JPS6161531A - Frequency control system - Google Patents

Frequency control system

Info

Publication number
JPS6161531A
JPS6161531A JP18165584A JP18165584A JPS6161531A JP S6161531 A JPS6161531 A JP S6161531A JP 18165584 A JP18165584 A JP 18165584A JP 18165584 A JP18165584 A JP 18165584A JP S6161531 A JPS6161531 A JP S6161531A
Authority
JP
Japan
Prior art keywords
base station
frequency
frequency control
satellite
repeater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18165584A
Other languages
Japanese (ja)
Inventor
Hitoshi Komagata
駒形 日登志
Eiji Hagiwara
萩原 英二
Akira Mishima
三島 発
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18165584A priority Critical patent/JPS6161531A/en
Publication of JPS6161531A publication Critical patent/JPS6161531A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2043Mixed mode, TDM and FDM systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To attain frequency control of all beams at a representative base station by using a local oscillator of a satellite repeater in common in the SCPC satellite communication system of a multi-beam. CONSTITUTION:Local oscillators 36, 35 at each relay system of each beam are installed respectively to the incoming way (mobile station to base station) and the outgoing way (base station to mobile station) in common. The output of the local oscillators is fed to each repeater system respectively by distributers 34a, 34b, then the frequency fluctuation of each repeater system is made identical. Thus, one base station controls the frequency fluctuation of the 3 repeater system of the satellite. Thus, the representing base station attains the frequency control of all the beams.

Description

【発明の詳細な説明】 (産業上の利用分野) scpc多元接続方式を用いたマルチビーム構成の衛星
通信における周波数制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a frequency control method in multi-beam satellite communication using an SCPC multiple access method.

(従来の技術) 第2図は従来のシングルビームの場合の、5cpc(S
ingle channel per carrler
 )方式における周波数制御の構成例である。α3)は
衛星中継器の構成、(24)は基地局、C32は加入者
局の無線系の構成を示す。
(Prior art) Figure 2 shows a conventional single beam with 5 cpc (S).
ingle channel per carrler
) is a configuration example of frequency control in the system. α3) indicates the configuration of the satellite repeater, (24) indicates the base station, and C32 indicates the configuration of the wireless system of the subscriber station.

基地局のc!3)は周波数制御釦用いる擬似加入者局の
無線系を示し、□□□の基地局無線系はf1〜fnの無
線チャネルを有し基地局〜衛星間はF、衛星・加入者間
は伝ばん損失の比較的少ないF′の無線周波数帯を使用
する。無線周波数の主な変動要因は衛星中継器系の周波
数変換器(11)、 a’;:tの局部発振器(4)。
Base station c! 3) shows the radio system of a pseudo subscriber station that uses a frequency control button, and the base station radio system of □□□ has radio channels f1 to fn, F between the base station and the satellite, and F between the satellite and the subscriber. The radio frequency band F', which has relatively low band loss, is used. The main fluctuation factors in the radio frequency are the frequency converter (11) of the satellite repeater system and the local oscillator (4) of a';:t.

