で回収される熱水を還元井2によ
つて還元し、この操作を循環することによつて熱
水中の希少元素を回収、濃縮する。前記熱水の循
環に当り、生産井1から回収された熱水に適宜溶
剤を追加しつゝ熱水を循環すれば、希少元素の回
収量を増加することができる。 以上のように、溶剤を添加した熱水を生産井1
と還元井2との間を循環することによつて回収さ
れた熱水中の希少元素は、セパレーター3で蒸気
と分離した後元素分離装置9で分離して採取され
る。この場合、元素分離装置9は常法によつて溶
液から希少元素の化合物等として折出させ、これ
をデカンテーシヨン、沈澱分離又はイオン分離膜
法等によつて簡単に分離できる。 以上の如く本発明は熱水随伴型地熱井におい
て、生産井から採取され、還元井で還元する熱水
を利用し、これに希少元素を溶解する溶剤を混合
し、熱水を生産井と還元井との間を循環させて、
地下の希少元素を熱水中に回収濃縮するものであ
るから、希少元素の回収が簡単であり、しかも溶
剤の添加及び希少元素の分離回収以外には何等特
別な装置を必要とせず、採取費を大巾に削減でき
る。 また、前記生産井と還元井とはその本来の機能
は全く損われず、地熱蒸気を安定して確保できる
という効果もある。 実施例 熱水随伴型地熱生産井から採取される下記第2
表に示す如き希少元素を含む熱水(流量100t/
H)に対して、10重量%の食塩水とアセチルアセ
トンを混合し、還元井から地下に還元し、該熱水
を生産井と還元井との間を循環させ3日後に生産
井から採取しセパレーターで蒸気と分離した熱水
(流量230t/H)の分析を行つた処第3表の通り
であつた。
[Table] That is, it is recognized that the hot water contains many rare elements. Therefore, for example, Li, Rb, Cs,
When collecting Sr, use NaCl as a solvent,
NaNO 3 or the like can be used, and by using a solvent such as ethanol or acetylacetone in combination with the above solvent, an even higher concentration can be extracted. However, the amount of rare elements in these underground minerals may vary slightly depending on their compounds, crystalline state, etc., but even in such cases, they can be extracted by selecting an appropriate solvent. Further, the solvent used in the fixing may be in the form of a powder, or the solvent may be dissolved in water and added in the form of an aqueous solution.
Further, the solvent does not necessarily have to be selected for only one of the rare elements, but may be one that can dissolve two or more of the rare elements at the same time. In this case, the rare element can be dissolved more effectively. It is advantageous in that it can be collected. As mentioned above, the hot water to which an appropriate solvent has been added is returned underground from the reinjection well 2, heated by geothermal heat, and is used to generate underground mineral veins 7 existing above the fault (unconformity) 6.
After penetrating into the interior and selectively dissolving and extracting rare elements in underground veins 7, they are ejected from production wells 1 through cracks 8 and collected together with geothermal steam. In this case, the behavior and flow rate of hot water underground can be known by, for example, a gushing test using a tracer such as a radioactive substance, and thereby the positions of the production well 1 and the reinjection well 2 can be determined. Additionally, in general, when a hydrothermal-associated geothermal well continues to operate for several years, the hot water injected from the reinjection well 2 forms a hydrothermal flow path (permeable layer) in the underground mineral 7; It has been confirmed that it becomes easier for hot water to reach production well 1 by expanding the production well 1, and the hot water recovered in production well 1 is returned to the return well 2 and this operation is recycled. This method recovers and concentrates rare elements in hot water. When circulating the hot water, if a solvent is appropriately added to the hot water recovered from the production well 1 and the hot water is circulated, the amount of rare elements recovered can be increased. As mentioned above, hot water with added solvent was added to production well 1.
Rare elements in the hot water recovered by circulating between the hot water and the reinjection well 2 are separated from steam in a separator 3, and then separated and collected in an element separation device 9. In this case, the element separation device 9 precipitates rare element compounds from the solution using a conventional method, and easily separates the compounds by decantation, precipitation separation, ion separation membrane method, or the like. As described above, the present invention utilizes hot water collected from a production well and reduced in a reinjection well in a hydrothermal geothermal well, mixes a solvent that dissolves rare elements with this, and returns the hot water to the production well. By circulating between the well and
Since rare elements underground are recovered and concentrated in hot water, it is easy to recover rare elements, and there is no need for any special equipment other than adding a solvent and separating and recovering rare elements, reducing the collection cost. can be drastically reduced. Further, the original functions of the production well and the reinjection well are not impaired at all, and geothermal steam can be stably secured. Example: The following second sample collected from a hydrothermal geothermal production well
Hot water containing rare elements as shown in the table (flow rate 100t/
For H), 10% by weight of salt water and acetylacetone are mixed, and the hot water is returned underground from the reinjection well, the hot water is circulated between the production well and the reinjection well, and after 3 days it is collected from the production well and placed in a separator. The analysis of the hot water (flow rate 230t/h) separated from the steam was as shown in Table 3.

