JPS6161738B2 - - Google Patents

Info

Publication number
JPS6161738B2
JPS6161738B2 JP19181581A JP19181581A JPS6161738B2 JP S6161738 B2 JPS6161738 B2 JP S6161738B2 JP 19181581 A JP19181581 A JP 19181581A JP 19181581 A JP19181581 A JP 19181581A JP S6161738 B2 JPS6161738 B2 JP S6161738B2
Authority
JP
Japan
Prior art keywords
signal
pilot signal
phase
amplifier
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19181581A
Other languages
Japanese (ja)
Other versions
JPS5895435A (en
Inventor
Toshio Nojima
Hideki Tooyama
Shigeharu Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19181581A priority Critical patent/JPS5895435A/en
Publication of JPS5895435A publication Critical patent/JPS5895435A/en
Publication of JPS6161738B2 publication Critical patent/JPS6161738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15585Relay station antennae loop interference reduction by interference cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は送信アンテナから空間を介して受信ア
ンテナへ廻り込む干渉電波を軽減する装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a device for reducing interference radio waves that circulate from a transmitting antenna to a receiving antenna through space.

(背景技術) 無線信号を受信アンテナで受信しこれを増幅後
送信アンテナより同一周波数にて再送信する無線
中継方式においては、送信アンテナから発射され
た信号の一部が空間を介した廻り込み電波として
受信アンテナに於いて再受信される場合がある。
このような場合に、受信アンテナに於いては、正
規の到来電波による信号と廻り込み電波による干
渉信号とが相加される為、中継装置の機能を阻害
する要因となり得る。従来、この干渉信号を補償
する方法としては、図1に示すように、振幅・位
相を調整できる帰還回路を中継装置の送信端から
受信端の間に設け、その帰還信号を干渉信号と逆
相・等振幅にすることにより干渉信号を相殺する
方法がある。図中、1は受信アンテナ、2は送信
アンテナ、3は中継増幅器、5は半固定移相器、
6は半固定減衰器、そして4は干渉補償のための
帰還ループである。帰還ループ4からの帰還信号
が干渉信号を相殺する条件である逆相・等振幅の
条件の設定は半固定移相器5と半固定減衰器6の
調整により行われる。通常この調整は測定器を用
いて手動で行われる為、極めて不便である。ま
た、一度調整が良好になされても、増幅器特性
や、送受アンテナ間伝搬路特性の変動により干渉
信号と帰還信号との相殺状態が劣化するため、定
常的に良好な補償特性の得られない欠点があつ
た。
(Background technology) In a wireless relay system in which a radio signal is received by a receiving antenna and then retransmitted at the same frequency from a transmitting antenna after being amplified, a part of the signal emitted from the transmitting antenna is transmitted through space as a wraparound radio wave. The signal may be re-received by the receiving antenna.
In such a case, at the receiving antenna, the signal due to the regular incoming radio wave and the interference signal due to the detouring radio wave are added, which may become a factor that inhibits the function of the relay device. Conventionally, as shown in Figure 1, the method of compensating for this interference signal has been to provide a feedback circuit that can adjust the amplitude and phase between the transmitting end and the receiving end of the repeater, and to send the feedback signal to the opposite phase of the interfering signal.・There is a method to cancel the interference signal by making the amplitude equal. In the figure, 1 is a receiving antenna, 2 is a transmitting antenna, 3 is a relay amplifier, 5 is a semi-fixed phase shifter,
6 is a semi-fixed attenuator, and 4 is a feedback loop for interference compensation. The conditions of opposite phase and equal amplitude under which the feedback signal from the feedback loop 4 cancels out the interference signal are set by adjusting the semi-fixed phase shifter 5 and the semi-fixed attenuator 6. This adjustment is usually performed manually using a measuring instrument, which is extremely inconvenient. In addition, even if the adjustment is made well, the cancellation state between the interference signal and the feedback signal deteriorates due to variations in the amplifier characteristics and the propagation path characteristics between the transmitting and receiving antennas, making it impossible to consistently obtain good compensation characteristics. It was hot.

