JPS6161350A - Meshless type cathode-ray tube - Google Patents

Meshless type cathode-ray tube

Info

Publication number
JPS6161350A
JPS6161350A JP18220884A JP18220884A JPS6161350A JP S6161350 A JPS6161350 A JP S6161350A JP 18220884 A JP18220884 A JP 18220884A JP 18220884 A JP18220884 A JP 18220884A JP S6161350 A JPS6161350 A JP S6161350A
Authority
JP
Japan
Prior art keywords
electrode
cylindrical electrode
target
ray tube
meshless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18220884A
Other languages
Japanese (ja)
Inventor
Kimiharu Saito
斉藤 公春
Osamu Akizuki
秋月 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Original Assignee
Iwatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd filed Critical Iwatsu Electric Co Ltd
Priority to JP18220884A priority Critical patent/JPS6161350A/en
Publication of JPS6161350A publication Critical patent/JPS6161350A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/80Arrangements for controlling the ray or beam after passing the main deflection system, e.g. for post-acceleration or post-concentration, for colour switching
    • H01J29/803Arrangements for controlling the ray or beam after passing the main deflection system, e.g. for post-acceleration or post-concentration, for colour switching for post-acceleration or post-deflection, e.g. for colour switching

Abstract

PURPOSE:To amend pattern distortion and deflection rate linear tendency, by forming an electron lens together with a cylindrical electrode of a flat box type which has a specific cavity on the end of the target side, and an electric field of a latter part acceleration electrode. CONSTITUTION:A meshless type cathode-ray tube used for an oscilloscope etc. is composed including an electron gun 7, a deflection system 10, a cylindrical electrode 17, a latter part acceleration electrode 12, and a target 13. The cylindrical electrode 17 is formed to have a quadrilateral in section with 4 faces 18-21, making the ends 22 of the target 13 side faces 19 and 20 concave, preparing concave portions 25 and 26 on both sides 23 and 24, and moreover, making the ends 27 of the target 13 side faces 19 and 21 concave. Therefore, a deflection expanding lens 11 can be available by functioning a high level electric field of the latter part acceleration electrode 12 to the cylindrical electrode 17, so that the pattern distortion and deflection rate linear tendency can be amended by combining those concaves, as well as the system is simplified.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、オシロスコープ、ストレージスフ−1等に使
用するだめのメツシュ電極を除去した構造のメツシュレ
スm陰極線管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a mesh-less m cathode ray tube which is used in oscilloscopes, storage tubes, etc. and has a structure in which a useless mesh electrode is removed.

従来の技術とその問題点 従来の一般的な後段加速型陰極線管は、電子銃から放射
された電子ビーム?垂直又は水平に偏向さぜた後、平面
メツシュ又は曲面メツシュとパルプ内壁の後段加速電極
とによる後段加速電界によって加速することにより、げ
い光スクリーン上に輝反乞増大させたスポット?得ろよ
うに構成されて〜・る。しかし、ニゲ)種の陰極線管に
はメツシュのためにスポットの分解能及び電子銃効率が
悪化すると(づ欠点、及びメツシュに当って出る2次電
子によるハレーションがスクリーン面に生じると−・う
欠点があった。この種の欠点?解決するためにメツシュ
を使用しない陰極線管として、特公昭44−31613
号公報に開示されている2つの四極レンズと半球型電極
との組み@ぞによりメツシュ電極(゛たものがある。し
かし、この形式の陰極線管には、偏向角が大きくなるの
で、スクリーン面の端でボケが生じてスポットの一様性
か悪くなるという欠点、更に、パターン歪?補正するた
めに2枚の電極?追加配置しなければならな(・と−・
う欠点があった。また、特開昭53−87161号公報
には、互に噛み合い、4極レンズ?講成する2個の筒状
電極部材?配置するメツシュレスm陰極線管が開示され
て(・る。しかし、この形式の陰極線管では、噛み合せ
部分の形状が複雑で製作が難かしいという欠点及び2つ
の節状電極間に20 kVの電位差を与えなげればなら
ず、両部状電極間の耐圧を維持するのが難しいと(・う
欠点があった。更に、メツシュ電極用しない陰極線管と
して特公昭57−25942号公報に開示されて−・る
箱形走査拡大レンズが知られて(・る。しかし、この形
式の陰極線管では、前記レンズが全長10.6cm、幅
6.3cm、高さ2.5cmとドームメツシュ万式より
も非常に大きいため、従来のガラスパルプが使用出来な
−・という欠点と、後段刀口速型陰極線管に使用する場
合は前記レンズの出ロ電極?スクリーン電位に電気的に
接続するため、他の電極との耐圧?維持するのが難しい
という欠点があった。
Conventional technology and its problems Does the conventional general post-acceleration cathode ray tube use an electron beam emitted from an electron gun? After being deflected vertically or horizontally, the spot is increased in brightness on a luminescent screen by being accelerated by a subsequent accelerating electric field formed by a flat mesh or a curved mesh and a subsequent accelerating electrode on the inner wall of the pulp. It's structured so that you can get it. However, cathode ray tubes of this type have the disadvantage that the spot resolution and electron gun efficiency deteriorate due to the mesh, and that halation occurs on the screen surface due to secondary electrons hitting the mesh. In order to solve this kind of drawback, a cathode ray tube without a mesh was developed,
There is a mesh electrode which is a combination of two quadrupole lenses and a hemispherical electrode as disclosed in the above publication. However, this type of cathode ray tube has a large deflection angle, so the screen surface The disadvantage is that blurring occurs at the edges and the spot uniformity deteriorates, and in addition, two additional electrodes must be placed to correct pattern distortion (・and-・
There were some drawbacks. Also, in Japanese Patent Application Laid-open No. 53-87161, there is a four-pole lens that meshes with each other. Two cylindrical electrode members to be taught? However, this type of cathode ray tube has the drawback that the shape of the meshing part is complicated and difficult to manufacture, and the potential difference of 20 kV between the two nodal electrodes has been disclosed. However, it had the disadvantage that it was difficult to maintain the withstand voltage between both electrodes.Furthermore, it was disclosed in Japanese Patent Publication No. 57-25942 as a cathode ray tube without mesh electrodes. However, in this type of cathode ray tube, the lens is 10.6 cm in total length, 6.3 cm in width, and 2.5 cm in height, which is much larger than the dome mesh type. Therefore, the drawback is that conventional glass pulp cannot be used, and when used in a rear-stage muzzle-speed cathode ray tube, the output electrode of the lens is electrically connected to the screen potential, so it has to withstand voltage with other electrodes. ?The disadvantage was that it was difficult to maintain.