【表】【table】

【表】 第2表及び第3表との比較から熱水中のLiは
ほゞ当初の2倍に濃縮されており、従つて元素分
離装置でアミルアルコールによつてLiClとして分
離回収する。
[Table] Comparison with Tables 2 and 3 shows that Li in the hot water is almost twice as concentrated as it was initially, and is therefore separated and recovered as LiCl using amyl alcohol in an elemental separation device.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の説明図である。 1:生産井、2:還元井、3:セパレーター、
4:パイプ、5:溶剤添加装置、6:断層、7:
地下鉱脈、8:亀裂、9:元素分離装置。
The drawings are explanatory diagrams of one embodiment of the present invention. 1: Production well, 2: Reduction well, 3: Separator,
4: Pipe, 5: Solvent addition device, 6: Fault, 7:
Underground vein, 8: Crack, 9: Element separation device.

Claims (1)

【特許請求の範囲】[Claims] 1 地熱蒸気に熱水が随伴する熱水随伴型地熱井
に於て、還元井から還元する熱水に希少元素を選
択的に溶解する溶剤を混合し、該熱水を生産井と
還元井とを循環させて希少元素を濃縮した後、分
離回収することを特徴とする希少元素の採取法。
1. In hydrothermal geothermal wells where hot water accompanies geothermal steam, a solvent that selectively dissolves rare elements is mixed with the hot water returned from the reinjection well, and the hot water is transferred between the production well and the reinjection well. A method for collecting rare elements, which is characterized by recycling and concentrating rare elements, and then separating and recovering them.
JP57217505A 1982-12-10 1982-12-10 Collection of rare element Granted JPS59105805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217505A JPS59105805A (en) 1982-12-10 1982-12-10 Collection of rare element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217505A JPS59105805A (en) 1982-12-10 1982-12-10 Collection of rare element

Publications (2)

Publication Number Publication Date
JPS59105805A JPS59105805A (en) 1984-06-19
JPS6161843B2 true JPS6161843B2 (en) 1986-12-27

Family

ID=16705281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217505A Granted JPS59105805A (en) 1982-12-10 1982-12-10 Collection of rare element

Country Status (1)

Country Link
JP (1) JPS59105805A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325835B2 (en) * 2014-02-07 2018-05-16 株式会社熊谷組 Groundwater resource recovery system
CN109469472B (en) * 2018-12-19 2020-12-11 四川共拓岩土科技股份有限公司 In-situ leaching mining method for ionic rare earth ore
CN111944996B (en) * 2020-07-10 2022-05-17 五矿(北京)稀土研究院有限公司 In-situ ore leaching method for reducing seepage through air seal
CN112431578B (en) * 2020-12-02 2022-07-29 山西潞安环保能源开发股份有限公司常村煤矿 Method for extracting mine gas from low-permeability coal seam containing fault

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510167A (en) * 1968-08-19 1970-05-05 Hardy Salt Co Methods of solution mining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510167A (en) * 1968-08-19 1970-05-05 Hardy Salt Co Methods of solution mining

Also Published As

Publication number Publication date
JPS59105805A (en) 1984-06-19

Similar Documents

Publication Publication Date Title
WO2018170105A1 (en) Rare earth element extraction from coal
Chmielewski et al. Possibility of uranium and rare metal recovery in the Polish copper mining industry
CN104060112A (en) Method for leaching uranium from low-grade uranium ores by utilizing supercritical carbon dioxide
Lee et al. Lithium recovery from a simulated geothermal fluid by a combined selective precipitation and solvent extraction method
JPS6161843B2 (en)
WO2021222024A1 (en) Oxygenated metal compounds for selective extraction of lithium salts and methods of use thereof
Lippmaa et al. RESOURCES, PRODUCTION AND PROCESSING OF BALTOSCANDIAN MULTIMETAL BLACK SHALES.
Kiegiel et al. Dictyonema black shale and Triassic sandstones as potential sources of uranium
Kiegiel et al. Uranium in Poland: Resources and recovery from low-grade ore
CN100400687C (en) Method of extracting radioactive uranium in phosphate
Kiegiel et al. Perspective of obtaining rare earth elements in Poland
Ritcey et al. Purification of manganese solutions containing copper and zinc by liquid-liquid extraction, using di-(2-ethylhexyl) phosphoric acid
Belova Free supported liquid membranes
Zakrzewska et al. RECOVERY OF VALUABLE METALS FROM THE WASTE DERIVING FROM URANIUM PRODUCTION AND PROCESSING OF SECONDARY MATERIALS
KR101291146B1 (en) Extraction method of uranium and vanadium from black shale ore using sequential leaching process
O'Gorman et al. Novel in-situ metal and mineral extraction technology
Smoliński et al. COMPARISON OF TOA AND D2EHPA FOR EXTRACTION OF MOLYBDENUM, VANADIUM AND URANIUM FROM LEACH SOLUTIONS OF COPPER ORE AND FLOTATION WASTES
KR101586689B1 (en) Method for separating gold from wastes using electrical reactor producing chloride
Zakrzewska et al. Recovery of uranium (VI) from water solutions by membrane extraction
US20090071840A1 (en) Method for extracting metals from ore
Hodder Salt and gold: mining the geothermal resource in New Zealand
Sarangi et al. Uranium mining by in-situ leaching
Haque et al. Leaching of radionuclides from uranium mill tailings and their flotation concentrates by hydrochloric acid and chloride salts
CN106507864B (en) The method of Leaching Uranium and its device
Kaya et al. Thorium fuel for nuclear energy