(技術的課題) 本発明はこれらの欠点を解消するため、送信信
号にパイロツト信号を重畳し、そのパイロツト信
号について帰還ループ信号と干渉信号との相殺残
留成分を検出することにより帰還ループ信号の振
幅と位相を制御し自動的に最適補償条件を実現し
ようとしたもので以下図面について詳細に説明す
る。
(Technical Problem) In order to solve these drawbacks, the present invention superimposes a pilot signal on the transmission signal, and detects the residual component of the pilot signal that cancels the feedback loop signal and the interference signal, thereby increasing the amplitude of the feedback loop signal. This is an attempt to automatically realize the optimal compensation conditions by controlling the phase and phase, and the drawings will be explained in detail below.

(実施例) 第2図は本発明の実施例であつて、1は受信ア
ンテナ、2は送信アンテナ、3は中継増幅器、4
は帰還ループ、7は等振幅2相(0゜、90゜)分
配器、8は等振幅4相(0゜、90゜、180゜、270
゜)分配器、9はパイロツト信号発生器、10は
パイロツト信号除出波器、12と13は信号帯
域通過波器、14はレベル調整のための増幅
器、15aと15bは同期検波器、16aと16
bは電圧加算器、17は整流器、18は電気的可
変減衰器、19a,19bは可変遅延線路であ
る。
(Embodiment) FIG. 2 shows an embodiment of the present invention, in which 1 is a receiving antenna, 2 is a transmitting antenna, 3 is a relay amplifier, and 4 is a transmitting antenna.
is a feedback loop, 7 is an equal amplitude 2-phase (0°, 90°) distributor, 8 is an equal amplitude 4-phase (0°, 90°, 180°, 270°)
゜) Divider, 9 is a pilot signal generator, 10 is a pilot signal remover, 12 and 13 are signal band pass filters, 14 is an amplifier for level adjustment, 15a and 15b are synchronous detectors, 16a and 16
b is a voltage adder, 17 is a rectifier, 18 is an electrical variable attenuator, and 19a and 19b are variable delay lines.

受信アンテナ1で受信される信号は、正規の到
来電波による信号(以下正規信号という)と、送
信アンテナ2から発射後空間を介して廻り込む干
渉信号の合成されたものである。中継増幅器の入
力信号はこれらにさらに帰還ループ4を経由した
帰還信号が相加されている。さて、本発明は干渉
信号と帰還信号の相殺条件を自動的に実現するも
のでその動作は次のとおりである。いま、送信ア
ンテナ2から単一周波数のパイロツト信号が発射
されている状態を考える。このとき、パイロツト
信号検出波器11の出力信号は干渉信号と帰還
信号との合成信号であつて、これを第3図のベク
トル図にe〓sで示す。ここで同図中e〓i,e〓cはそ