更に、本件出願人に係わる特公昭58−8543及び特
開昭55−53858号公報にはスリット?有する箱型
レンズが開示されている。これは3分割又は2分割され
た箱に基づいて生じるレンズと、この箱のターゲット側
の面のスリットに基づ(1で生じるレンズとから成り、
これらの2つのレンズとの相互作用で上下ボケの少ない
表示?可能としたものである。しかし、3分割刃式には
、3分割された箱型レンズの中間電極は、カンード及び
ターゲットの両方向に凸状又は凹状になっているため、
各′1!極間の組立精度?向上させることが難しいと(
・う欠点がある。また3分割及び2分割の両方式とも、
絶縁の為に各電極間に設けられた約1mmのギャップに
後段加速電界が入り込ヱないよ5にする為に、第ルンズ
の筐わりとシールド電極で囲む必要があり、不便であっ
た。またスリット?設けるので構成が複雑になった。
Furthermore, Japanese Patent Publication No. 58-8543 and Japanese Unexamined Patent Application Publication No. 55-53858 related to the present applicant include slits? A box-shaped lens is disclosed. This consists of a lens generated based on a box divided into three or two parts, and a lens generated based on a slit on the target side of this box (1).
Is the display with less vertical blur due to interaction with these two lenses? This made it possible. However, in the 3-part blade type, the middle electrode of the 3-part box-shaped lens has a convex or concave shape in both directions of the cand and the target.
Each '1! Assembly accuracy between poles? If it is difficult to improve (
・There are some drawbacks. Also, both the 3-part and 2-part methods,
In order to prevent the subsequent accelerating electric field from entering the approximately 1 mm gap provided between each electrode for insulation, it was necessary to surround it with a shield electrode and the housing of the first lance, which was inconvenient. Another slit? Because of this, the configuration became complicated.

更に、特開昭59−134531号公報にメツシュレス
型走査拡大レンズ(以下MSEレンズと呼ぶノが開示さ
れている。このMSEレンズは、フロットレンズとかな
り厚い円筒?レーザカット加工した電極とそれ?囲む円
筒状の高電圧電極とそのスクリーン側にアパーチャレン
ズ?設けて構成されており、構造上も裏作上も複雑であ
った。
Furthermore, JP-A-59-134531 discloses a meshless type scanning magnifying lens (hereinafter referred to as MSE lens). This MSE lens consists of a flot lens, a fairly thick cylinder, a laser-cut electrode, and the like. It consisted of a cylindrical high-voltage electrode surrounding it and an aperture lens on the screen side, making it complex both in terms of structure and production.

そこで、本発明の目的は構成が簡単で且つ製作が容易で
且つ安価であるメツシュレス型陰極線管?提供すること
にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a meshless cathode ray tube that is simple in structure, easy to manufacture, and inexpensive. It is about providing.

問題点?解決するための手段 上記目的?達成するだめの本発明に係わるメンシュレス
型陰極線管は、実施例?示す図面の符号?参照して説明
すると、電子銃(7)と、該電子銃(7)から放射され
た電子ビーム?第1の方向と該第1の方向に直交する第
2の方向とに偏向する偏向系(tO]と、前記偏向系a
Ωよりも後段に設けられた少なくとも1つの後段電極時
と、前記電子銃(7)から放射された電子ビームを衝畢
さぜるターゲット(L31と、前記後段電極時の近傍に
配置された電子レンズ((1)とを少なくとも具備する
メンシュレス型陰極線管に於いて、前記電子レンヱ(L
IJが筒状電極αηから成り、該筒状電極aηが断面形
状四辺形となるように配された第1、第2、第3及び第
4の面α81凹四121)?有し且つその断面の中心が
管5iC一致し且つ対向する前記第1及び第30而賭(
2(lが前記第20方向に延び9、対向する前記第2及
び第4の面凹圓が前記第1の方向に延びるように配置さ
れ、前記筒状電極(lηの対向する前記第1及び第30
而賭■のターゲット側の端f221が凹状に夫々形成さ
れ、且つ前記ターゲット側の端囚の近傍の前記第1及び
第3の面ua+ C20+の両側端r23c!小に凹状
部分C9(至)が夫々設けられ、前記筒状電極αでの対
向する前記第2及び第40面(lcj2]Jのターゲッ
ト側の端□□□が凹状に夫々形成され、前記筒状電極a
ηの電位と前記後段電極u4の電位との関係によって、
前記節状電極住ηに、前記偏向系Uωで前記第10方向
に振られた電子ビームの進行方向?反転して偏向拡大す
る作用を生じさせ且つ前記偏向系で前記第2の方向に振
られた電子ビーム乞偏向拡大する作用?生じさせるよう
に前記筒状電極−と前記後段電極(121とに電位を付
与する電位付与手段が設けられていることを特徴とする
ものである。
problem? Means to solve the above purpose? What is the embodiment of the menschless cathode ray tube according to the present invention? What is the code of the drawing shown? To explain with reference to the electron gun (7) and the electron beam emitted from the electron gun (7)? a deflection system (tO) that deflects in a first direction and a second direction perpendicular to the first direction;
At least one back-stage electrode provided after Ω, a target (L31) that collides the electron beam emitted from the electron gun (7), and an electron disposed near the back-stage electrode. In a menschless cathode ray tube comprising at least a lens ((1)), the electron lens (L
IJ consists of a cylindrical electrode αη, and the first, second, third and fourth surfaces α81 are arranged so that the cylindrical electrode aη has a quadrilateral cross-section. and the centers of the cross sections thereof coincide with and face the pipe 5iC (
2 (l extends in the 20th direction 9 , the opposing second and fourth surface concave circles extend in the first direction, and the cylindrical electrode (lη of the opposing first and fourth 30th
The end f221 on the target side of bet (2) is formed in a concave shape, and both ends r23c of the first and third surfaces ua+C20+ near the end cap on the target side are formed. A small concave portion C9 (to) is provided, and the ends □□□ on the target side of the opposing second and 40th surfaces (lcj2) J of the cylindrical electrode α are each formed in a concave shape, and the cylindrical shaped electrode a
Depending on the relationship between the potential of η and the potential of the subsequent electrode u4,
The traveling direction of the electron beam deflected in the tenth direction by the deflection system Uω on the nodal electrode structure η? An action of inverting and enlarging the deflection of the electron beam and enlarging the deflection of the electron beam swung in the second direction by the deflection system? The present invention is characterized in that a potential applying means is provided for applying a potential to the cylindrical electrode and the latter stage electrode (121) so as to generate the cylindrical electrode.

