JPS6160874A - Surface hardened steel and surface hardening method of steel - Google Patents

Surface hardened steel and surface hardening method of steel

Info

Publication number
JPS6160874A
JPS6160874A JP17926584A JP17926584A JPS6160874A JP S6160874 A JPS6160874 A JP S6160874A JP 17926584 A JP17926584 A JP 17926584A JP 17926584 A JP17926584 A JP 17926584A JP S6160874 A JPS6160874 A JP S6160874A
Authority
JP
Japan
Prior art keywords
steel
nitrogen
gas
internal
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17926584A
Other languages
Japanese (ja)
Other versions
JPH0368109B2 (en
Inventor
Imao Tamura
田村 今男
Bunji Kondo
近藤 文治
Koichi Kuwabara
桑原 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KAGAKU KENKYUSHO
Original Assignee
OYO KAGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KAGAKU KENKYUSHO filed Critical OYO KAGAKU KENKYUSHO
Priority to JP17926584A priority Critical patent/JPS6160874A/en
Publication of JPS6160874A publication Critical patent/JPS6160874A/en
Publication of JPH0368109B2 publication Critical patent/JPH0368109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To produce easily a surface hardened steel having high hardness by bringing a steel contg. nitride forming metallic elements into contact with a cathode in a nitrogen ion atmosphere, impressing a specified voltage between the cathode and anode and executing intermittently electric discharge. CONSTITUTION:The steel contg. nitride forming metallic elements of >=1 kinds of Cr, Al, etc. except Fe is brought into contact with the cathode and is thus homopolarized. A gaseous mixture contg. gaseous nitrogen is introduced into a reaction vessel and the specified voltage is substantially intermittently im pressed between the above-mentioned cathode and anode in the above-mentioned reaction vessel to execute intermittently the electric discharge between the two electrodes. The nitride layer in which the nitrogen concn. in the surface is as high as 0.1-10wt% and that the decreasing gradient ¦DELTAc/DELTAt¦ of the nitrogen concn. (t; thickness mu, c; nitrogen concn. %) from the surface toward the inside is as small as <=0.5 and which has >=0.01mm thickness is formed on the steel surface. The surface hardened steel having the high hardness is thus easily and quickly obtd.

Description

【発明の詳細な説明】 本発明は硬度の優れた表面硬化鋼に関する。更に詳しく
は、鉄の他に更に窒化物生成金属元素を含有する鋼の表
面から内部に向けて高濃度の窒素が侵入拡散した内部窒
化層を有し、該内部窒化層における鋼表面から内部側へ
向けての窒素濃度減少勾配が小さく、即ち内部窒化層内
の窒素濃度分布が実質的に均一であって、該内部窒化層
の硬さの優れた表面硬化鋼に関する。本発明はまた、該
表面硬化鋼を得るための鋼の表面硬化法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface hardened steel with excellent hardness. More specifically, the steel contains a nitride-forming metallic element in addition to iron, and has an internal nitrided layer in which a high concentration of nitrogen penetrates and diffuses from the surface of the steel toward the inside, The present invention relates to a surface-hardened steel in which the nitrogen concentration decrease gradient toward the inner nitrided layer is small, that is, the nitrogen concentration distribution in the inner nitrided layer is substantially uniform, and the inner nitrided layer has excellent hardness. The invention also relates to a method for surface hardening of steel to obtain said surface hardened steel.

従来、鋼を窒化処理することによシ表面硬化した鋼につ
いては知られている。窒化処理については溶融青酸塩浴
中で鋼を処理する液体窒化法とアンモニアガス雰囲気下
で鋼を処理するガス窒化法が知られている。〔荒木透ら
編、鉄鋼工学調圧8、鋼の熱処理技術、朝倉書店(19
72年)、173〜179頁、及び田村今男ら、鉄鋼材
科学、朝倉書店(1981年)、219〜228頁〕。
BACKGROUND ART Conventionally, steel whose surface is hardened by nitriding the steel is known. Regarding the nitriding treatment, there are known liquid nitriding methods in which steel is treated in a molten cyanide bath, and gas nitriding methods in which steel is treated in an ammonia gas atmosphere. [Toru Araki and others, Steel Engineering Pressure Regulation 8, Steel Heat Treatment Technology, Asakura Shoten (19
72), pp. 173-179, and Imao Tamura et al., Steel Materials Science, Asakura Shoten (1981), pp. 219-228].

液体窒化法としては液体加圧窒化やタフトライド処理が
ち9、ガス窒化法としては、一段室化法、二段窒化法、
ガス加圧窒化法などの技術がある。窒化法は例えば、焼
入れ硬化することのできなかったステンレス鋼もその表
面を硬化することができるというような利点を有するの
で種々研究が行なわれている。上記の窒化法で得られる
表面硬化鋼はいずれもその最表面に数μm〜士数μmの
厚さのいわゆる化合物層(以後屡々″白層″と称し、主
としてFe 2〜3N層又はFe、4 、N 、或いは
両者の混合物からなる層)を有し、その下層に窒素を固
溶するいわゆる拡散層を有するが、該化合物層は非常に
もろく実用的でないので削シ取るなどする必要がらりそ
れに煩雑な工程を要するという欠点がある。また該拡散
層はそれに含まれる窒素の濃度分布が均一ではなく、鋼
の表面側から内部へ向か5につれてその窒素濃度が急激
に低下しそれに比例して硬さも急激に低下しておシ表面
硬度としては十分なものが得られていない。また、上記
窒化法のうち、液体窒化法では毒性の強いシアン化合物
を主成分とする溶融塩浴を用いるので万全の公害対策が
必要であるし、ガス窒化法では窒化に長時開裂するとい
う欠点がある。更に、上述のような従来の窒化法でステ
ンレス鋼の表面硬化を行なうには、あらかじめ、酸洗し
てステンレス鋼表面の強固な酸化被膜を除去しなければ
なら・なかった。例えば、工業的にはステンレス鋼を弗
硝酸で洗浄した後高温アンモニアガス雰囲気下で処理す
る方法が行なわれているが、ステンレス鋼表面の強固な
酸化被膜を除去するのは容易でなく煩雑な工程を必要と
するという欠点があった。
Liquid nitriding methods tend to include liquid pressure nitriding and tuftride treatment9, while gas nitriding methods include single-stage chamber method, two-stage nitriding method,
There are technologies such as gas pressure nitriding. The nitriding method has the advantage of being able to harden the surface of stainless steel, which cannot be hardened by quenching, and various studies are being conducted on it. All of the surface-hardened steels obtained by the above nitriding method have a so-called compound layer (hereinafter often referred to as the "white layer") with a thickness of several μm to several μm on the outermost surface, mainly an Fe 2-3N layer or Fe, 4 , N, or a mixture of both), and has a so-called diffusion layer in which nitrogen is solidly dissolved in the lower layer, but this compound layer is extremely brittle and impractical, so it is necessary to scrape it off, which is complicated. The disadvantage is that it requires a long process. In addition, the concentration distribution of nitrogen contained in the diffusion layer is not uniform, and the nitrogen concentration decreases rapidly from the surface side to the inside of the steel, and the hardness also decreases rapidly in proportion to this. Sufficient hardness has not been obtained. Furthermore, among the above nitriding methods, the liquid nitriding method uses a molten salt bath containing highly toxic cyanide as the main component, so thorough pollution countermeasures are required, and the gas nitriding method has the drawback of long-term cleavage during nitriding. There is. Furthermore, in order to harden the surface of stainless steel using the conventional nitriding method as described above, it was necessary to remove the strong oxide film on the surface of the stainless steel by pickling in advance. For example, industrially, stainless steel is cleaned with fluoronitric acid and then treated in a high-temperature ammonia gas atmosphere, but it is not easy to remove the strong oxide film on the surface of stainless steel and is a complicated process. It had the disadvantage of requiring .