(5)の不安定さと、基地局無線系の送信及び受信用局
部発振器の不安定さである。基地局と多数の加入者局と
の間で数kb/sから数十k b/sの低速度の信号を
伝送するSCPC衛星通信方式では、復調回路を安定に
動作させるために到来波の周波数変動量を許容値以下に
補正する必要がある。その一つの方法として従来では、
基地局送り、加入者局受信の系では「1〜fnの無線チ
ャネルの内特定のfn−iを周波数制御専用チャネルと
し、口の無線チャネル合波器で他の無線チャネルと合波
して、(20)の周波数変換器で周波数Fに変換し、G
6)の送信機、(19の送受共用器及び基地局アンテナ
系を経て03)の衛星中継器へ送信する。衛星では(1
1のマルチビームアンテナ系で受信した無線周波数Fを
(2)のF波送受共用器で分離して(3)の中継器用受
信器で受信する。受信した周波数を(11)のF −+
 F/変換器で12′に変換して(5)のF′波帯送信
機、(6)のF′波帯送受共器(7)のマルチビームア
ンテナを経て加入者局送信する。基地局に在る擬似加入
者局用無線機では(1=υの加入者局用アンテナ、(I
5)の送受共用器を経てG9の受信器でF′波を受信し
く2■の周波数変換器でパイロットチャネル用周波数f
n  iを出力する。eυの下り周波数誤差検出回路で
は(2渇の基準周波数発振器出力とパイロットチャネル
用周波数fn−iとの誤差を検出し、基地局無線装置送
信用局部発振11       器(28)を制御し加
入者局受信の無線周波数■“′が所定の偏差内で受信さ
れるようにする。加入者局送信の場合、(23)の擬似
加入者局用無線機00印のパイロットチャネル用層波数
fh−i波発生回路より出力し、αηの送信周波数変換
器でf’l−iのチャネルをF′に変換しく16)の送
信機、霞の送受共用器、α(1)の加入者局アンテナを
経て衛星に送信する。(13)の衛星中継器では受信し
た2波帯は(8)のF′波帯受信機、aりのF/−F周
波帯同波変換器及び、(10)の送信機を経て地上へ送
信する。無線基地局では受信したff1=iの周波数と
擬似加入者局用無線機が送信したfh−i波を比較し、
(29)の下り周波数誤差検出回路で誤差周波数を検出
しく30)の受信周波数変換器の局部発振器C31)を
制御しf’n−iの周波数誤差が所定の値になるように
制御する。
(5) instability and the instability of the local oscillator for transmitting and receiving in the base station wireless system. In the SCPC satellite communication system, which transmits low-speed signals of several kb/s to several tens of kb/s between a base station and a large number of subscriber stations, the frequency of the incoming wave is It is necessary to correct the amount of variation to below the allowable value. Conventionally, one method is to
In the base station transmission and subscriber station reception system, "among the radio channels 1 to fn, a specific fn-i is designated as a channel dedicated to frequency control, and is multiplexed with other radio channels using a radio channel multiplexer at the base. Convert to frequency F using the frequency converter (20), and
The signal is transmitted to the satellite repeater (03) via the transmitter (6), the duplexer (19), and the base station antenna system. In the satellite (1
The radio frequency F received by the multi-beam antenna system (1) is separated by the F-wave duplexer (2) and received by the repeater receiver (3). The received frequency is F −+ of (11)
The signal is converted to 12' by an F/converter and transmitted to the subscriber station via the F' wave band transmitter (5) and the multi-beam antenna of the F' wave band transmitter/receiver (7) (6). In the base station's pseudo subscriber station radio, (1=υ subscriber station antenna, (I
The F' wave is received by the G9 receiver via the transmitter/receiver in 5).The frequency converter in 2) converts the pilot channel frequency f.
Output n i. The downlink frequency error detection circuit of eυ detects the error between the reference frequency oscillator output of (2) and the pilot channel frequency fn-i, controls the local oscillator (28) for transmitting the base station radio equipment, and transmits the signal to the subscriber station. Ensure that the receiving radio frequency is received within a predetermined deviation.In the case of subscriber station transmission, the pilot channel layer wave number fh-i wave of the pseudo subscriber station radio 00 mark in (23) The signal is output from the generator circuit, and the channel f'l-i is converted to F' by the transmission frequency converter αη, and sent to the satellite via the transmitter 16), the duplexer Kasumi, and the subscriber station antenna α(1). The two wave bands received by the satellite repeater (13) are transmitted to the F' wave band receiver (8), the F/-F frequency band converter (a), and the transmitter (10). The radio base station compares the received frequency of ff1=i with the fh-i wave transmitted by the pseudo subscriber station radio,
The downlink frequency error detection circuit (29) detects the error frequency and controls the local oscillator C31) of the reception frequency converter (30) so that the frequency error of f'ni becomes a predetermined value.

このような制御を行うことにより基地局〜衛星〜擬似加
入者局間の無線周波数の不安定さを除去することができ
る。残る不安定さは加入者局(3ツの送信系(2)及び
受信系顛の共通局部発振器39)の基準発振器(41)
の安定度であるが、安定度を高めることにより復調回路
の安定動作を維持することが可能であり必要ならば加入
者局毎に周波数制御回路を具備することになる。
By performing such control, instability in the radio frequency between the base station, the satellite, and the pseudo subscriber station can be eliminated. The remaining instability is caused by the reference oscillator (41) of the subscriber station (common local oscillator 39 for the three transmitting systems (2) and the receiving system).
However, by increasing the stability, it is possible to maintain stable operation of the demodulation circuit, and if necessary, a frequency control circuit may be provided for each subscriber station.

このようにして、シングルビームでは(24)の基地局
を1局設けることによって基地局−加入者局間の周波数
制御が可能であった。
In this way, in the single beam system, frequency control between the base station and the subscriber station was possible by providing one base station (24).