作  用 上記発明の如く面状電極αη乞配置すれば、後段電極(
lりの電界が筒状電極(17)の内部に入り込むことに
よって電子レンズ作用が生じる。そして、筒状電極(L
7)の第1及び第30面賭四のターゲット側の端のが凹
状とされ、且つ第1及び第3の而(181艷の両側端c
!31(至)に凹状部分(ハ)3Qが設けられ、第2及
び”i4の面住1t211のターゲット側端口が凹状と
されているので、これ等の組み合せによってパターン歪
み及び偏向率直線性が比較的容易に改善される。
Function: If the planar electrodes are arranged as in the above invention, the subsequent electrodes (
An electron lens effect occurs when the electric field enters the inside of the cylindrical electrode (17). Then, a cylindrical electrode (L
7), the ends of the first and 30th sides on the target side are concave, and the ends of the first and third sides (both ends c of the 181st side) are concave.
! 31 (to) is provided with a concave portion (c) 3Q, and the target side end of the second and "i4 surface 1t211 is concave, so the combination of these makes the pattern distortion and deflection straightness relatively low. Easily improved.

実施例 次に、M1図〜第9図?参照して本発明の実施例に係わ
るオシロスコープの陰極線管(以下、CRTと呼ぶ]に
ついて述べる。
Example Next, Figure M1 to Figure 9? With reference to this, a cathode ray tube (hereinafter referred to as CRT) of an oscilloscope according to an embodiment of the present invention will be described.

第1図に示すCRTは、真空外壁lll内の管軸上に、
カソード(21と第1グリツド(31と第2グリツド(
4)と第1陽極+5jと第2陽極+67とから成る電子
銃(7j。
The CRT shown in FIG.
Cathode (21 and 1st grid (31 and 2nd grid (
4), an electron gun (7j) consisting of a first anode +5j and a second anode +67.

この電子銃(77から放射される電子ビーム?第1の方
向(垂直方向]に偏向する第1の偏向系としての一対の
垂直偏向板(81と電子ビームを第2の方向(水平方向
〕に偏向する第2の偏向系としての一対の水平偏向板(
9)とから成る偏向系aa1及び偏向拡大用の節状電子
レンズ(lllを順次に有し、更に、外壁はJの内面に
設けた導電性被覆から成る後段加速電極α4及びターゲ
ット113乞有する。この内、電子銃(7)、偏向糸σ
Q%後段加速電極Q4、及びターゲットtta+は公矧
の部分であり、筒状電子レンズUυが本発明に係わる新
規な部分である。なお、ターゲット住均はフェースプレ
ート(141と、けい元体層叫と、後段加速電極賭に接
続された導電層四とから成る(j+−・光体スクリーン
である。
A pair of vertical deflection plates (81) as a first deflection system deflects the electron beam emitted from the electron gun (77) in the first direction (vertical direction) and directs the electron beam in the second direction (horizontal direction). A pair of horizontal deflection plates (as a second deflection system)
9), and a nodal electron lens for deflection magnification (llll) in sequence, and furthermore, the outer wall has a rear-stage accelerating electrode α4 and a target 113 made of a conductive coating provided on the inner surface of J. Among them, the electron gun (7), the deflection thread σ
The Q% post-acceleration electrode Q4 and the target tta+ are common parts, and the cylindrical electron lens Uυ is a novel part according to the present invention. In addition, the target housing unit consists of a face plate (141), a source body layer, and a conductive layer 4 connected to the rear acceleration electrode (j+-/light body screen).

本発明に係わる電子レンズaυは、1つの尚状電極α力
?有し、この尚状電極Uではそのターゲット側の端に後
段加速電極Uの電界が作用するように配置されている。
The electronic lens aυ according to the present invention has one convex electrode α force? The elongated electrode U is arranged so that the electric field of the subsequent acceleration electrode U acts on its end on the target side.

上述の如く構成されたCRTな動作させるために、例え
ば、カソード(2」に−1,5kV、  第1グリッド
+31ic−1600〜−1500V、i2グリッド(
4ノにOV、第1陽極(5)には約−1ooov程度に
調整されたフォーカス電圧、第2陽極(6)に−200
V〜+200V、後段加速を極(121K 17.5 
kV、電子レンズ山の構成要素の筒状1!極俣ηにOv
が供給される。そしてカソード(2Jから放射された電
子ビームはW、1グリツド(3)でビーム量制御され、
第2グリツド(4)で加速され、次に第2.グリッド(
4)と第1及び第2陽極+5J、 16Jで構成される
1二ポテンシャルレンズにより集束され、偏向系叫に送
り込まれる。偏向糸(10)にて電子ビームが第1の方
向(垂直方向)に振られると、このビームの進行方向が
電子レンズけυで反転され且つ第1の方向の偏向拡大が
なされる。筐た偏向系α0Ivcて電子ビームが第20
方向(水平方向〕に撮られろと、電子レンズulJKて
第20方向の偏向拡大がなされる。
In order to operate the CRT configured as described above, for example, -1.5 kV to the cathode (2), -1600 to -1500 V to the first grid, and -1600 to -1500 V to the i2 grid (2).
OV to 4, focus voltage adjusted to about -1ooov to the first anode (5), -200 to the second anode (6).
V~+200V, extreme rear acceleration (121K 17.5
kV, cylindrical component of the electron lens mountain 1! Ov to Gokumata η
is supplied. Then, the electron beam emitted from the cathode (2J) is controlled in beam quantity by W, 1 grid (3),
The second grid (4) then accelerates the second grid (4). grid(
4) and the first and second anodes are focused by a potential lens consisting of +5J and 16J, and sent into the deflection system. When the electron beam is swung in a first direction (vertical direction) by the deflection thread (10), the traveling direction of this beam is reversed by the electron lens υ, and the deflection in the first direction is expanded. The electron beam in the deflection system α0Ivc is the 20th
When a photograph is taken in a direction (horizontal direction), the electron lens ulJK is used to deflect and enlarge the image in the 20th direction.

本発明に従う筒状電極鰭は、第2図〜第5図から明らか
なように、第1.第2、第3及び第4の面叫(Ls四圓
ヲ有する扁平な断面形状矩形の箱形に形成されている。
As is clear from FIGS. 2 to 5, the cylindrical electrode fin according to the present invention has the following features: 1. The second, third and fourth surfaces (Ls) are formed into a rectangular box shape with a flat cross section.

なお、筒状電極αηの第1+7)面αe及びこれに対向
する第30面■によって第5図に示す如(生じる断面矩
形の一対の長辺が第2の方向(水平方向〕に一致し、第
2の面部及びこれに対向する第40而c211によって
生じる断面矩形の一対の短辺が第1の方向(垂直方向)
に一致するように筒状を極αηが管軸上に配置される。
Note that, as shown in FIG. 5, a pair of long sides of the resulting rectangular cross section coincide with the second direction (horizontal direction) by the first +7th) surface αe of the cylindrical electrode αη and the 30th surface {circle over (30)} facing this, as shown in FIG. A pair of short sides of a rectangular cross section created by the second surface part and the 40th part c211 opposing this part are in the first direction (vertical direction)
The cylindrical pole αη is placed on the tube axis so that it coincides with the cylindrical shape.