そこで、有毒なシアン化合物を使用せず、窒化に要する
時間が比較的短く、且つ他の鉄鋼材料同様に酸洗するこ
となくステンレスgAを電化する方法としてイオン窒化
法がちる。イオン窒化法はN2ガスとN2ガスの混合ガ
ス雰囲気下、所望の屑を陰極とする一対の電極間に電圧
を連続的に印加し放電させることによりN2をイオン化
し、電位差によシ窒素を鋼に侵入拡散させる方法である
。イオン窒化法の原理を詳述すると次のようである。密
閉した容器に■Oの電極を入れ容器内を減圧し、300
V〜1000 Vの直流電圧をかけると電極間にグロー
放電が発生する。表面硬化を施そうとする鋼製品を陰極
と同極化し、窒素及び水素との混合ガス雰囲気中で両極
間に電圧を加えると鋼製品の数百〜数關手前で急激な電
圧降下が起こり、グロー放電中にあるN2ガスは陰極近
くでイオン化され、N+イオンは電位差により陰極空間
において高速に加速されて鋼表面に衝突する。このとき
、イオンの高い運動エネルギーの大部分は熱エネルギー
となって鋼を加熱し、同時に窒素が浸透する。イオン窒
化法によれば窒素ガスの分圧、電圧、混合ガス圧、温度
及び時間の調節により、第1図に示すような鋼表面上の
白眉の生成を制御できるという特徴がちる。しかしなが
ら、イオン窒化法では放電を続けるとN+イオンが鋼に
ぶつかり続けるためその時に生じる熱エネルギーで鋼の
温度が上昇し続ける。一般的に窒化温度が高いほど窒素
の侵入拡散はするが窒素濃度の高い均質な窒化物層を形
成せず硬さも低くなる。従って窒素濃度の高い実質的に
均質で硬さの良好な表面硬化層を得るためには温度が上
がりすぎないように調節する必要がある。従来のイオン
窒化法ではこの温度調節を行うために、電極に印加する
直流出力、具体的には電圧を増減することにより窒素イ
オンの運動エネルギーひいては・窒素イオンのもたらす
熱エネルギーを調節して鋼の温度を制御していた。しか
しながら、上述のような温度制御の仕方では窒素イオン
雰囲気中の窒素イオンエネルギーが印加電圧の増減に比
例して増減するために不安定であり、従って鋼の温度を
一定に保持しても均質で復炭の良好な表面硬化層を得る
のは困難であった。
Therefore, ion nitriding is a method for electrifying stainless steel GA without using toxic cyanide compounds, requiring a relatively short time for nitriding, and without pickling like other steel materials. In the ion nitriding method, in a mixed gas atmosphere of N2 gas and N2 gas, a voltage is continuously applied between a pair of electrodes with desired scrap as a cathode to cause a discharge, thereby ionizing N2, and converting nitrogen into steel by the potential difference. This is a method of infiltrating and spreading the virus. The principle of the ion nitriding method is explained in detail as follows. Place an O electrode in a sealed container, reduce the pressure inside the container, and
When a DC voltage of V to 1000 V is applied, a glow discharge occurs between the electrodes. When the steel product to be surface hardened is made the same polarity as the cathode and a voltage is applied between the two electrodes in a mixed gas atmosphere of nitrogen and hydrogen, a sudden voltage drop occurs several hundred to several seconds before the steel product. The N2 gas present during the glow discharge is ionized near the cathode, and the N+ ions are accelerated at high speed in the cathode space due to the potential difference and collide with the steel surface. At this time, most of the high kinetic energy of the ions becomes thermal energy and heats the steel, and at the same time nitrogen penetrates. The ion nitriding method has the characteristic that the formation of white spots on the steel surface as shown in FIG. 1 can be controlled by adjusting the nitrogen gas partial pressure, voltage, mixed gas pressure, temperature and time. However, in the ion nitriding method, as the discharge continues, N+ ions continue to collide with the steel, and the temperature of the steel continues to rise due to the thermal energy generated at that time. Generally, the higher the nitriding temperature, the more nitrogen penetrates and diffuses, but a homogeneous nitride layer with a high nitrogen concentration is not formed and the hardness becomes lower. Therefore, in order to obtain a substantially homogeneous hardened surface layer with a high nitrogen concentration and good hardness, it is necessary to adjust the temperature so that it does not rise too much. In the conventional ion nitriding method, in order to adjust the temperature, the kinetic energy of the nitrogen ions and the thermal energy brought about by the nitrogen ions are adjusted by increasing or decreasing the DC output applied to the electrode, specifically the voltage. It controlled the temperature. However, with the temperature control method described above, the nitrogen ion energy in the nitrogen ion atmosphere increases or decreases in proportion to the increase or decrease of the applied voltage, making it unstable. Therefore, even if the temperature of the steel is held constant, it is not homogeneous. It was difficult to obtain a hardened surface layer with good recarburization.

本発明者らは、窒素イオン雰囲気中の窒素イオンエネル
ギーと鋼の窒化処理温度を同時に制御して均質で硬度の
優れた表面硬化層を有する鋼を得るため鋭意研究を行な
った結果、電圧は変化させないで実質的に一定電圧を間
欠的に電極に印加することにより、窒素イオンエネルギ
ーと鋼の温度を同時に調節してそれぞれ実質的に一定し
ペルに保ちながら窒化処理した鋼が、従来の窒化処理法
で得られる鋼の窒化層とは異なった窒化層を表面硬化層
として有し、その層が従来のものに比べて硬く強固であ
ることを意外にも知見した。即ち、従来の窒化法によ・
り処理して得られた鋼は前述のようにその最表面層にも
ろい実用に耐えない化合物層を有し、その下層に実用上
の表面硬化層である窒素の拡散層を有するが、その最表
層側の窒素濃度は高々0.1%程度で該拡散層において
鋼の表面側から内部側へ向かうにつれて窒素濃度が急激
に小さくなっていき、それに伴って、硬さも低下する。
The inventors of the present invention conducted intensive research to obtain a steel with a homogeneous and hardened surface layer by simultaneously controlling the nitrogen ion energy in the nitrogen ion atmosphere and the nitriding temperature of the steel. By intermittently applying a substantially constant voltage to the electrode without causing any It was surprisingly discovered that the steel has a nitrided layer as a surface hardening layer, which is different from the nitrided layer of steel obtained by the method, and that this layer is harder and stronger than conventional ones. That is, by the conventional nitriding method.
As mentioned above, the steel obtained by this process has a compound layer on its outermost layer that is too brittle for practical use, and a nitrogen diffusion layer that is a practical surface hardening layer below it. The nitrogen concentration on the surface layer side is about 0.1% at most, and the nitrogen concentration decreases rapidly from the surface side to the inside of the steel in the diffusion layer, and the hardness also decreases accordingly.

これに対し、上記のように実質的に一定の窒素イオンエ
ネルギーと実質的に一定の温度条件下で窒化処理を行な
って得られた鋼は脆い化合物層(白層)がなく、最表層
の窒素濃度が0.1〜10重量係であり、鋼の表面側か
ら内部側へ向けての窒素濃度減少勾配が小さく即ち窒化
層上ji・vc kける窒素濃度の差が少なく、従って
硬さも鋼の表面からの深さが深くなるにつれて減少する
こともなくほぼ一定である窒化層を有する。またその硬
さも従来のものに比べて優れている。本発明はこれらの
知見に基づき、完成するに到ったものである。
On the other hand, steel obtained by nitriding under the conditions of substantially constant nitrogen ion energy and substantially constant temperature as described above has no brittle compound layer (white layer), and the outermost layer of nitrogen The concentration is 0.1 to 10% by weight, and the decreasing gradient of nitrogen concentration from the surface side to the inside of the steel is small, that is, there is little difference in the nitrogen concentration on the nitrided layer, and therefore the hardness is also the same as that of the steel. It has a nitrided layer that does not decrease as the depth from the surface increases and remains almost constant. Also, its hardness is superior to conventional ones. The present invention has been completed based on these findings.

すなわち、本発明の1つの目的(佳表面窒素濃度が高く
、且つ表面から内部へ向けての窒素濃度減少勾配の小さ
い硬さの優れた窒化層を表面硬化層として有する表面硬
化鋼を提供することにある。
That is, one object of the present invention is to provide a surface hardened steel having an excellent hardness nitrided layer as a surface hardening layer, which has a high surface nitrogen concentration and a small nitrogen concentration decreasing gradient from the surface to the inside. It is in.

また、本発明のもう1つの目的は表面窒素濃度が高く、
且つ表面から内部へ向けての窒素濃度減少勾配の小さい
硬さの優れた窒化層を表面硬化層として有する表面硬化
鋼を得るための鋼の表面硬化法を提供することにある。
Another object of the present invention is to have a high surface nitrogen concentration.
Another object of the present invention is to provide a steel surface hardening method for obtaining a surface hardened steel having an excellent hardness nitrided layer with a small decreasing gradient of nitrogen concentration from the surface toward the inside as a surface hardened layer.