(発明が解決しようとする問題点) しがし、サービス地域を複数のビームで照射するマルチ
ビーム衛星通信方式ではビーム毎に第2図の03)に示
す周波変換器からなる衛星中継器をビーム毎に設ける必
要がある。第3図は3ビーム構成の場合の衛星中継系の
構成例である。衛星中継の局部発振器(4)、(9)が
中継器毎に独立に設置される場合第2図に示す(24)
の基地局が各ビーム設置し、中継毎に周波数制御を行う
必要がある。しかし、サービスを船舶を対象にした場合
ビーム構成の上から海上がサービスエリアとなり周波数
制御を行う基地局が設置できないビーム(33b )、
 (33c)が考えられる。
(Problem to be solved by the invention) However, in a multi-beam satellite communication system that illuminates a service area with multiple beams, a satellite repeater consisting of a frequency converter shown in 03 in Figure 2 is used for each beam. It is necessary to provide one for each. FIG. 3 shows an example of the configuration of a satellite relay system in the case of a three-beam configuration. When local oscillators (4) and (9) for satellite relay are installed independently for each repeater, the case shown in Figure 2 (24)
It is necessary to install base stations for each beam and perform frequency control for each relay. However, when the service is targeted at ships, the beam configuration means that the sea is the service area, and a base station for frequency control cannot be installed on the beam (33b).
(33c) is possible.

本発明は上記欠点を改善するものである。The present invention aims to improve the above-mentioned drawbacks.

(問題点を解決するための手段) 本発明の特徴は、衛星中継系の局部発振器を共通にして
代表するビームの基地局で全ビームの周波数制御を行う
ようにしたことにある。
(Means for Solving the Problems) A feature of the present invention is that the satellite relay system uses a common local oscillator, and the frequency control of all beams is performed at the base station of a representative beam.

(作 用) 衛星中継器の局部発振器を共通化したので、従来のごと
くビーム毎に基地局をもうける必要がなく、代表する基
地局で全てのビームの周波数制御を行うことができる。
(Function) Since the local oscillator of the satellite repeater is shared, there is no need to create a base station for each beam as in the past, and a representative base station can control the frequency of all beams.

(実施例) 第1図は本発明の3ビームの場合の衛星中継系の構成例
である。各ビームの中継系毎の局部発振器を上り(移動
局→基地局)、下り(基地局→移動局)それぞれ共通に
(36)、G51を設置する構成とし、その局部発振器
出力を(34a)、 (34b)の分配器でそれぞれの
中継系に供給する。上り、下り中継系の局部発振器を共
通局部発振器構成にすることにより各中継系の周波数変
動が同一となり、第1図に示した従来の周波数制御法で
周波数制御することにより、基地局1局で第3図に示す
衛星中継系3系統の周波数変動に対する制御が可能とな
る。
(Embodiment) FIG. 1 is a configuration example of a satellite relay system in the case of three beams according to the present invention. The local oscillator for each relay system of each beam is configured to have G51 installed in common for uplink (mobile station → base station) and downlink (base station → mobile station) (36), and the local oscillator output is (34a), The distributor (34b) supplies each relay system. By using a common local oscillator configuration for the local oscillators of the uplink and downlink relay systems, the frequency fluctuation of each relay system becomes the same, and by controlling the frequency using the conventional frequency control method shown in Figure 1, it is possible to It becomes possible to control frequency fluctuations in the three satellite relay systems shown in FIG.

すなわち、サービスエリアを複数ビームで照射し、周波
数制御が不可欠な5cpc方式において、複数ビームの
内基地局設置に都合のよい所定の1ビームに1基地局を
設置し複数ビームの周波数制御を行うことができる。
In other words, in the 5cpc method in which a service area is irradiated with multiple beams and frequency control is essential, one base station is installed on a predetermined beam among the multiple beams that is convenient for installing a base station, and the frequency of multiple beams is controlled. I can do it.

以上サービスエリアを複数ビームで照射するマルチビー
ム構成において衛星のビーム対応の中継器系の局部発振
器を共通に設置する構成とし、所定のど−ムに設置され
た1基地局で周波数制御機能式について説明した。
The above explains the frequency control function formula for one base station installed in a predetermined dome, with a multi-beam configuration that illuminates the service area with multiple beams, in which the local oscillator of the repeater system corresponding to the satellite beam is installed in common. did.

また、システノ・信頼度の向上を図るため基地局無線系
は複数局設置しバンクアップ構成とする場合が一般的で
あるが、その場合第2図に示すようにビームエリア(3
3a)の基地局で周波数制御を行い、バンクアンプ局に
は(4りのデータ回線を介して周波数制御情報を伝送し
、ビームエリア(33b)の基地局無線系の周波数制御
をビームエリア(33a)の基地局から行う構成にする
ことにより、各基地局に擬似加入者局など周波数制御を
行う機能を設電 置する必要がなく、基地局の経済化に寄与する。
In addition, in order to improve system reliability, it is common to install multiple base station wireless systems in a bank-up configuration, but in this case, the beam area (3
The base station (3a) performs frequency control, transmits frequency control information to the bank amplifier station (4) via the data line, and controls the frequency of the base station radio system in the beam area (33b) to the beam area (33a). ), there is no need to install a frequency control function such as a pseudo subscriber station in each base station, contributing to the economicalization of base stations.