筒状電極(17)の対向する第1及び第3の面a〜四は
同一形状を有し、それぞれのターゲット側の端のは、第
2図及び第3図に示す如(円又は楕円又は双曲線の一部
又はこれ等の組み合せのよ5な凹状に形成されてカソー
ド方向にアーチ状に僅かに(ぼんでいる。第1及び第3
0而α81四の管軸に沿って延びる両側端(23(2乃
には凹部(ハ)@がそれぞれ設けられている。即ち、M
l及び第3の面叫(2Cjのターゲット側の端(2zの
両端近傍に、円又は楕円又は双曲線の一部又はこれ等の
組み合せのような凹部C51四が設けられている。
The opposing first and third surfaces a to 4 of the cylindrical electrode (17) have the same shape, and the end of each target side has a shape (circle, ellipse, or It is formed in a concave shape like a part of a hyperbola or a combination thereof, and is slightly arched (concave) in the cathode direction.
Both ends (23 (2) extending along the tube axis of α814 are each provided with a recess (c) @.
Concave portions C514 shaped like a part of a circle, an ellipse, a hyperbola, or a combination thereof are provided near both ends of the target side ends (2z) of the third surface (2Cj).

筒状電極αηの対向する第2及び第4の面霞Qυのター
ゲット側の端啼は円又は楕円又は双曲線の一部又はこれ
等の組み合せのような凹状に形成され、カソード方向に
くぼんでいる。
The ends of the opposing second and fourth surface hazes Qυ of the cylindrical electrode αη on the target side are formed in a concave shape like a circle, an ellipse, a part of a hyperbola, or a combination thereof, and are depressed toward the cathode. .

この実施力では端のが半径R+の曲率ぞ有する凹状に形
成され、この凹状部分の幅がW3とされて−、・る。こ
の幅Wsの両側に半径Rtの曲率?有する突出部が設け
られ、これVC連続して半径R,の凹部(25Iceが
第20方向(水平方向]に延びるように設げられ、最も
狭い幅W2が得られた後に半径瓜の曲率乞有して幅W1
に戻されている。fた第2及び第40而(t!I Zl
jのターゲット側の端@が半径R3の曲率を有する凹状
に形成されている。
In this embodiment, the end is formed into a concave shape having a radius of curvature R+, and the width of this concave portion is set to W3. Curvature of radius Rt on both sides of this width Ws? A concave portion (25Ice) with a radius R is provided so that the concave portion (25Ice) extends in the 20th direction (horizontal direction), and after the narrowest width W2 is obtained, the curvature of the radius R is width W1
has been returned to. f 2nd and 40th (t! I Zl
The target side end @ of j is formed into a concave shape having a radius of curvature R3.

縦8cm、横10cmの表示スクリーン?有するCRT
に於ける筒状電極αでの幾何学的寸法?例示すると、垂
直方向(第1の方向〕の藁さmち第2及び第40面(1
91121+の高さ島が約22mm、水平方向(第2の
方向〕の幅即ち第1及び第30而賭(201の幅W1が
fJ 30 mm、第1及び第3の面(1at(20+
のビーム人口端困からターゲット側の端口の最も突出し
て−・る点までの長さDlが約40mm、第2及び第4
の面住!11(2vのビーム入口端のからターゲット側
の端啼の最も突出している点までの長さり、が約23m
m、端@の曲率半径R1が約20 mm 、 R1部分
の幅W、が約24mm、半径R2がl’g3mm、半径
R8が約4mm、半径瓜が約3mm、凹部□□□四にお
ける@D、が約8mm、対向する凹部r25Icle 
INノの錫W2が約16mm、半径R1が約12mmで
ある。なお、電極(1力の各部は厚さ0.5mmの非磁
性ステンレス鋼で形成されている。また、第1及び第3
0而α81四(1は全く同一形状とされ、対向配置され
ている。
Display screen 8cm high and 10cm wide? CRT with
What are the geometric dimensions of the cylindrical electrode α? To illustrate, in the vertical direction (first direction), the second and fortieth sides (one
The height of 91121+ is approximately 22 mm, the width in the horizontal direction (second direction), that is, the width W1 of 201 is fJ 30 mm, and the first and third surfaces (1at(20+
The length Dl from the end of the beam to the most protruding point of the end on the target side is approximately 40 mm.
Menzumi! 11 (The length from the 2V beam entrance end to the most protruding point of the end on the target side is approximately 23 m.
m, the radius of curvature R1 at the end @ is approximately 20 mm, the width W of the R1 portion is approximately 24 mm, the radius R2 is l'g 3 mm, the radius R8 is approximately 4 mm, the radius melon is approximately 3 mm, @D at the recess □□□4 , is about 8 mm, and the opposing recess r25Icle
The tin W2 of IN is about 16 mm, and the radius R1 is about 12 mm. Note that each part of the electrode (1 force) is made of non-magnetic stainless steel with a thickness of 0.5 mm.
0 and α814 (1 has exactly the same shape and is arranged opposite to each other.

同様に、第2及び第40而(1!lit I211も全
く同一形状とされ、対向配置されている。
Similarly, the second and fortieth units (1!lit I211) have exactly the same shape and are arranged opposite to each other.

矢に、第6図及び第7図?参照して電子レンズ圓での電
子ビームの軌道?説明する。今、筒状電極(17)に例
えばOV1後段加速電極(12+に例えば17.5kV
 i印加丁れば、筒状電極住ηの中に後段加速電極α4
に基づく高電界が侵入することによって筒状電極αηの
ターゲット側の端ノ時即ち出口近傍に電子レンズが構成
される。第6図に示す第3囚の■−1’li断面に於い
ては、凸レンズ作用が生じるように等電位線f3Gが分
布する。この結果、第1の方向(垂直方向)に振られた
電子ビーム6υ又+X 321 &’!、、凸レンズ作
用?受け、その進行方向が反転され、第10方向に偏向
拡大されてターゲットuに到る。
Figures 6 and 7 on the arrow? See the trajectory of an electron beam in an electron lens cone? explain. Now, connect the cylindrical electrode (17) to, for example, the OV1 latter-stage acceleration electrode (for example, 17.5 kV to 12+).
If i is applied, the latter accelerating electrode α4 is placed inside the cylindrical electrode housing η.
An electron lens is formed at the end of the cylindrical electrode αη on the target side, that is, near the exit, by the intrusion of a high electric field based on . In the -1'li cross section of the third frame shown in FIG. 6, equipotential lines f3G are distributed so that a convex lens effect occurs. As a result, the electron beam 6υ or +X 321 &'! is swung in the first direction (vertical direction). ,,Convex lens action? The direction of travel is reversed, the beam is deflected and expanded in the tenth direction, and reaches the target u.