本発明によれば、鉄の他に更に少なくとも1種の窒化物
生成金属元素を含有する鋼からなり、鍍鋼の表面から内
部に向けて窒素が侵入拡散した内部窒化層を有する表面
硬化鋼にして、該内部窒化層の厚さが0.01u以上で
あり、鋼の最表面部分の窒素濃度が01〜10重量係で
あり、内部窒化層の窒素濃度が鋼の表面側から内部側に
向かうにつnて減少し、該内部窒化層における鋼の表面
からのμm単位の厚さく1)と窒素濃度(c)が次式:
を満足することを特徴とする表面硬化鋼が提供される。
According to the present invention, the steel is made of steel containing at least one nitride-forming metal element in addition to iron, and has an internal nitrided layer in which nitrogen penetrates and diffuses from the surface of the plated steel to the inside. The thickness of the internal nitrided layer is 0.01u or more, the nitrogen concentration at the outermost surface of the steel is 0.1 to 10% by weight, and the nitrogen concentration of the internal nitrided layer is directed from the surface side to the inside side of the steel. The thickness in μm from the surface of the steel in the internal nitrided layer 1) and the nitrogen concentration (c) are determined by the following formula:
Provided is a surface hardened steel that satisfies the following.

本発明の表面硬化鋼は、従来の窒化法で処理して得られ
る鋼にみられるように脆くて実用に耐えない化合物層が
なく、高濃度の窒素が侵入拡散し且つ・鋼の表面側から
内部側に向けての窒素濃度減少勾配が非常に小さい内部
窒化層を有する。本発明の表面硬化鋼の最表面部分にお
ける窒素濃度は、該最表面部の内部窒化層の重量に対し
て01〜10重量%、好ましくは3〜8重量%である。
The surface-hardened steel of the present invention does not have a compound layer that is brittle and unsuitable for practical use, unlike steel obtained by conventional nitriding, and a high concentration of nitrogen penetrates and diffuses from the surface side of the steel. It has an internal nitrided layer with a very small decreasing gradient of nitrogen concentration toward the inside. The nitrogen concentration in the outermost surface portion of the surface hardened steel of the present invention is 01 to 10% by weight, preferably 3 to 8% by weight, based on the weight of the internal nitrided layer in the outermost surface portion.

上記式(1)において1ΔC/Δt1は窒化層中におけ
る鋼の表面1jjから内部側へ向けての窒素濃度減少勾
配の絶対値を表し、本発明の表面硬化鋼では該窒素濃度
減少勾配が内部窒化層1μm厚さ当!+0.5%以下で
ある。また、本発明において内部窒化層の厚みが100
μmを越える場合、内部窒化層の鋼の表面から最も深い
部分における窒素濃度は鋼の最表面部分の窒素濃度の5
0%未満になることはない。オー発明の表面硬化鋼の内
部窒化層の厚さは実用上の点から少くともQ、 01 
mは必要である。窒化処理にかかるコストと実用上十分
な厚さの硬化層を得るという点から、内部窒化層の厚さ
は好ましくは0、01 rnrn〜0.5 am、更に
好ましくは0.05+ni〜0.2am、特に好ましく
は0.1 m〜0.15皿である。
In the above formula (1), 1ΔC/Δt1 represents the absolute value of the nitrogen concentration decreasing gradient in the nitrided layer from the surface 1jj of the steel toward the inside, and in the surface hardened steel of the present invention, the nitrogen concentration decreasing gradient is The thickness of the layer is 1 μm! +0.5% or less. Further, in the present invention, the thickness of the internal nitrided layer is 100 mm.
If it exceeds μm, the nitrogen concentration at the deepest part of the internal nitrided layer from the surface of the steel is 5 μm of the nitrogen concentration at the surface of the steel.
It will never be less than 0%. From a practical point of view, the thickness of the internal nitrided layer of the surface hardened steel of O's invention should be at least Q.01.
m is necessary. In view of the cost of nitriding treatment and obtaining a hardened layer with a practically sufficient thickness, the thickness of the internal nitrided layer is preferably 0.01 rnrn to 0.5 am, more preferably 0.05+ni to 0.2 am. , particularly preferably 0.1 m to 0.15 m.

本発明の表面硬化鋼は、窒化物生成金属元素として鉄以
外にクロム(Cr)、アルミニウム(At > 。
The surface hardened steel of the present invention contains chromium (Cr) and aluminum (At>) in addition to iron as nitride-forming metal elements.

モリブデン(MO)、チタン(Ti)、タングステ/(
W)、ホウ素(B)、バナジウム(V)、マンゴ/(M
n)、ノルコニウム(Zr )、ニオブ(Nb )、メ
ンタル(Ta )及びケイ素(Sl)等の中から選ばれ
る少なくとも1種の元素を含む。本発明の表面硬化鋼の
内部窒化層の硬さはこれらの金属元素の窒化物が生成す
ることにより与えられる。このような金属元素を少くと
も1種含有する鋼としては、例えば、オーステナイト系
、マルテンサイト系及びフェライト系などのステンレス
鋼(JIS 04303)、耐熱鋼(JIS 0431
1 )、マルエージング鋼〔田村今男ら、鉄鋼材科学、
朝食書店(1981年)、135頁〕、高速度工具鋼(
JIS G41103 )、耐蝕耐熱超合金(JIS 
G4901 )及び合金工具鋼(JIS c4404 
)等が挙げられる。
Molybdenum (MO), titanium (Ti), tungsten/(
W), boron (B), vanadium (V), mango/(M
n), norconium (Zr), niobium (Nb), mental (Ta), and silicon (Sl). The hardness of the internal nitrided layer of the surface hardened steel of the present invention is provided by the formation of nitrides of these metal elements. Examples of steels containing at least one metal element include austenitic, martensitic, and ferritic stainless steels (JIS 04303), heat-resistant steels (JIS 0431
1), Maraging steel [Imao Tamura et al., Steel Materials Science,
Breakfast Shoten (1981), 135 pages], High Speed Tool Steel (
JIS G41103), corrosion-resistant and heat-resistant superalloys (JIS
G4901) and alloy tool steel (JIS c4404
) etc.

本発明の表面硬化鋼の内部窒化層は鋼の断面を観察した
時にその窒素の侵入拡散していない母材との視覚上の違
いにより容易に識別できるので、該内部窒化層の厚さは
、表面硬化鋼をその表面に垂直に切断して得られる断面
の内部窒化層の部分を光学顕微鏡観察下に直接針側する
ことができる。
The internal nitrided layer of the surface-hardened steel of the present invention can be easily identified by its visual difference from the base material in which nitrogen has not penetrated and diffused when observing the cross section of the steel, so the thickness of the internal nitrided layer is as follows: Surface-hardened steel is cut perpendicularly to its surface, and the internal nitrided layer portion of the cross section can be directly observed under an optical microscope.

本発明において表面硬化鋼の最表面部分における窒素濃
度とは、表面硬化鋼の表面から5μmの深さ削り取り、
削9取った鋼の表層部分の重さに対する該部分に含まれ
る窒素量の割合(重音%)をいい、削り取った鋼の表層
部分中の窒素量は日本工業規格JIS G1228に規
定されている鉄及び鋼中の窒素定量法VC従ってホ11
定することができろ。また、本発明において内部窒化層
における窒素濃度減少勾配は、内部窒化層の任意の異な
る深さにおいてその深さを中心に5μm幅の厚さの層を
削り取り、その層中の窒素濃度を上記の窒素含有量測定
法νこ従って測定して表面からの層の深さと窒素量1主
の関係をグラフ上に表わし、グラフから読みとられる鋼
の表面から内部に向けての内部窒化層中の単位厚さくμ
m)当)の窒素濃度の減少率(@の絶対値で表わす。
In the present invention, the nitrogen concentration in the outermost surface part of surface hardened steel means that the nitrogen concentration at the outermost surface part of surface hardened steel is
9 Refers to the ratio of the amount of nitrogen contained in the surface layer of the scraped steel to the weight of the surface layer (double %). and Nitrogen Determination Method in Steel VC Therefore Ho 11
be able to determine In addition, in the present invention, the nitrogen concentration decreasing gradient in the internal nitrided layer can be determined by scraping off a layer with a width of 5 μm around the arbitrary different depths of the internal nitrided layer, and reducing the nitrogen concentration in the layer to the above-mentioned level. Nitrogen content measurement method ν Accordingly, the relationship between the depth of the layer from the surface and the amount of nitrogen is expressed on a graph, and the unit in the internal nitrided layer from the surface of the steel toward the inside is read from the graph. Thickness μ
m) rate of decrease in nitrogen concentration (expressed as the absolute value of @).