ぞれ干渉信号および帰還信号を表わす。この抽出
されたパイロツト信号e〓sをパイロツト信号発生
器9から分岐した信号の同相および直交成分を基
準として同期検波器15aおよび15bで同期検
波すれば、ベクトルe〓sの同相および直交成分e
x,eyが直流電圧として検出できる。そこで、こ
のex,eyの符号を反転したスペクトル−e〓s
さらにe〓sに相加すれば、パイロツト検出波器
11の出力は消失し、干渉信号と帰還信号の相殺
条件が実現できる。これは具体的には次のように
して実現される。まず同期検波器15a,15b
で検出された同相成分exと直交成分eyはそれぞ
れ電圧加算器16aおよび16bに入力され、そ
の出力で等振幅4相分配器8と電気的可変減衰器
18とで構成されるベクトル変調器を駆動する。
ここでダイオード17は電圧加算器の出力電圧の
極性に応じてベクトル変調器のx軸、y軸の極性
を選択するもので、例えばexが正ならばπ相の
信号経路が導通となる。そして、その導通信号の
レベルは検出電圧の大きさ、例えば|ex|にな
るように電気的可変減衰器により設定される。こ
のようにして、同期検波器15a,15bで検出
された電圧に対してベクトル変調器での制御を負
帰還状態にすることが可能である。例えば、第3
図のベクトル図に示すように、受信信号中のパイ
ロツト信号成分の同相成分としてex、そして直
交成分としてeyが検出された場合、ベクトル変
調器は、帰還ループの出力信号がそれまでの出力
信号e〓cにさらに−exi−eyj(但し、i、j
はそれぞれ第3図x軸、y軸の単位ベクトル)、
すなわち、−e〓sの相加された信号となる。従つ
て、この制御により受信信号中のパイロツト信号
の抑圧が実現される。これは、すなわち帰還信号
により干渉信号が相殺される条件に一致するの
で、本発明をアンテナ送受間干渉の自動補償装置
に応用できる。この際、パイロツト信号除去波
器10は、主信号経路のパイロツト信号成分を除
去するもので、これにより、(i)残留パイロツト成
分が出力側に現れず制御が多重ループ化すること
を防止でき、又(ii)中継増幅器の特性変動がパイロ
ツトレベル及び位相に影響しないなどの効果を生
じ、制御を極めて安定化することができる。ま
た、加算される制御電圧の−e〓sに対する近似性
はより良い方が収束を早めるので望ましいが、近
似性が良好でなくとも、制御は負帰還となつてい
るので収束し、干渉信号の抑圧は可能である。な
お、同期検波器の基準信号ならびに入力信号とベ
クトル変調器の出力信号との位相同期は、それぞ
れ可変遅延線路19a,19bの調整により行な
い、またパイロツト除去波器10は、パイロツ
ト信号が信号帯域通過波器12で除去可能なと
きには不要である。
The signal received by the receiving antenna 1 is a combination of a signal due to a regular arriving radio wave (hereinafter referred to as a regular signal) and an interference signal that circulates through space after being emitted from the transmitting antenna 2. A feedback signal via a feedback loop 4 is further added to the input signals of the relay amplifier. Now, the present invention automatically realizes the conditions for canceling the interference signal and the feedback signal, and its operation is as follows. Now, consider a situation where a pilot signal of a single frequency is being emitted from the transmitting antenna 2. At this time, the output signal of the pilot signal detector 11 is a composite signal of the interference signal and the feedback signal, which is shown as e s in the vector diagram of FIG. Here, e〓 i and e〓 c in the figure represent an interference signal and a feedback signal, respectively. If this extracted pilot signal e〓 s is synchronously detected by the synchronous detectors 15a and 15b with reference to the in-phase and quadrature components of the signal branched from the pilot signal generator 9, the in-phase and quadrature components e of the vector e〓 s are detected.
x , e y can be detected as DC voltage. Therefore, if the spectrum - e s , which is the sign-inverted spectrum of e can. Specifically, this is achieved as follows. First, the synchronous detectors 15a and 15b
The in-phase component e x and quadrature component e y detected in are input to voltage adders 16a and 16b, respectively, and their outputs are used as vector modulators consisting of an equal-amplitude four-phase divider 8 and an electrical variable attenuator 18. to drive.
Here, the diode 17 selects the polarity of the x-axis and y-axis of the vector modulator according to the polarity of the output voltage of the voltage adder. For example, if e x is positive, the π-phase signal path becomes conductive. Then, the level of the conductive signal is set by an electrically variable attenuator so as to be equal to the magnitude of the detected voltage, for example | ex |. In this way, it is possible to bring the control of the vector modulator into a negative feedback state for the voltages detected by the synchronous detectors 15a and 15b. For example, the third
As shown in the vector diagram, when e In addition to the signal e〓 c , −e x i−e y j (however, i, j
are the unit vectors of the x-axis and y-axis in Figure 3, respectively),
That is, the signal is an added signal of -e〓s . Therefore, this control realizes suppression of the pilot signal in the received signal. Since this corresponds to the condition that the interference signal is canceled by the feedback signal, the present invention can be applied to an automatic compensation device for interference between transmitting and receiving antennas. At this time, the pilot signal remover 10 removes the pilot signal component from the main signal path, thereby (i) preventing the residual pilot component from appearing on the output side and causing multiple loops of control; Furthermore, (ii) variations in the characteristics of the relay amplifier do not affect the pilot level and phase, resulting in extremely stable control. In addition, it is desirable that the approximation of the added control voltage to -e〓 s is better because convergence will be faster, but even if the approximation is not good, since the control is negative feedback, it will converge and the interference signal will be reduced. Repression is possible. The phase synchronization between the reference signal and input signal of the synchronous detector and the output signal of the vector modulator is performed by adjusting the variable delay lines 19a and 19b, respectively, and the pilot remover 10 allows the pilot signal to pass through the signal band. It is not necessary when it can be removed by the wave generator 12.