−万、第7図に示す第4因の■−■線断面に於−・ては
、凹レンズ作用が生じるよ5に等電位線時が分布する。
In the cross section of the fourth factor shown in FIG.

この結果、第20方向(水平方向)に振られた電子ビー
ムけ4又はr3ωは、点線で示すように進まず、実線で
示すように進み、第2の方向に偏向拡大されてターゲッ
ト[31に到る。
As a result, the electron beam beam 4 or r3ω swung in the 20th direction (horizontal direction) does not proceed as shown by the dotted line, but proceeds as shown by the solid line, is deflected and expanded in the second direction, and hits the target [31]. Arrive.

ところで、筒状電極α7)で電子レンズ(11Jを構成
する場合に一番問題になるのがパターン歪と偏向率直線
性と第1の方向(垂直方向]のスポット一様性である。
By the way, when configuring the electron lens (11J) using the cylindrical electrode α7), the biggest problems are pattern distortion, polarization straightness, and spot uniformity in the first direction (vertical direction).

本実施例では上記の問題?解決するために、第1及び第
30面αgI四に半径R8の凹状端の及び凹部□□□霞
?設け、また第2及び第4の面住罎回に半径R11の凹
状端@ぞ設けた。1ず、パターン歪と筒状電極αηとの
関係について説明すると、横輝線のスクリーン上の上下
でのパターン歪は、主として半@R1の大ぎさによって
規定される。例えばR8が約20mmで横輝線がほぼ真
直ぐになる場合、R+Y2Ommより太き(すれば、第
8図で実線r、3Dで示すように横輝線のビンクッショ
ン歪が生じ、R+ re例えば25 mm% 30mm
と次第に大きくすれば、横輝線のビンクッション歪が次
第に大きくなる。逆にRIl: 20 mmより小さく
丁れば点線6zで示す如くバレル歪が生じる。これはR
t以外?固定し、R1のみ?変化させる実験により確認
された。
Does this example have the above problem? To solve the problem, a concave end with a radius R8 and a concave part □□□Hasumi on the first and 30th surfaces αgI4? Further, concave ends with a radius R11 were provided on the second and fourth surface corners. First, to explain the relationship between pattern distortion and the cylindrical electrode αη, the pattern distortion in the upper and lower portions of the horizontal bright line on the screen is mainly defined by the magnitude of half @R1. For example, if R8 is about 20 mm and the horizontal emission line is almost straight, it is thicker than R+Y20mm (then, as shown by the solid line r, 3D in Fig. 8, a bin cushion distortion of the horizontal emission line occurs, and R+re is, for example, 25 mm%. 30mm
If the value is gradually increased, the bin cushion distortion of the horizontal emission line will gradually increase. Conversely, if the RIl is smaller than 20 mm, barrel distortion will occur as shown by the dotted line 6z. This is R
Other than t? Fixed, R1 only? Confirmed by experiment with changes.

又、もし、横輝線がうねっている場合は、端■z乞適当
な2次曲線(円、楕円、双曲線等〕やこれ等の複合曲線
又は直線部分乞含む複合曲線の凹状にすれば良−・。
Also, if the horizontal bright line is undulating, the end may be made into an appropriate quadratic curve (circle, ellipse, hyperbola, etc.), a compound curve of these, or a concave compound curve including a straight line.・.

縦輝線のスクリーン上の在方でのパターン歪は主として
vAW2と半径R,によって大さく影響される。
Pattern distortion in the direction of the vertical bright line on the screen is largely influenced by vAW2 and radius R.

幅W、乞例えば16mmから12mmへ小さくして行(
と第2の方向からの高電界の入り込みが強まり、水平方
向の感度が向上すると共に、縦輝線はビンクッション歪
傾向となる。スた逆に幅W2ソ大さくしていけば、バレ
ル歪傾向となる。また縦輝線が適当な半径R6で例えば
第9図の実線(33で示すように5ねっている場合はR
5の端gr)乞適当な2欠曲+1IC円、楕円、双曲線
などノやこれらの複合した曲線又は直線?含めた複合曲
線?用−・て端的をカンード側に凸状な曲線?作ってや
れば良−・。
Please reduce the width W, for example from 16mm to 12mm (
The penetration of the high electric field from the second direction is strengthened, the sensitivity in the horizontal direction is improved, and the vertical bright line tends to have a bottle cushion distortion. Conversely, if the width W2 is increased, the barrel tends to become distorted. Also, if the vertical bright line has an appropriate radius R6, for example, the solid line in Fig. 9 (as shown in 33),
5 end gr) Appropriate 2 missing pieces + 1 IC circle, ellipse, hyperbola, etc. or a compound curve or straight line of these? Compound curve including? For example, is it a convex curve on the canard side? You should just make it...

第11図で破線で示すように、端的乞半径R3で円近似
させることによって、パターン歪がM9図に示すように
生じたと丁れば、第11図の実線で示すように端(2η
の形状を補正すれば良い。また、端のを第1O図の破線
で示すように半径R1で円近似させることによって横輝
線が5ねるようなパターン歪となった場合vcは、例え
ば、第10図の実線で示すように端のの形状?桶正丁れ
ば良い。
As shown by the broken line in FIG. 11, if pattern distortion is generated as shown in FIG.
All you have to do is correct the shape of . In addition, if the edge is approximated as a circle with radius R1 as shown by the broken line in Figure 1O, resulting in a pattern distortion in which the horizontal bright line curves 5 times, vc will be, for example, as shown in the solid line in Figure 10. The shape of the? Oke-shocho is fine.

次に、偏向率直線性について述べる。第1の方向(垂直
方向〕の偏向率直線性は、幅異が一定の場合、高さH,
と後段加速比によって決まる。H1乞小さくして(・(
と、前記ifの方向の偏向率直線性はプラス傭向になっ
てい(ことが実験で分っている。また、後段加速比?例
えば12から8へ小さくして−・(と同様にグラス方向
へ動(ので、本実施例ではHl及び後段加速比乞出米る
だけ高くする方法乞とって−・る。また、第2の方向(
水平方向ノの偏向率直線性は端面助の曲率の程度で主に
決定される。半径R4ヲ例えば12mmから18mmV
C大きくすると端面助におけるR1による(ぼみが浅く
なり、従って、高電界の入り込みが少なくなり、前記M
2の方向の偏向率直線性はiイナス方向へ動く。また、
HJは第10方向のスクリーン上での有効域?規定し、
例えば、rM状電極qηとターゲット賭の距離が一定の
場合、几が大きい万が第1の方向(垂直方向ンの有効域
が大となる。
Next, we will discuss deflection directness. When the width difference is constant, the deflection straightness in the first direction (vertical direction) is determined by the height H,
It is determined by the rear acceleration ratio. Make H1 smaller (・(
, the deflection straightness in the direction of if becomes positive (this is known through experiments).Also, by reducing the rear acceleration ratio from, for example, 12 to 8...(Similarly, in the glass direction) Therefore, in this embodiment, a method is needed to increase Hl and the rear acceleration ratio by the same amount.Also, in the second direction (
The straightness of deflection in the horizontal direction is mainly determined by the degree of curvature of the end face support. Radius R4, for example 12mm to 18mmV
When C is increased, the depression due to R1 in the end face becomes shallower, and therefore the penetration of the high electric field is reduced.
The deflection straightness in direction 2 moves in the i-minus direction. Also,
Is HJ the effective area on the screen in the 10th direction? stipulate,
For example, when the distance between the rM-shaped electrode qη and the target is constant, the larger the distance, the larger the effective area in the first direction (vertical direction).