尚、本発明の表面硬化鋼の内部窒化層内の窒素濃度分布
が従来のものに比べて非常に均一であるということは本
発明の表面硬化Aの表面の任意の場所の垂直断面をエレ
クトロン・グローブ・マ・イクロ・アナライザー(El
ectron Probe MICrOanal”)’
:’、’q+(Eplm)]またはX線マイクロアナラ
イザー(X−ray Microanalyzer (
XMA) ]を用いる轟業者において公知のX線発光分
析によシ測定することによって簡単にわかる(第5図参
照)。
The fact that the nitrogen concentration distribution in the internal nitrided layer of the surface-hardened steel of the present invention is much more uniform than that of conventional steels means that when a vertical section of any location on the surface of the surface-hardened steel of the present invention is taken by electron beam Globe Ma Micro Analyzer (El
ectron Probe MICrOanal")'
:','q+(Eplm)] or X-ray Microanalyzer (
This can be easily determined by measurement using a well-known X-ray emission spectrometer (see Figure 5).

vII述したように、本発明の表面硬化′Aは従来のイ
オン窒化法と異、tす、反応器内の放電を間欠jr″I
に行なうことにより窒素イオンエネルギーと処理温度を
同時に一定に保つ方法で鋼を処理することにより得るこ
とができる。
As mentioned above, the surface hardening method of the present invention differs from the conventional ion nitriding method in that it requires intermittent discharge in the reactor.
This can be obtained by treating steel in a manner that simultaneously maintains constant nitrogen ion energy and treatment temperature.

即ち、更に本発明によれば、窒素イオン雰囲気下におい
て、鉄の他に少なくとも1種の窒化物生成金属元素を含
有する鋼の表面から窒素イオンを侵入拡散させて鍍鋼の
表面を硬化させる方法にして、陽極及び陰極を有する反
応器中に鋼を該陰極と接触せしめて同極化するように設
置し、該反応器中に窒素ガスを含有する混合ガスを導入
し、該陽極と該陰極間に間欠的に実質的に一定電圧を印
加して陽極と鋼と同極化された陰極との間に間欠的に放
電を行なわしめることを特徴とする鋼の表面硬化法が提
供される。
That is, further according to the present invention, a method of hardening the surface of plated steel by penetrating and diffusing nitrogen ions from the surface of steel containing at least one nitride-forming metal element in addition to iron in a nitrogen ion atmosphere. The steel is placed in a reactor having an anode and a cathode so as to be in contact with the cathode so as to be homopolarized, and a gas mixture containing nitrogen gas is introduced into the reactor, and the anode and the cathode are A method for surface hardening steel is provided, which comprises intermittently applying a substantially constant voltage between the anode and the cathode, which is homopolarized to the steel, to cause an electric discharge intermittently.

本発明の方法を実施するにおいて、まず、陽極及び陰極
の両を極を有する密閉可能な反応器中に表面硬化処理し
ようとする鋼全陰極と同極化するように設置する。鋼を
陰極と同極化する方法としては、陰極を棚状としてその
上に鋼を置いてもよいし、陰極から電気導伝性のワイヤ
ーなどで鋼を吊るすことによって行なってもよい。次に
反Z容器を密閉した後、真空ポンプで反応容器中のガス
を排出し真空にした後、窒素ガスを含有する混合ガスを
導入する。混合ガスは窒素ガス以外に補助ガスとして水
素ガス、アルゴンガス、ヘリウムガス及びネオンガスの
中から選ばれる少なくとも1種のガスを含有する。該混
合ガス中の窒素ガス濃度は01〜95容i%、好ましく
は20〜50容′1ll11′チである。該混合ガス中
の補助ガスとしては、上記水素ガス、アルゴンガス、ヘ
リウムガス及びネオンガスをそれぞれ単独でも用いるこ
とができるし、又組合せて用いることもできる。補助ガ
スを組合せて用いる場合の各補助ガスの組成比について
はいかなる場合でもよく限定的ではない。上記の補助ガ
スの中では窒化が起こりやすい点で水素ガスのみか、あ
るいは窒化が起こりやすく放電を起こしやすい点と安価
に入手できる点から水素ガスとアルゴンガスとの組合せ
を用いるのが好ましい。
In carrying out the method of the present invention, first, both an anode and a cathode are placed in a sealable reactor having poles in such a manner that they are homopolar to the entire cathode of the steel to be surface hardened. To make the steel the same polarity as the cathode, the cathode may be made into a shelf and the steel may be placed on top of the cathode, or the steel may be suspended from the cathode with an electrically conductive wire or the like. Next, after sealing the anti-Z container, the gas in the reaction container is evacuated using a vacuum pump to create a vacuum, and then a mixed gas containing nitrogen gas is introduced. The mixed gas contains, in addition to nitrogen gas, at least one gas selected from hydrogen gas, argon gas, helium gas, and neon gas as an auxiliary gas. The nitrogen gas concentration in the mixed gas is 01 to 95% by volume, preferably 20 to 50% by volume. As the auxiliary gas in the mixed gas, the above hydrogen gas, argon gas, helium gas, and neon gas can be used alone or in combination. When using a combination of auxiliary gases, the composition ratio of each auxiliary gas may be in any case and is not limited. Among the above-mentioned auxiliary gases, it is preferable to use only hydrogen gas because nitridation is likely to occur, or a combination of hydrogen gas and argon gas because nitridation is likely to occur, discharge is likely to occur, and hydrogen gas and argon gas are available at low cost.

該混合ガスは反応器中に0.01〜200 mmHg 
z好1じくは01〜2Ch+tHgの圧力になるように
導入する。
The mixed gas is in the reactor at a pressure of 0.01 to 200 mmHg.
Preferably, it is introduced so that the pressure becomes 01~2Ch+tHg.

次に、反応器中の陽極と陰極間に間欠的に実質的に一定
電圧を印加して、陽極と鋼と同極化された陰極との間に
間欠的に放電を行なわしめる。本発明においては印加電
圧を実質的に一定にすることが必須である。印加する電
圧は直流電圧で200〜1200V、好ましくは300
〜600■である。本発明の方法において間欠的に一定
レベルの電圧印加を行なう時は、自動制御によシ容易に
行なえる点から、一定時間の電圧印加を一定時間の間隔
を置いて行なうことが好ましい。その際に、電圧印加と
それに続く電圧印加休止を一周期とした場合に、電圧印
加の時間の該一周期の時間に対する割合(以下゛トリガ
ー率″′と略する)が、温度が上昇しすぎないようにす
る目的から、約70%を超えないよ5に行72:う。1
回の電圧印加時間は鋼の材質、形状、大きさにより異な
るが、温度が上昇しすぎないようにするためには一般的
には約101秒以下が望ましい。電圧印加時間の下限と
しては反応器中の放電により得られる窒素イオンエネル
ギーを必要なレベルで実質的に一定にA(fi持てきる
のであれば、瞬間的、例えばO,l m秒以下の電圧印
加時間で電圧印加即ち放電を繰返すことも可能であるの
で限定的ではない。実用的な見地からは3〜5m秒が好
ましい。また電圧印加休止時間は、実質的に一定の必要
レベルの窒素イオンエイ・ルギーが維持できる範囲で延
ばすことができる。
A substantially constant voltage is then applied intermittently between the anode and cathode in the reactor to cause an intermittent discharge between the anode and the cathode homopolarized to the steel. In the present invention, it is essential that the applied voltage be kept substantially constant. The voltage to be applied is a DC voltage of 200 to 1200V, preferably 300V.
~600■. When applying a voltage at a constant level intermittently in the method of the present invention, it is preferable to apply the voltage for a constant time at regular intervals, since this can be easily done by automatic control. At that time, when voltage application and the subsequent voltage application pause are considered to be one cycle, the ratio of the voltage application time to the time of the one cycle (hereinafter abbreviated as "trigger rate") is determined by the temperature rise too high. In order to prevent this from occurring, it should not exceed approximately 70%. Line 72: U.1
The voltage application time for each cycle varies depending on the material, shape, and size of the steel, but is generally desirably about 101 seconds or less in order to prevent the temperature from rising too much. As a lower limit for the voltage application time, if the nitrogen ion energy obtained by the discharge in the reactor can be kept substantially constant at the required level, the voltage can be applied instantaneously, for example, for 0,1 m seconds or less. This is not a limitation as it is possible to repeat the voltage application, that is, the discharge.From a practical standpoint, 3 to 5 msec is preferable.The voltage application pause time is also sufficient to maintain a substantially constant required level of nitrogen ion rays. It can be extended as long as the energy can be maintained.