(発明の効果) 以上説明したように、本発明を用いることによ
り、アンテナ受信信号において干渉信号をアンテ
ナ送受間伝搬路および中継増幅器の特性変動と無
関係に自動的に低減することが可能となるから、
送受信信号周波数が同一である無線中継方式にお
いて送受アンテナ間の干渉信号を補償することが
でき、中継装置の増幅利得として送受アンテナ間
結合減衰量(干渉補償を用いない場合の値)以上
のものを配分できる利点がある。
(Effects of the Invention) As explained above, by using the present invention, it is possible to automatically reduce interference signals in the antenna reception signal regardless of the characteristic fluctuations of the propagation path between the antenna transmission and reception and the repeater amplifier. ,
In a wireless relay system where the transmitting and receiving signal frequencies are the same, it is possible to compensate for interference signals between the transmitting and receiving antennas, and the amplification gain of the relay device is greater than the coupling attenuation between the transmitting and receiving antennas (the value when no interference compensation is used). There are benefits that can be distributed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の干渉補装置の一実施例、第2図
は本発明の一実施例、第3図は受信パイロツト信
号のベクトル図である。 1……受信アンテナ、2……送信アンテナ、3
……中継増幅器、4……帰還ループ、5……半固
定移相器、6……半固定減衰器、7……等振幅2
相分配器、8……等振幅4相分配器、9……パイ
ロツト信号発生器、10……パイロツト信号除去
波器、11……パイロツト信号検出波器、1
2,13……信号帯域通過波器、14……増幅
器、15a,15b……同期検波器、16a,1
6b……電圧加算器、17……ダイオード、18
……電気的可変減衰器、19a,19b……可変
遅延線路、20……抽出されたパイロツト信号ベ
クトル、21……干渉信号ベクトル、22……帰
還信号ベクトル、23……パイロツト信号の逆ベ
クトル、24……パイロツト信号ベクトルのx成
分(同相成分)、25……パイロツト信号ベクト
ルのy成分(直交成分)。
FIG. 1 is an embodiment of a conventional interference compensator, FIG. 2 is an embodiment of the present invention, and FIG. 3 is a vector diagram of a received pilot signal. 1... Receiving antenna, 2... Transmitting antenna, 3
... Relay amplifier, 4 ... Feedback loop, 5 ... Semi-fixed phase shifter, 6 ... Semi-fixed attenuator, 7 ... Equal amplitude 2
Phase divider, 8... Equal amplitude 4-phase divider, 9... Pilot signal generator, 10... Pilot signal remover, 11... Pilot signal detector, 1
2, 13... Signal band pass wave generator, 14... Amplifier, 15a, 15b... Synchronous detector, 16a, 1
6b... Voltage adder, 17... Diode, 18
...electrical variable attenuator, 19a, 19b...variable delay line, 20...extracted pilot signal vector, 21...interference signal vector, 22...feedback signal vector, 23...inverse vector of pilot signal, 24...x component (in-phase component) of the pilot signal vector, 25... y component (orthogonal component) of the pilot signal vector.

Claims (1)