菫だ、W2乞小さくすること、即ち、対向する第10面
部と第30面(イ)の凹部凶四の深さぞ大ぎ(すること
により、第2の方向の感度か良くなる。
By making W2 smaller, that is, the depth of the recesses on the opposing 10th and 30th surfaces (a) is too large (by doing so, the sensitivity in the second direction is improved.

!た、第10方向【垂直方向)のスポット一様性の問題
(通常の場合、中央より上下両端に行(に従ってスポッ
トの縦幅が太(なる]も、管軸上を通るビームには強い
凸(集束ルンズ作用、前記偏向系にて垂直方向に撮られ
た電子ビームには弱い集束レンズ作用が、第6図に示す
等電位面から生じ、結果として上下のスポット一様性も
良好となる。
! In addition, there is a problem with the spot uniformity in the 10th direction (vertical direction) (normally, the spots are lined from the center to both the upper and lower ends (the vertical width of the spot becomes thicker), but the beam passing along the tube axis has a strong convexity. (Focusing lens effect, which is weak for electron beams taken in the vertical direction by the deflection system, occurs from the equipotential surface shown in FIG. 6, resulting in good vertical spot uniformity.

不発F!J4は上述の実施例に限定されるものでな(、
例えば次の変形例が可能なものである。
Misfire F! J4 is not limited to the above-mentioned embodiments (
For example, the following modifications are possible.

囚 第12図に示す如(、筒状電極住η?断面扁平な楕
円に近い略矩形としてもよい。このようにしても、第5
図の場合と笑質的に同一の第1〜第40面((1)9〜
t211 カ生じ、第2図〜g51S4(7)筒状1!
(l?)と冥質的に同一の作用効果ン得ることが出来る
As shown in FIG.
Pages 1 to 40 ((1) 9 to 40) are qualitatively the same as those shown in the figure.
t211 Power generated, Fig. 2 ~ g51S4 (7) Cylindrical 1!
It is possible to obtain the same effects and effects as (l?).

03)  第13図に示す如(、第1及び第3の面叫■
をターゲット方向に末広がりに形成してもよい。
03) As shown in Figure 13 (, 1st and 3rd face shouts
may be formed to widen toward the target.

また、第2及び第4の面α9F2〃もターゲット方向に
末広がりにしてもよい。また、筒状電極μ力の断面は正
方形であってもよいし、縦長の矩形であってもよい。
Further, the second and fourth surfaces α9F2 may also be widened towards the target. Further, the cross section of the cylindrical electrode μ force may be square or may be a vertically long rectangle.

C)第14図に示す如く、3mの四極レンズt411(
421略を有するCRTにも適用可能である。この場合
、レンズ(411のビーム進行方向1r:基準にして第
2の方向(左右]の@極に例えばO〜−300V。
C) As shown in Figure 14, a 3m quadrupole lens t411 (
The present invention is also applicable to CRTs having a format of 421. In this case, the beam propagation direction 1r of the lens (411): For example, O to -300 V is applied to the @pole in the second direction (left and right) with respect to the beam traveling direction 1r of the lens (411).

レンズ圓の第1の方向(上下)の電極に例えば”300
V、I/ンズ(4シの左石の電極に例えば+300V、
 レンズ44の上下の電極罠例えば0〜−300V、レ
ンズ日の左右の電極に例えば−100〜−200V、 
レンズ(1)3の上下の電極に例えばOvr印加゛する
。このようにしても実施例と同様な作用効果?得ること
が出来る。   ′a)第15図に示す如く、垂直偏向
板(8)と水平偏向板(91との間に四極レンズt44
1 ’に追加した構造とし、電子ビームの進行方向を基
憔にして、左石の電極に例えば−100〜−200V、
上下の!運に例えばOVY印加してもよい。このように
a#:しても、実施例と同様な作用効果ぞ得ることが出
来る。
For example, the electrodes in the first direction (up and down) of the lens circle are
V, I/ins (for example +300V to the left stone electrode of 4
Electrode traps on the upper and lower sides of the lens 44, for example, 0 to -300V; electrodes on the left and right sides of the lens, for example, -100 to -200V;
For example, Ovr is applied to the upper and lower electrodes of the lens (1) 3. Is it the same effect as the example even if I do this? You can get it. 'a) As shown in Figure 15, a quadrupole lens t44 is placed between the vertical deflection plate (8) and the horizontal deflection plate (91).
1', and based on the traveling direction of the electron beam, the electrode on the left stone is set to -100 to -200V, for example.
Up and down! For example, OVY may be applied to luck. Even if a#: is used in this way, the same effects as in the embodiment can be obtained.

(El  第16図に示すヌ口(、筒状電極住ηのター
ゲット側開口sft囲む真空外壁(1)のファンネル部
?管軸に平行にし、必要な組立精度が容易に得られるよ
うKなし且つCRTの性能の安定化を図ってもよい。
(El) The funnel part of the vacuum outer wall (1) surrounding the target-side opening sft of the cylindrical electrode housing η shown in Figure 16 is parallel to the tube axis, and is designed without K to easily obtain the required assembly accuracy. The performance of the CRT may be stabilized.

[F] 第17図に示す如(、真空外壁(1)の内面に
設ける後段加速を極u4に電気的に接続されて−・る断
面が円形又は四辺形等の筒状を極(12a) ’l設け
、この中に筒状電極(LT)ヲ装置してもよ〜・。この
ようにすれば、電子レンズ?構成する筒状電極住りの安
定的設置が可能になる。なお、円筒状1!甑(12aJ
は壁面の後段加速電極Uと同様に作用する。
[F] As shown in FIG. 17, the post-acceleration pole (12a) provided on the inner surface of the vacuum outer wall (1) is electrically connected to the pole U4 and has a circular or quadrilateral cross section. 'l, and a cylindrical electrode (LT) can be installed in it.In this way, it becomes possible to stably install the cylindrical electrode housing that constitutes the electronic lens. Condition 1! Koshiki (12aJ
acts in the same way as the latter acceleration electrode U on the wall surface.