従って、上記トリが一率の下限も実質的に一定の必要レ
ベルの窒素イオンエネルギーを維持できる範囲で小さく
設定することができる。本発明の方法においては、鋼の
温度が200〜1200℃、好ましくは400〜100
0℃の範囲内の実質的に一定の温度を保持するように放
電を行なうことが好ましい。上記温度は、放電により発
生する窒素イオンが鋼に衝突する際に得られる熱エネル
ギーにより達成され、電圧印加のトリガー率を調節する
ことによって実質的に一定の温度に保つことができる。
Therefore, the lower limit of the bird rate can also be set small within a range that can maintain a substantially constant required level of nitrogen ion energy. In the method of the present invention, the temperature of the steel is 200-1200°C, preferably 400-100°C.
Preferably, the discharge is carried out to maintain a substantially constant temperature within the range of 0°C. The above temperature is achieved by the thermal energy obtained when the nitrogen ions generated by the discharge impinge on the steel, and can be kept at a substantially constant temperature by adjusting the trigger rate of voltage application.

但し、表面硬化を施こそうとする鋼の材質、形状、大き
さ、や所望の厚みと硬さの内部窒化層を得るために必要
なレベルの実質的に一定の窒素イオンエネルギーを維持
するに必要な実質的に一定の電圧と該電圧印加のトリガ
ー率では十分なレベルの一定温度が得られない場合は補
助の加熱器で反応器を加熱して鋼の温度を調節すること
ができる。
However, depending on the material, shape, and size of the steel to be surface hardened, and the level of nitrogen ion energy necessary to maintain a substantially constant level of nitrogen ion energy to obtain an internal nitrided layer of desired thickness and hardness, If the substantially constant voltage and trigger rate of the voltage application do not provide a sufficient level of constant temperature, an auxiliary heater can heat the reactor to control the temperature of the steel.

鋼の温度は反応器内に熱電対を入れることにより測定で
きる。本発明の方法では上述のように反応器内のガス圧
力、電圧、温度条件等を設定することにより反応器中の
窒素イオンエネルギーを6×10−2〜1.2X10e
Vの範囲に設定して窒化処理を行なう。窒素イオンエネ
ルギーはイオン密度測定用グローブを用いる当業者にお
いて公知の方法で測定することができる。
The temperature of the steel can be measured by placing a thermocouple in the reactor. In the method of the present invention, the nitrogen ion energy in the reactor is adjusted to 6 x 10-2 to 1.2 x 10 e by setting the gas pressure, voltage, temperature conditions, etc. in the reactor as described above.
The nitriding process is performed by setting the voltage within the range of V. Nitrogen ion energy can be measured by a method known to those skilled in the art using an ion density measuring glove.

本発明において鋼を処理する時間については処理しよう
とする鋼の材質、形状及び大きさや得ようとする内部窒
化層の厚さによって変ってくる。
The time for treating steel in the present invention varies depending on the material, shape and size of the steel to be treated and the thickness of the internal nitrided layer to be obtained.

処理時間を長くするほど鋼の内部深くまで窒化すること
ができるが、処理にかかるコストの面及び実用上十分な
窒化層の厚さを考慮すると、処理時間は15分以上、好
ましくは5〜48時間である。
The longer the treatment time, the deeper the inside of the steel can be nitrided, but considering the cost of treatment and the thickness of the nitrided layer that is practically sufficient, the treatment time should be 15 minutes or more, preferably 5 to 48 minutes. It's time.

本発明の表面硬化鋼は、従来の窒化処理法により得られ
る表面硬化鋼のよ5に脆くて実用に耐えない化合物層は
なく、母材と明白に区別できる硬さの優れた内部窒化層
を有し、該内部窒化層はその深さに関係なく、全体にわ
たってほぼ一定の硬さを維持している。しかもその硬さ
は窒化条件及び鋼の材質により多少の変動はあるが荷重
100roビッカース硬さく:HV(0,1))で約1
000〜約1600と従来の窒化処理鋼の表面の硬さよ
シもビッカース硬さで100〜200は優れている。表
面硬化鋼の表面のビッカース硬さは例えば、日本工業 
゛規格JIS Z2244 (1974)によるビッカ
ース硬さ試験法により測定できる。本発明の表面硬化鋼
の優れた硬さを有する内部窒化層の厚みとその硬さは、
前述したように温度や時間などの窒化条件の種々の組合
せにより変えることができる。
The surface-hardened steel of the present invention does not have a compound layer that is brittle and cannot be used in practical use unlike surface-hardened steel obtained by conventional nitriding methods, but has an internal nitrided layer with excellent hardness that can be clearly distinguished from the base material. The internal nitrided layer maintains a substantially constant hardness throughout, regardless of its depth. Moreover, the hardness varies slightly depending on the nitriding conditions and the steel material, but the Vickers hardness is approximately 1 at a load of 100ro (HV(0,1)).
The surface hardness of conventional nitrided steel is 100 to 1600 on Vickers hardness. The Vickers hardness of the surface of surface-hardened steel is determined by Nippon Kogyo, for example.
It can be measured by the Vickers hardness test method according to the standard JIS Z2244 (1974). The thickness and hardness of the internal nitrided layer having excellent hardness of the surface hardened steel of the present invention are as follows:
As mentioned above, it can be changed by various combinations of nitriding conditions such as temperature and time.

本発明の表面硬化鋼Viまた、鉄の他に更に窒化物生成
金属元素を少くとも1種含有する#4を窒素ガス+水素
ガス、アンモニアガス+水素ガス等の混合ガス気流中で
800℃〜1200℃に加熱保持することによっても、
また半導体技術などの分野で用いられるイオン打込み(
ion implantatlon )の技術によって
窒素を鋼の内部へ打込むことKよっても得ることができ
る。
The surface-hardened steel Vi of the present invention also contains #4 containing at least one nitride-forming metal element in addition to iron in a mixed gas flow of nitrogen gas + hydrogen gas, ammonia gas + hydrogen gas, etc. at 800 ° C. By heating and holding at 1200℃,
Also, ion implantation (which is used in fields such as semiconductor technology)
It can also be obtained by implanting nitrogen into the steel using the technique of ion implantation.

本発明の表面硬化鋼はその窒素濃度分布とX線回折分析
の結果から鉄以外の窒化物生成金属元素と窒素との金属
窒化物を内部窒化層中に均一に生成していることがわか
るが、本発明において、多量の炭素を含有する鋼を被処
理鋼として用いれば得られる表面硬化鋼の内部窒化層に
は単に金属窒化物を析出させるだけではなく金属炭窒化
物を内部窒化層全域に亘って析出させることもできる。
It can be seen from the nitrogen concentration distribution and the results of X-ray diffraction analysis that the surface-hardened steel of the present invention uniformly forms metal nitrides of nitride-forming metal elements other than iron and nitrogen in the internal nitrided layer. In the present invention, when a steel containing a large amount of carbon is used as the steel to be treated, metal nitrides are not only precipitated in the internal nitrided layer of the surface hardened steel obtained, but also metal carbonitrides are deposited over the entire internal nitrided layer. It is also possible to precipitate over the entire range.