【特許請求の範囲】 1 無線信号を受信アンテナで受信し、増幅器で
増幅し、受信信号と同一周波数で送信アンテナか
ら再送信する無線中継装置において、 前記増幅器の出力部で送信信号に特定周波数の
パイロツト信号を重畳する手段と、 該パイロツト信号を重畳した送信信号の一部を
分岐して、等振幅4相分配器と各々の分配経路に
接続される可変減衰器とから成り各可変減衰器の
出力を同相で合成して出力するベクトル変調器に
印加する手段と、 前記ベクトル変調器の出力を可変遅延手段を介
して当該無線中継装置の入力部に帰還して受信信
号に重畳する手段と、 受信信号からパイロツト信号を抽出する手段
と、 抽出したパイロツト信号の同相成分と直交成分
を検出してそれらにより前記ベクトル変調器の可
変減衰器の減衰量を調整する手段と、 パイロツト信号抽出後の受信信号からパイロツ
ト信号を除去して前記増幅器に印加するフイルタ
手段とを具備し、 送信アンテナより空間を介して受信アンテナに
帰還する干渉信号を低減させることを特徴とする
干渉波補償装置。
[Claims] 1. In a radio relay device that receives a radio signal with a receiving antenna, amplifies it with an amplifier, and retransmits it from the transmitting antenna at the same frequency as the received signal, the output section of the amplifier adds a specific frequency to the transmitted signal. It consists of a means for superimposing a pilot signal, a part of the transmission signal on which the pilot signal is superimposed, and an equal amplitude four-phase distributor and a variable attenuator connected to each distribution path. means for applying the output to a vector modulator that combines and outputs the output in the same phase; means for returning the output of the vector modulator to the input section of the wireless relay device via a variable delay means and superimposing it on the received signal; means for extracting a pilot signal from a received signal; means for detecting in-phase and quadrature components of the extracted pilot signal and adjusting the attenuation amount of the variable attenuator of the vector modulator therefrom; and receiving after extracting the pilot signal. An interference wave compensator comprising filter means for removing a pilot signal from a signal and applying it to the amplifier, thereby reducing an interference signal that returns from a transmitting antenna to a receiving antenna via space.
JP19181581A 1981-12-01 1981-12-01 Compensating device for interference wave Granted JPS5895435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19181581A JPS5895435A (en) 1981-12-01 1981-12-01 Compensating device for interference wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19181581A JPS5895435A (en) 1981-12-01 1981-12-01 Compensating device for interference wave

Publications (2)

Publication Number Publication Date
JPS5895435A JPS5895435A (en) 1983-06-07
JPS6161738B2 true JPS6161738B2 (en) 1986-12-26

Family

ID=16280979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19181581A Granted JPS5895435A (en) 1981-12-01 1981-12-01 Compensating device for interference wave

Country Status (1)

Country Link
JP (1) JPS5895435A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204637A (en) * 1982-05-24 1983-11-29 Nippon Telegr & Teleph Corp <Ntt> System for compensating interference wave
JP2713161B2 (en) * 1994-04-22 1998-02-16 日本電気株式会社 Wireless communication system

Also Published As

Publication number Publication date
JPS5895435A (en) 1983-06-07

Similar Documents

Publication Publication Date Title
EP0026924B1 (en) Adaptive cross-polarization interference cancellation arrangements
US4320535A (en) Adaptive interference suppression arrangement
US4090137A (en) System for compensating cross-polarized waves to attenuate crosstalk
US5222246A (en) Parallel amplifiers with combining phase controlled from combiner difference port
US5444864A (en) Method and apparatus for cancelling in-band energy leakage from transmitter to receiver
US5548838A (en) Interference cancellation system employing a polar vector modulator
CA2083589C (en) Adaptive feed-forward method and apparatus for amplifier noise reduction
EP1183786B1 (en) Communication Device with compensation of transmitter leakage signals occuring at a receiver input
US20150303984A1 (en) Transmit leakage cancellation in a wide bandwidth distributed antenna system
EP0187672A2 (en) One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference
EP1421703A1 (en) Method and apparatus for relayed communication using band-pass signals for self-interference cancellation
JPH09121201A (en) Crossing polarized wave eliminating device and polarized wave state correction method
JP2980053B2 (en) Interference wave canceller
JP3632535B2 (en) Diversity transmission / reception method and apparatus
JPS6161738B2 (en)
GB1574778A (en) Distortion compensation circuits
US4466132A (en) Cross-polarization crosstalk elimination circuit
JPS643099B2 (en)
EP0620956B1 (en) Apparatus for reducing the risk of undesirable parameterdrift of an adaptive filter used for echo cancellation
JP3080188B2 (en) Feedforward interference circuit
CN113824458A (en) Three-channel self-adaptive co-location broadband interference suppression method and system
US4493111A (en) Electronic antenna decoupling process and device
JPS5851632A (en) Radio relay system
JP2687691B2 (en) Cross polarization interference cancellation circuit
JPH01260932A (en) Duplex system radio equipment