(G 第3図のR2の部分は、後段加速を極俣4との関
係で円近似に面取りされているが、他の曲線であっても
よいし、耐圧が問題にならない場合は角であってもよい
。また、R+、Ra、瓜、馬の部分も、パターン歪及び
偏向率直線性?最良にするように種々変形してもよい。
(G The R2 part in Figure 3 is chamfered to approximate a circle in relation to the rear acceleration pole 4, but it may be a different curve, or it may be a corner if withstand voltage is not an issue. Further, the R+, Ra, gourd, and horse parts may be variously modified to optimize pattern distortion and deflection straightness.

D 静電集束型電子銃とぜずに、電磁集束型電子銃とし
てもよい。また偏向系?電磁偏向構成としてもよい。
D Instead of an electrostatic focusing electron gun, an electromagnetic focusing electron gun may be used. Another deflection system? An electromagnetic deflection configuration may also be used.

(I)  蓄積管のコリメーション電極等の関係で筒状
電極任ηKIE子しンズ作用?生じさせることが可能で
ある。従って、本発明?蓄積管等にも適用可能である。
(I) Is there a cylindrical electrode effect due to the collimation electrode of the storage tube? It is possible to cause Therefore, the invention? It can also be applied to storage tubes, etc.

発明の効果 上述から明らかな如(本発明によれば、1つの筒状電極
?偏向系とターゲットとの間に挿入し、後段電極による
高電界?作用させることにより、偏向拡大用電子レンズ
と得ることが出来る。従って、CRTの構成が簡単にな
り、且つ所望の組立稽度乞極めて容易に得ることが出来
る。また、CRTのコストの低減も可能になる。また、
第1及び1g30面のターゲット側の端の凹状と、第1
及び第3の両側端の凹状部分と、第2及び第4の面のタ
ーゲット側の端の凹状との組み合せによってパターン歪
及び偏向率直線性?改善するので、これ等の改善?容易
に達成することが出来る。
Effects of the Invention As is clear from the above (according to the present invention, one cylindrical electrode is inserted between the deflection system and the target, and a high electric field is applied by the subsequent electrode to obtain an electron lens for deflection magnification. Therefore, the configuration of the CRT becomes simple, and the desired assembly speed can be easily obtained.It is also possible to reduce the cost of the CRT.
The concave shape of the target side end of the 1st and 1g30 faces and the 1st
And pattern distortion and deflection straightness due to the combination of the concave portions at both ends of the third side and the concave portions at the ends of the second and fourth surfaces on the target side? Since it improves, is this an improvement? It can be easily achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わるCRTv示す断面図、
第2図は第1図のCRTの尚状電極乞概略的に示す斜視
図、第3図は第2図の筒状電極の平面図、第4図は第2
図の筒状1!極の側面内、第5図は第3図の筒状電極の
マーY線断面図、第6図はビーム軌道と示す第3図のU
−■線に相当てる部分の断面図、第7図はビーム軌道?
示す第4図の■−■線に相当する部分の断面図、第8図
は横輝線のパターン歪?示す図、第9囚は縦輝線のパタ
ーン歪の一例?示す図、第10図は第1及び第3の面の
変形例を示す平面図、第11図は第2及び第4の面の変
形例乞示す側面図、第12図は筒状電極の変形例を示す
断面図、第13図は筒状電極の変形例?示す斜視図、第
14図、第15図、M2S図及び第17図はCRTの変
形例を示す断面図である。 +7J ・’[子銃、1lQl・・・偏向系、aυ・・
・電子レンズ、(14・・・後段加速電極、(13i・
・・ターゲット、卸・・・筒状電極、賭・・・Mlの面
、■・・・第2の面、(201・・・第3の面、の・・
・第4の面、@・・・ターゲット側端、(ハ)G61・
・・凹部、(27)・・・ターゲット側端。
FIG. 1 is a sectional view showing a CRTv according to an embodiment of the present invention,
2 is a perspective view schematically showing the CRT's cylindrical electrode in FIG. 1, FIG. 3 is a plan view of the cylindrical electrode in FIG. 2, and FIG.
Cylindrical shape 1 in the figure! Inside the pole side, Fig. 5 is a cross-sectional view of the cylindrical electrode in Fig. 3 taken along the line Y, and Fig. 6 is a cross-sectional view of the beam trajectory shown in Fig. 3.
- Is the cross-sectional view of the part corresponding to the ■ line, Figure 7, the beam trajectory?
The cross-sectional view of the part corresponding to the line ■-■ in Fig. 4 shown in Fig. 8 shows the pattern distortion of the horizontal bright line? Is the figure shown in Figure 9 an example of vertical bright line pattern distortion? 10 is a plan view showing a modification of the first and third surfaces, FIG. 11 is a side view showing a modification of the second and fourth surfaces, and FIG. 12 is a modification of the cylindrical electrode. A cross-sectional view showing an example, FIG. 13 is a modification of the cylindrical electrode? The perspective view, FIG. 14, FIG. 15, M2S diagram, and FIG. 17 are sectional views showing modified examples of the CRT. +7J ・'[Subgun, 1lQl...Deflection system, aυ...
・Electronic lens, (14... post-acceleration electrode, (13i・
...Target, wholesaler...cylindrical electrode, bet...Ml surface, ■...second surface, (201...third surface,...
・Fourth surface, @...target side edge, (c) G61・
...Concave portion, (27)...Target side end.

Claims (6)