(発明の効果) 以上説明した衛星に複数の中継器が必要なマルチビーム
通信方式では、従来方式の場合中継器毎に周波数制御を
行う必要がありビームによってはビーム領域が海上とな
り周波数変換器う基地局の設置が不可能な場合でも、周
波数制御が可能となる。
(Effects of the Invention) In the multi-beam communication system that requires multiple repeaters on a satellite as described above, in the conventional system, it is necessary to perform frequency control for each repeater, and depending on the beam, the beam area may be over the ocean and the frequency converter may be required. Frequency control becomes possible even when it is impossible to install a base station.

また、周波数制御を行う基地局は最低1局でよく、経済
的なシステム構成に寄与する。衛星の局部発振器を共通
にすることにより衛星搭載のノ・−ドが簡略化される。
Furthermore, at least one base station is required to perform frequency control, contributing to an economical system configuration. By making the satellite's local oscillator common, the nodes onboard the satellite can be simplified.

また、基地局が複数の場合各基他局に周波数制御機能を
設ける必要がなく基地局の経済化に寄与する。
Furthermore, when there are a plurality of base stations, there is no need to provide a frequency control function for each base station, contributing to the economicalization of base stations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による衛星中継器の構成例、第2図は従
来の周波数制御の構成例、第3図は3ビーム構成の場合
の従来の衛星中継器の構成例である。 (1)・・・マルチビームアンテナ系、(2)・・・F
波帯送受共用器、(3)・・・中継器用受信器、(4)
・・・中継器用局部発振器、(5)・・・F′波帯送信
機、(6)・・・2波帯送受共用器、(7)・・・マル
チビームアンテナ系、(8)P波帯受信器、(9)・・
・局部発振器、(10)・・・F波帯送信機、■・・・
F −+ F/周波数変換器、az・・・F′→F周波
数変換器、03)・・・衛星中継器、(14)・・・加
入者局アンテナ、(19・・・送受共用器、(16)・
・・送信機、(17)・・・送信周波数変換器、(1帽
・・パイロットチャネル用周波p ff1− i発生回
路、α帽・・受信器、(20)・・・周波数変換器、(
211・・・下り周波数誤差検出回路、(2り・・・基
準周波数発振器、(ハ)・・・擬似加入者局用無線機、
(24)・・・基地局、(ハ)・・・基地局アンテナ系
、(26)・・・パイロットチャネル側周波数fn−i
発生回路、(27)・・・基地無線系、(281・・・
基地局無線装置送信用局部発振器、(29)・・・上り
周波数誤差検出回路、(30)・・・受信周波数変換器
、(31)・・・受信用局部発振器、(3カ・・・加入
者局、(33)・・・ビームエリア、04)・・・分配
器、(39・・・下り中継器系用局部発振器、06)・
・・上り中継器系用局部発振器、噌・・・無線チャネル
合波器、(2)・・・加入者局送信系、0!l)・・・
共通局部発振器、(40)・・・加入者局受信系、(4
1)・・・加入者局基準発振器、(4Z・・・データ回
路。 第2図 (A)、@ 第3図
FIG. 1 shows an example of the configuration of a satellite repeater according to the present invention, FIG. 2 shows an example of a conventional frequency control structure, and FIG. 3 shows an example of the structure of a conventional satellite repeater with a three-beam configuration. (1)...Multi-beam antenna system, (2)...F
Waveband transmitter/receiver, (3)... Receiver for repeater, (4)
...Local oscillator for repeater, (5)...F' wave band transmitter, (6)...2 wave band duplexer, (7)...Multi-beam antenna system, (8) P wave Band receiver, (9)...
・Local oscillator, (10)...F wave band transmitter, ■...
F −+ F/frequency converter, az...F'→F frequency converter, 03)...Satellite repeater, (14)...Subscriber station antenna, (19...Transmission/reception duplexer, (16)・
...Transmitter, (17)...Transmission frequency converter, (1 cap...Pilot channel frequency pff1-i generation circuit, α cap...Receiver, (20)...Frequency converter, (
211... Downlink frequency error detection circuit, (2... reference frequency oscillator, (c)... pseudo subscriber station radio equipment,
(24)...Base station, (c)...Base station antenna system, (26)...Pilot channel side frequency fn-i
Generation circuit, (27)...Base radio system, (281...
Base station wireless device transmitting local oscillator, (29)...uplink frequency error detection circuit, (30)...receiving frequency converter, (31)...receiving local oscillator, (3 components...added) (33)... Beam area, 04)... Distributor, (39... Local oscillator for downlink repeater system, 06)
...Local oscillator for uplink repeater system, 噌...Radio channel multiplexer, (2)...Subscriber station transmission system, 0! l)...
Common local oscillator, (40)...Subscriber station receiving system, (4
1)...Subscriber station reference oscillator, (4Z...data circuit. Figure 2 (A), @ Figure 3