くとも1種含有し、且つ炭素を多量に含有する実用鋼で
はその内部に上記炭化物生成元素と炭素とが金属炭化物
を形成しているが、この鋼を本発明の方法により内部窒
化処理すると単に金属窒化物を析出するだけでなく、金
属炭化物中へも若干の窒素が固溶して、結果において金
属炭窒化物も析出することになるのである。このような
鋼としてはSUS 420 鋼のよりなマルチ/サイト
系ステルス鋼や炭素含量の高いオーステナイト系ステン
レス鋼などがあげられる。上述のように炭素含量の高い
′iAを前述の本発明の方法で表面硬化処理を施せば、
その内部窒化層が炭素を含む炭窒化物層である表面硬化
鋼が得られるが、炭素含量の低い鋼を窒化により表面硬
化して、内部窒化層が金属炭窒化物の生成した炭窒化層
である表面硬化鋼を得ることもできる。その場合は、本
発明の方法において窒素ガスを含有する混合ガスとして
、窒素ガスと前述の補助ガスに加えてメタンガス、グロ
・母ンガス、ブタン・ガス、アセチレンガスなどの炭化
水素ガスを含有する混合ガス゛を用いて鋼を表面硬化す
ることにより行なうことができる。この場合、上述の炭
化水素ガスは、混合ガス中の窒素ガス量に対して0.0
1〜10容量チの割合で混合せしめることができる。
In practical steels containing at least one type of carbon and a large amount of carbon, the carbide-forming elements and carbon form metal carbides inside the steel, but when this steel is internally nitrided by the method of the present invention, it simply becomes In addition to precipitating metal nitrides, a small amount of nitrogen also dissolves in the metal carbide, resulting in the precipitation of metal carbonitrides as well. Examples of such steel include multi-site stealth steel such as SUS 420 steel and austenitic stainless steel with a high carbon content. If 'iA with a high carbon content is subjected to surface hardening treatment by the method of the present invention as described above,
A surface-hardened steel whose internal nitrided layer is a carbonitride layer containing carbon can be obtained, but when steel with a low carbon content is surface-hardened by nitriding, the internal nitrided layer is a carbonitride layer containing metal carbonitrides. Certain surface hardened steels can also be obtained. In that case, in the method of the present invention, the mixed gas containing nitrogen gas is a mixture containing hydrocarbon gas such as methane gas, grosmetal gas, butane gas, acetylene gas, etc. in addition to nitrogen gas and the above-mentioned auxiliary gas. This can be done by surface hardening the steel using gas. In this case, the above-mentioned hydrocarbon gas is 0.0% relative to the amount of nitrogen gas in the mixed gas.
They can be mixed at a ratio of 1 to 10 volumes.

以下、実施例により本発明の詳細な説明するが、本発明
はこれに限定されるものではない。
Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例 排気口と混合ガス導入口を有し、陽極とテープル状の陰
極とを備えつけたオーステナイト系ステンレスM SU
S 304製イオン窒化反応器中の陰極テーブル上にオ
ーステナイト系ステンレス鋼5US304鋼製の試料(
15,:IILX 15cmX 10cm )を置き、
反応器を密閉した後、排気口から反応器内の空気を排出
し真空にした。次に25容量チの窒素ガスと75容量チ
の水素ガスとからなる混合ガスを混合ガス導入口を通し
て反応器内に、ガス圧が5属llHgになるよ5に導入
した。次に反応器の該陽極−陰極間に800Vの電圧を
印加時間2.4倶秒、印加休止時間3.1m秒を繰返し
て、即ちトリガー率43.6%で印加して、間欠的に放
電を行なわしめ、該放電によりイオン化した窒素イオン
エネルギーにもたらされる熱エネルギーのみで鍍鋼の温
度を550’C±5℃に保ち、この条件下で30時間鋼
を処理した。鋼の温度は熱電対を用いて測定した。
Example Austenitic stainless steel MSU having an exhaust port and a mixed gas inlet, and equipped with an anode and a tabular cathode.
A specimen made of austenitic stainless steel 5US304 steel (
15,: IILX 15cmX 10cm)
After the reactor was sealed, the air inside the reactor was exhausted from the exhaust port to create a vacuum. Next, a mixed gas consisting of 25 volumes of nitrogen gas and 75 volumes of hydrogen gas was introduced into the reactor through the mixed gas inlet so that the gas pressure was 5 mm. Next, a voltage of 800 V was repeatedly applied between the anode and cathode of the reactor for 2.4 ms and a pause time of 3.1 ms, that is, at a trigger rate of 43.6%, to intermittently discharge. The temperature of the plated steel was maintained at 550°C±5°C using only the thermal energy provided by the nitrogen ion energy ionized by the discharge, and the steel was treated under these conditions for 30 hours. The temperature of the steel was measured using a thermocouple.

得られた窒化処理鋼をその表面に対して垂直に切断し、
その切断面を光学顕微鏡で400倍に拡大して観察した
。その結果、第2図にみられるように、視覚上はっきり
と鋼の母相5と区別できるほぼ一定の厚さの内部窒化層
4が形成されていることが認められた。内部窒化層4の
厚さは約135μmであった。また、内部窒化層4と窒
素の侵入拡散していない鋼の母相5の境界部を走査型電
子顕微鏡で2000倍に拡大して観察した所第3図に示
すように内部窒化層4と鋼の該母相5とは明瞭な境界面
を有していることが認められた。鋼の最表面層における
窒素濃度を前記の方法で測定した所、6.1重量%であ
った。また内部窒化層内の鋼の表面側から内部に向けて
の窒素濃度減少勾配を前記の方法で測定した所0.11
%/μmであった。内部窒化層の硬さは表面硬化処理鋼
の上記と同じ断面において測定荷重100?のマイクロ
ビッカース硬さ計を用いて測定したところ第4図に示す
ように、内部窒化層において、その表面からの深さに関
係なくほぼ一定でビッカース硬さくHv(0,1))約
1150と優れた硬さを有していた。また、EPMA(
日立製作所製X−650型、加速電圧10kV)を用い
て、表面硬化処理鋼の上記と同じ断面において相対的な
窒素濃度分布と比較のために鋼に含有されているクロム
濃度分布を測定した結果、第5図に示すように内部窒化
層の下層の窒化による硬化の施されていない鋼の母相に
おいては窒素濃度は非常に低いが、内部窒化層において
は非常に高濃度の窒素を含むことがわかる。尚、クロム
濃度は表面から内部にわたって一定であった。更に、内
部窒化層をX線回折装置N0RELCO(フィリップス
社製(米国) :) (Co−K(Z線、加速電圧30
kv、鉄フィルター使用)を用いて分析した所、第6図
に示すように試料の母材であるSUS 304鋼に含有
されているクロムとの窒化物CrNを内部窒化層に析出
していることがわかった。
The obtained nitrided steel is cut perpendicular to its surface,
The cut surface was observed under an optical microscope at a magnification of 400 times. As a result, as shown in FIG. 2, it was found that an internal nitrided layer 4 with a substantially constant thickness was formed that could be visually clearly distinguished from the steel matrix 5. The thickness of the internal nitride layer 4 was approximately 135 μm. In addition, when the boundary between the internal nitrided layer 4 and the steel matrix 5 in which nitrogen has not penetrated and diffused was observed with a scanning electron microscope at a magnification of 2000 times, the internal nitrided layer 4 and the steel matrix 5 were observed as shown in FIG. It was observed that there was a clear interface with the matrix 5. The nitrogen concentration in the outermost surface layer of the steel was measured using the method described above and was found to be 6.1% by weight. In addition, the nitrogen concentration decreasing gradient from the surface side of the steel in the internal nitrided layer to the inside was measured using the above method and was found to be 0.11.
%/μm. The hardness of the internal nitrided layer is measured at a load of 100 on the same cross section as above of surface hardened steel. As shown in Figure 4, the Vickers hardness of the inner nitrided layer is approximately constant at Hv(0,1)) of approximately 1150 regardless of the depth from the surface. It had excellent hardness. In addition, EPMA (
The results of measuring the relative nitrogen concentration distribution and the chromium concentration distribution contained in the steel for comparison on the same cross section of the surface hardened steel using Hitachi X-650 model (accelerating voltage 10 kV). As shown in Figure 5, the nitrogen concentration in the matrix of steel that has not been hardened by nitriding below the internal nitrided layer is very low, but the internal nitrided layer contains a very high concentration of nitrogen. I understand. Note that the chromium concentration was constant from the surface to the inside. Furthermore, the internal nitrided layer was analyzed using an
As shown in Figure 6, CrN, a nitride with chromium contained in the SUS 304 steel, which is the base material of the sample, was precipitated in the internal nitrided layer. I understand.

比較例 実施例と同じ反応器を用い、該反応器中に機械構造用炭
素鋼545C(JIS  G4051)製の試料(20
(1mX 20cmX 15cIIL)を置き、実施例
と同じ組成及び圧力の混合ガス下、陽極−陰極間に連続
的に電圧を印加し放電せしめた。両極間に印加する直流
出力〔電圧(メルト)×電流(アンペア) (VA):
lの電圧を250〜450■の間で増減させながら鋼の
温度を570℃に保ち、鋼を12時間処理し九。
Comparative Example The same reactor as in the example was used, and a sample (20
(1 m×20 cm×15 cIIL) was placed, and under a mixed gas having the same composition and pressure as in the example, a voltage was continuously applied between the anode and the cathode to cause discharge. DC output applied between the two poles [voltage (melt) x current (ampere) (VA):
The temperature of the steel was maintained at 570° C. while increasing and decreasing the voltage of 1 between 250 and 450 μ, and the steel was treated for 12 hours.