【特許請求の範囲】[Claims] (1)電子銃(7)と、該電子銃(7)から放射された
電子ビームを第1の方向と該第1の方向に直交する第2
の方向とに偏向する偏向系(10)と、前記偏向系(1
0)よりも後段に設けられた少なくとも1つの後段電極
(12)と、前記電子銃(7)から放射された電子ビー
ムを衝撃させるターゲット(13)と、前記後段電極(
12)の近傍に配置された電子レンズ(11)とを少な
くとも具備するメッシュレス型陰極線管に於いて、前記
電子レンズ(11)が筒状電極(17)から成り、該筒
状電極(17)が断面形状四辺形となるように配された
第1、第2、第3及び第4の面(18)(19)(20
)(21)を有し且つその断面の中心が管軸に一致し且
つ対向する前記第1及び第3の面(18)(19)が前
記第2の方向に延び、対向する前記第2及び第4の面(
19)(21)が前記第1の方向に延びるように配置さ
れ、 前記筒状電極(17)の対向する前記第1及び第3の面
(18)(19)のターゲット側の端(22)が凹状に
夫々形成され、且つ前記ターゲット側の端(22)の近
傍の前記第1及び第3の面(18)(20)の両側端(
23)(24)に凹状部分(25)(26)が夫々設け
られ、 前記筒状電極(17)の対向する前記第2及び第4の面
(19)(21)のターゲット側の端(27)が凹状に
夫々形成され、 前記筒状電極(17)の電位と前記後段電極(12)の
電位との関係によつて、前記筒状電極(17)に、前記
偏向系(10)で前記第1の方向に振られた電子ビーム
の進行方向を反転して偏向拡大する作用を生じさせ且つ
前記偏向系で前記第2の方向に振られた電子ビームを偏
向拡大する作用を生じさせるように前記筒状電極(17
)と前記後段電極(12)とに電位を付与する電位付与
手段が設けられ ていることを特徴とするメッシュレス型陰極線管。
(1) An electron gun (7) and an electron beam emitted from the electron gun (7) in a first direction and a second direction perpendicular to the first direction.
a deflection system (10) that deflects in the direction of
0), a target (13) for impacting the electron beam emitted from the electron gun (7), and a target (13) provided at a stage subsequent to the electron gun (7);
In a meshless cathode ray tube comprising at least an electron lens (11) disposed near the electron lens (12), the electron lens (11) comprises a cylindrical electrode (17), and the cylindrical electrode (17) The first, second, third and fourth surfaces (18) (19) (20) are arranged so that the cross-sectional shape is quadrilateral.
) (21), the center of the cross section thereof coincides with the tube axis, and the opposing first and third surfaces (18) and (19) extend in the second direction, and the opposing second and third surfaces The fourth side (
19) (21) is arranged so as to extend in the first direction, and the end (22) on the target side of the opposing first and third surfaces (18) and (19) of the cylindrical electrode (17) are each formed in a concave shape, and both ends (
23) Concave portions (25) and (26) are provided in (24), respectively, and target-side ends (27) of the opposing second and fourth surfaces (19) and (21) of the cylindrical electrode (17) ) are formed in a concave shape, and depending on the relationship between the potential of the cylindrical electrode (17) and the potential of the latter electrode (12), the cylindrical electrode (17) is provided with the deflection system (10). Reversing the traveling direction of the electron beam swung in the first direction to produce an action of deflecting and enlarging it, and causing the deflection system to produce an action of deflecting and enlarging the electron beam swung in the second direction. The cylindrical electrode (17
) and the rear-stage electrode (12).
(2)前記筒状電極は扁平な箱形に形成されたものであ
る特許請求の範囲第1項記載のメッシュレス型陰極線管
(2) The meshless cathode ray tube according to claim 1, wherein the cylindrical electrode is formed in a flat box shape.
(3)前記筒状電極は、断面形状が扁平な略楕円形状の
ものである特許請求の範囲第1項記載のメッシュレス型
陰極線管。
(3) The meshless cathode ray tube according to claim 1, wherein the cylindrical electrode has a flat, substantially elliptical cross-sectional shape.
(4)前記第1及び第3の面は、ターゲット方向に末広
がりに形成されたものである特許請求の範囲第1項又は
第2項又は第3項記載のメッシュレス型陰極線管。
(4) The meshless cathode ray tube according to claim 1, wherein the first and third surfaces are formed to widen toward the target.
(5)前記第2及び第4の面は、ターゲット方向に末広
がりに形成されたものである特許請求の範囲第1項又は
第2項又は第3項又は第4項記載のメッシュレス型陰極
線管。
(5) The meshless cathode ray tube according to claim 1 or 2 or 3 or 4, wherein the second and fourth surfaces are formed to widen toward the target. .
(6)前記後段電極は、管壁に設けられた電極と、前記
筒状電極のターゲット側の端を囲むように配置され且つ
前記管壁に設けられた電極に電気的に接続された筒状電
極とから成るものである特許請求の範囲第1項又は第2
項又は第3項又は第4項又は第5項記載のメッシュレス
型陰極線管。
(6) The latter electrode includes an electrode provided on the tube wall and a cylindrical electrode arranged so as to surround the target-side end of the cylindrical electrode and electrically connected to the electrode provided on the tube wall. Claim 1 or 2 consists of an electrode.
The meshless cathode ray tube according to item 1 or 3 or 4 or 5.
JP18220884A 1984-08-31 1984-08-31 Meshless type cathode-ray tube Pending JPS6161350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18220884A JPS6161350A (en) 1984-08-31 1984-08-31 Meshless type cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18220884A JPS6161350A (en) 1984-08-31 1984-08-31 Meshless type cathode-ray tube

Publications (1)

Publication Number Publication Date
JPS6161350A true JPS6161350A (en) 1986-03-29

Family

ID=16114242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18220884A Pending JPS6161350A (en) 1984-08-31 1984-08-31 Meshless type cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS6161350A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529809A (en) * 1983-08-29 1985-07-16 General Electric Company Method for production of aryl substituted esters
JPS62246235A (en) * 1986-04-17 1987-10-27 Iwatsu Electric Co Ltd Cathode-ray tube
JPH05169173A (en) * 1991-12-16 1993-07-09 Honda Motor Co Ltd Method for forming cut shape toothed product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529809A (en) * 1983-08-29 1985-07-16 General Electric Company Method for production of aryl substituted esters
JPS62246235A (en) * 1986-04-17 1987-10-27 Iwatsu Electric Co Ltd Cathode-ray tube
JPH0528461B2 (en) * 1986-04-17 1993-04-26 Iwatsu Electric Co Ltd
JPH05169173A (en) * 1991-12-16 1993-07-09 Honda Motor Co Ltd Method for forming cut shape toothed product

Similar Documents

Publication Publication Date Title
US4629933A (en) Cathode-ray tube having an electron gun with an astigmatic focusing grid
EP0079108A2 (en) Display tube
US3496406A (en) Cathode ray tubes with electron beam deflection amplification
US2999957A (en) Cathode ray tube
CA1105542A (en) Box-shaped scan expansion lens for cathode ray tube
US3497763A (en) Grid to compensate for astigmatic quadrupolar lens
JPS6161350A (en) Meshless type cathode-ray tube
US4543508A (en) Cathode ray tube with an electron lens for deflection amplification
US6404116B1 (en) Color cathode ray tube
US3576457A (en) High-resolution direct-view storage tube
EP0115615B1 (en) Flat cathode ray tube with keystone compensation
JPS6023939A (en) Meshless type cathode ray tube
JPS6065436A (en) Meshless type cathode-ray tube
JPH041457B2 (en)
JPS588543B2 (en) Post-acceleration cathode ray tube
JPH02144835A (en) Cathode structure for x-ray tube
JPS5935499B2 (en) cathode ray tube
CA1221134A (en) Cathode-ray tube
US4394599A (en) Flat cathode ray tube
JPH0135464B2 (en)
JPS62246236A (en) Cathode-ray tube
Clément et al. The design of a new electron optics for a picosecond streak camera
JPS6038A (en) Electron gun
GB2071402A (en) Flat Cathode Ray Tube
JPS62246235A (en) Cathode-ray tube