Claims (1)

【特許請求の範囲】[Claims] サービスエリアを複数のビームで照射するマルチビーム
構成のSCPC(Single channel pe
r carr−ier)衛星通信方式において、衛星上
にビーム対応に設置される中継器に供給する局部発振周
波数の発振器を全ビームに共通に設置し、複数ビームエ
リアの内所定のビームエリアに設けた、周波数制御用擬
似加入者局を有する基地局により、複数ビームの周波数
制御を行い、基地局が複数の場合周波数制御機能を有す
る基地局が自局の制御情報に従って、周波数制御機能を
有しない他の基地局の周波数制御をデータ回線を介して
行うことを特徴とする周波数制御方式。
SCPC (Single Channel PE) has a multi-beam configuration that illuminates the service area with multiple beams.
r carr-ier) In the satellite communication system, an oscillator with a local oscillation frequency that supplies the repeaters installed on the satellite corresponding to each beam is installed in common for all beams, and is installed in a predetermined beam area among multiple beam areas. , a base station with a pseudo subscriber station for frequency control performs frequency control of multiple beams, and when there are multiple base stations, a base station with a frequency control function follows its own control information, and other base stations do not have a frequency control function. A frequency control method characterized by controlling the frequency of a base station via a data line.
JP18165584A 1984-09-01 1984-09-01 Frequency control system Pending JPS6161531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18165584A JPS6161531A (en) 1984-09-01 1984-09-01 Frequency control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18165584A JPS6161531A (en) 1984-09-01 1984-09-01 Frequency control system

Publications (1)

Publication Number Publication Date
JPS6161531A true JPS6161531A (en) 1986-03-29

Family

ID=16104542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18165584A Pending JPS6161531A (en) 1984-09-01 1984-09-01 Frequency control system

Country Status (1)

Country Link
JP (1) JPS6161531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281626A (en) * 1991-03-08 1992-10-07 Nippon Telegr & Teleph Corp <Ntt> Satellite mount repeater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143638A (en) * 1982-02-22 1983-08-26 Nippon Telegr & Teleph Corp <Ntt> Direction controlling system of satellite antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143638A (en) * 1982-02-22 1983-08-26 Nippon Telegr & Teleph Corp <Ntt> Direction controlling system of satellite antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281626A (en) * 1991-03-08 1992-10-07 Nippon Telegr & Teleph Corp <Ntt> Satellite mount repeater

Similar Documents

Publication Publication Date Title
EP1060567B1 (en) Self-interference cancellation for relayed communication networks
JP2611529B2 (en) Telemetry tracking control system for satellite cellular communication system.
US20060094352A1 (en) Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
CA2264161A1 (en) Radio frequency sharing methods for satellite systems
KR100715923B1 (en) Apparatus and method for paging
EP0538322A1 (en) Satellite mobile communication system for rural service areas
CA2431378A1 (en) Antenna systems with common overhead for cdma base stations
US6594469B1 (en) Methods and apparatus for broadcasting regional information over a satellite communication system
US5991598A (en) Burst signal transmission from an earth station to an orbiting satellite with a short guard time
US7333469B2 (en) Method for deep paging
EP0715786B1 (en) Base station equipment using diversity reception
US3378845A (en) Generation of beacon signals for communication satellite
US4134069A (en) Single side band multiplex signal radio relay
JPS6161531A (en) Frequency control system
KR100252490B1 (en) Radio communications system using satellite compensating for relay delay of satellite
WO2000019639A1 (en) Apparatus and method for sending common information on common data channels
CN100359824C (en) Method and apparatus for minimizing the number of channels used for paging
JPS58186236A (en) Multi-dimensional connecting system for satellite communication
SU1072274A1 (en) Satellite communication system
JPS6243229A (en) Space communication system
Campanella et al. A users perspective of the ACTS hopping beam TDMA system
Pearce et al. Military Shipborne Satellite Communication Terminal
JPH0411141B2 (en)
JPS626373B2 (en)
JPS632378B2 (en)