得られた表面硬化鋼をその表面に対して垂直に切断して
その切断面を光学顕微鏡で400倍に拡大して観察した
所、第1図に示すように鋼の表面1から内部に向けて約
6μmの厚さの脆い化合物層(白層)2が認められた。
When the obtained surface-hardened steel was cut perpendicular to its surface and the cut surface was observed with an optical microscope at 400 times magnification, it was found that the surface of the steel was cut from surface 1 toward the inside, as shown in Figure 1. A brittle compound layer (white layer) 2 with a thickness of about 6 μm was observed.

また、拡散層3には実施例で得られたような、窒素が侵
入拡散していない母相とはっきりとその境界が区別でき
るような内部窒化層は認められなかった。
Further, in the diffusion layer 3, there was no internal nitrided layer whose boundary could be clearly distinguished from the parent phase in which nitrogen had not penetrated and diffused, as was obtained in the examples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のイオン窒化法で処理した鋼の断面顕微鏡
写真である。第2図は本発明による表面硬化鋼の断面顕
微鏡写真である。第3図は本発明による表面硬化鋼の断
面の走査型電子顕微鏡写真である。第4図は本発明によ
る表面硬化鋼の表面からの深さくμm)とビッカース硬
さくHV(o、1))とるクロム濃度分布および鋼表面
より浸入拡散した窒素濃度分布との関係を示すグラフで
ある。第6図は本発明による表面硬化鋼の内部窒化層の
xI腺回折分析の結果を示すグラフである。 1・・・表面 2・・・化合物層 3・・・拡散層4、
・・・内部窒化層 5・・・母相 特許出願人 財団法人 応用科学研究所25/J□  
           25 pm第3図 第4図 表面かうの虜でOlm) 第5図 表面力・うの5撃で (pm) 第6図 二 回稗崗度2e(0) 手植補正8(方式) %式% 1、事件の表示 昭和59年特許願第179265号 2、発明の名称 表面硬化鋼及び鋼の表面硬化法 3、補正をする廿 事件との関係  特許出願人 4、代理人 昭和60年1月9日(発送日昭和60年1月29日)6
、補正の対象 補正の内容(特願昭59−179265号)明細書の図
面の簡単な説明の欄を次のように補正する。 (1)明Jl11′B第26頁第12行の「顕微鏡写真
」の前に「の金J!A JilMmを示すJを挿入する
。 (2)明細IJ第26頁第13行の「顕徴競写真ノの前
に「の金属組織を示す」を挿入する。 (3)明細V第26頁第14行の「走査型電子顕微鏡写
真」の前に「金属組織を示す」を挿入する。
FIG. 1 is a cross-sectional micrograph of steel treated by a conventional ion nitriding method. FIG. 2 is a cross-sectional micrograph of surface hardened steel according to the present invention. FIG. 3 is a scanning electron micrograph of a cross section of a hardened steel according to the invention. Figure 4 is a graph showing the relationship between the depth from the surface (μm) and Vickers hardness HV (o, 1) of the surface-hardened steel according to the present invention, the chromium concentration distribution, and the nitrogen concentration distribution that penetrates and diffuses from the steel surface. be. FIG. 6 is a graph showing the results of xI-gland diffraction analysis of the internal nitrided layer of the surface-hardened steel according to the present invention. 1...Surface 2...Compound layer 3...Diffusion layer 4,
...Internal nitrided layer 5...Matrix patent applicant Institute of Applied Science 25/J□
25 pm Fig. 3 Fig. 4 Surface sea urchin captive Olm) Fig. 5 Surface force / sea urn 5 strokes (pm) Fig. 6 Double-grained degree 2e (0) Hand-set correction 8 (method) % formula % 1. Indication of the case Patent Application No. 179265 filed in 1988 2. Name of the invention Surface hardened steel and surface hardening method for steel 3. Relationship with the amendment case Patent applicant 4, agent January 9, 1985 day (shipment date January 29, 1985) 6
, Contents of Correction Subject to Correction (Japanese Patent Application No. 59-179265) The column of the brief description of the drawings in the specification is amended as follows. (1) Insert J indicating "JilMm" in front of "Microphotograph" on page 26, line 12 of Ming Jl11'B. Insert "showing the metallographic structure of" before the competition photo. (3) Insert "indicates metallographic structure" before "scanning electron micrograph" on page 26, line 14 of Specification V.

Claims (1)

【特許請求の範囲】 1、鉄の他に更に少なくとも1種の窒化物生成金属元素
を含有する鋼からなり、該鋼の表面から内部に向けて窒
素が侵入拡散した内部窒化層を有する表面硬化鋼にして
、該内部窒化層の厚さが0.01mm以上であり、鋼の
最表面部分の窒素濃度が0.1〜10重量%であり、内
部窒化層の窒素濃度が鋼の表面側から内部側に向かうに
つれて減少し、該内部窒化層における鋼の表面からのμ
m単位の厚さ(t)と窒素濃度(c)が次式: |Δc/Δt|≦0.5(%/μm) ( I )を満足
することを特徴とする表面硬化鋼。 2、内部窒化層の厚さが0.01〜0.5mmである特
許請求の範囲第1項に記載の表面硬化鋼。 3、内部窒化層の厚さが0.05〜0.2mmである特
許請求の範囲第2項に記載の表面硬化鋼。 4、少なくとも1種の窒化物生成金属元素を含有する鋼
において、少なくとも1種の窒化物生成金属元素がクロ
ム、アルミニウム、モリブデン、チタン、タングステン
、ホウ素、バナジウム、マンガン、ジルコニウム、ニオ
ブ、タンタル及びケイ素から選ばれる金属元素である特
許請求の範囲第1項に記載の表面硬化鋼。 5、該鋼がステンレス鋼、耐熱鋼、マルエージング鋼、
高速度工具鋼、耐蝕耐熱超合金または合金工具鋼である
特許請求の範囲第4項に記載の表面硬化鋼。 6、該内部窒化層が炭素を含む炭窒化物層である特許請
求の範囲第1項に記載の表面硬化鋼。 7、窒素イオン雰囲気下において、鉄の他に少なくとも
1種の窒化物生成金属元素を含有する鋼の表面から窒素
イオンを侵入拡散させて該鋼の表面を硬化させる方法に
して、陽極及び陰極を有する反応器中に鋼を該陰極と接
触せしめて同極化するように設置し、該反応器中に窒素
ガスを含有する混合ガスを導入し、該陽極と該陰極間に
間欠的に実質的に一定電圧を印加して陽極と鋼と同極化
された陰極との間に間欠的に放電を行なわしめることを
特徴とする鋼の表面硬化法。 8、該陽極と該陰極間に間欠的に実質的に一定電圧を印
加するに際し、電圧印加及びそれに続く電圧印加休止を
一周期とした場合に電圧印加の時間が該一周期の時間に
対して約70%を超えないことを特徴とする特許請求の
範囲第7項に記載の鋼の表面硬化法。 9、該陽極と該陰極間に印加する電圧が200〜120
0Vである特許請求の範囲第7項に記載の鋼の表面硬化
法。 10、該鋼の温度を200〜1200℃の範囲の実質的
に一定の温度に保ちながら放電を行なう特許請求の範囲
第7項に記載の鋼の表面硬化法。 11、該窒素ガスを含有する混合ガス中の窒素ガス濃度
が0.1〜95容量%である特許請求の範囲第7項に記
載の鋼の表面硬化法。 12、該混合ガスが窒素ガスの他に水素ガス、アルゴン
ガス、ヘリウムガス及びネオンガスの中から選ばれる少
なくとも1種のガスを含む特許請求の範囲第7項に記載
の鋼の表面硬化法。 13、該反応器中の該混合ガスの圧力が0.01〜20
0mmHgである特許請求の範囲第7項に記載の鋼の表
面硬化法。 14、放電を間欠的に15分以上行なわしめる特許請求
の範囲第7項に記載の方法。
[Claims] 1. A hardened surface made of steel containing at least one nitride-forming metal element in addition to iron, and having an internal nitrided layer in which nitrogen penetrates and diffuses from the surface of the steel toward the inside. In steel, the thickness of the internal nitrided layer is 0.01 mm or more, the nitrogen concentration at the outermost surface part of the steel is 0.1 to 10% by weight, and the nitrogen concentration in the internal nitrided layer is from the surface side of the steel. The μ from the surface of the steel in the internal nitrided layer decreases toward the inside.
A surface hardened steel characterized in that the thickness (t) in m and the nitrogen concentration (c) satisfy the following formula: |Δc/Δt|≦0.5 (%/μm) (I). 2. The surface hardened steel according to claim 1, wherein the internal nitrided layer has a thickness of 0.01 to 0.5 mm. 3. The surface hardened steel according to claim 2, wherein the internal nitrided layer has a thickness of 0.05 to 0.2 mm. 4. In steel containing at least one nitride-forming metal element, the at least one nitride-forming metal element is chromium, aluminum, molybdenum, titanium, tungsten, boron, vanadium, manganese, zirconium, niobium, tantalum, and silicon. The surface hardened steel according to claim 1, which is a metal element selected from: 5. The steel is stainless steel, heat-resistant steel, maraging steel,
The surface-hardened steel according to claim 4, which is a high-speed tool steel, a corrosion-resistant and heat-resistant superalloy, or an alloy tool steel. 6. The surface hardened steel according to claim 1, wherein the internal nitrided layer is a carbonitride layer containing carbon. 7. In a nitrogen ion atmosphere, nitrogen ions are introduced and diffused from the surface of the steel containing at least one nitride-forming metal element in addition to iron to harden the surface of the steel, and the anode and cathode are hardened. The steel is placed in a reactor having a structure such that the steel is brought into contact with the cathode so as to be homopolarized, and a mixed gas containing nitrogen gas is introduced into the reactor, and the steel is intermittently substantially heated between the anode and the cathode. A steel surface hardening method characterized by applying a constant voltage to cause intermittent discharge between an anode and a cathode that is homopolarized to the steel. 8. When applying a substantially constant voltage intermittently between the anode and the cathode, if the voltage application and the subsequent suspension of voltage application are one cycle, the voltage application time is relative to the time of one cycle. 8. A method according to claim 7, characterized in that the surface hardening of steel does not exceed about 70%. 9. The voltage applied between the anode and the cathode is 200 to 120
The method for surface hardening steel according to claim 7, wherein the voltage is 0V. 10. The method for surface hardening steel according to claim 7, wherein the electric discharge is carried out while maintaining the temperature of the steel at a substantially constant temperature in the range of 200 to 1200°C. 11. The method for surface hardening steel according to claim 7, wherein the nitrogen gas concentration in the mixed gas containing nitrogen gas is 0.1 to 95% by volume. 12. The method for surface hardening steel according to claim 7, wherein the mixed gas contains at least one gas selected from hydrogen gas, argon gas, helium gas, and neon gas in addition to nitrogen gas. 13. The pressure of the mixed gas in the reactor is 0.01 to 20
The method for surface hardening of steel according to claim 7, wherein the surface hardening temperature is 0 mmHg. 14. The method according to claim 7, wherein the discharge is performed intermittently for 15 minutes or more.
JP17926584A 1984-08-30 1984-08-30 Surface hardened steel and surface hardening method of steel Granted JPS6160874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17926584A JPS6160874A (en) 1984-08-30 1984-08-30 Surface hardened steel and surface hardening method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17926584A JPS6160874A (en) 1984-08-30 1984-08-30 Surface hardened steel and surface hardening method of steel

Publications (2)

Publication Number Publication Date
JPS6160874A true JPS6160874A (en) 1986-03-28
JPH0368109B2 JPH0368109B2 (en) 1991-10-25

Family

ID=16062823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17926584A Granted JPS6160874A (en) 1984-08-30 1984-08-30 Surface hardened steel and surface hardening method of steel

Country Status (1)

Country Link
JP (1) JPS6160874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194169A (en) * 1985-02-20 1986-08-28 ルーカス インダストリイズ パブリツク リミテツド カンパニー Production of steel parts
EP1176224A1 (en) * 2000-07-24 2002-01-30 Nissan Motor Co., Ltd. Nitrided maraging steel and method of manufacturing thereof
JP2002161378A (en) * 2000-11-17 2002-06-04 Kobe Steel Ltd Iron based high-rigidity member
JP2007146288A (en) * 2005-10-25 2007-06-14 Canon Inc Nitriding treatment method of austenitic stainless steel, nitrided member, and vibration wave driving device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796815B2 (en) * 2011-05-30 2015-10-21 大同特殊鋼株式会社 Nitriding apparatus and cross-sectional hardness distribution prediction system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531143A (en) * 1976-06-24 1978-01-07 Kawasaki Heavy Ind Ltd Ionitriding of stainless steel
JPS531141A (en) * 1976-06-25 1978-01-07 Hitachi Ltd Metal treating process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531143A (en) * 1976-06-24 1978-01-07 Kawasaki Heavy Ind Ltd Ionitriding of stainless steel
JPS531141A (en) * 1976-06-25 1978-01-07 Hitachi Ltd Metal treating process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194169A (en) * 1985-02-20 1986-08-28 ルーカス インダストリイズ パブリツク リミテツド カンパニー Production of steel parts
EP1176224A1 (en) * 2000-07-24 2002-01-30 Nissan Motor Co., Ltd. Nitrided maraging steel and method of manufacturing thereof
US6733600B2 (en) 2000-07-24 2004-05-11 Nissan Motor Co., Ltd. Nitrided maraging steel and method of manufacture thereof
JP2002161378A (en) * 2000-11-17 2002-06-04 Kobe Steel Ltd Iron based high-rigidity member
JP2007146288A (en) * 2005-10-25 2007-06-14 Canon Inc Nitriding treatment method of austenitic stainless steel, nitrided member, and vibration wave driving device

Also Published As

Publication number Publication date
JPH0368109B2 (en) 1991-10-25

Similar Documents

Publication Publication Date Title
Tarakci et al. Plasma electrolytic surface carburizing and hardening of pure iron
EP1000181B1 (en) Process for the treatment of austenitic stainless steel articles
US8961711B2 (en) Method and apparatus for nitriding metal articles
Vojtěch et al. Surface treatment of NiTi shape memory alloy and its influence on corrosion behavior
Fraczek et al. Mechanism of ion nitriding of 316L austenitic steel by active screen method in a hydrogen-nitrogen atmosphere
EP0008228A2 (en) Internally nitrided ferritic stainless steels, and methods of producing such steels
Madanipour et al. Investigation of the formation of Al, Fe, N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel
Prince et al. Experimental investigations on the effects of multicomponent laser boriding on steels
Xu et al. A novel plasma surface metallurgy: Xu-Tec process
JPS6160874A (en) Surface hardened steel and surface hardening method of steel
Gobbi et al. Improvement of mechanical properties and corrosion resistance of 316L and 304 stainless steel by low temperature plasma cementation
RU2562185C1 (en) Modification method of surface of items from titanium alloys in vacuum
Gemma et al. Prospects for rapid nitriding in high Cr austenitic alloys
US3616383A (en) Method of ionitriding objects made of high-alloyed particularly stainless iron and steel
JP2009197254A (en) SURFACE TREATMENT METHOD FOR DUAL MULTI-PHASE Ni BASED INTERMETALLIC COMPOUND ALLOY, AND SURFACE-TREATED DUAL MULTI-PHASE Ni BASED INTERMETALLIC COMPOUND ALLOY
Ralston et al. Achieving a chromium rich surface upon steels via FBR-CVD chromising treatments
Bott et al. Pulsed-plasma-nitrided API 5L X-65 steel: hydrogen permeability and microstructural aspects
Yang et al. Improving the surface property of TC4 alloy by laser nitriding and its mechanism
Luthfiyah et al. The Effect of Vacuum Quenching on Corrosion and Hardness of the Surface of SKD61 Steel
Yu et al. Influence of nitriding surface treatment on corrosion characteristics of Ni-free SUS445 stainless steel
Mukherjee et al. Studies on low-energy nitrogen plasma immersion ion implantation on austenitic stainless steel and Cu-strengthened HSLA-100 steel
RU2562187C1 (en) Method of modification of surface of products from titanic alloys in glow discharge
Kumar et al. A Review on Plasma Ion Nitriding (PIN) Process.
Kuppusami et al. Kinetics of Growth of Plasma Nitrided Layers on a Titanium Modified Stainless Steel
Doyle et al. Innovation in nitriding

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term