JPS6160841B2 - - Google Patents

Info

Publication number
JPS6160841B2
JPS6160841B2 JP8194678A JP8194678A JPS6160841B2 JP S6160841 B2 JPS6160841 B2 JP S6160841B2 JP 8194678 A JP8194678 A JP 8194678A JP 8194678 A JP8194678 A JP 8194678A JP S6160841 B2 JPS6160841 B2 JP S6160841B2
Authority
JP
Japan
Prior art keywords
polymerization
acrylamide
amount
peroxide
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8194678A
Other languages
Japanese (ja)
Other versions
JPS559629A (en
Inventor
Ryoji Handa
Hisao Ootani
Yoji Wada
Toshimitsu Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP8194678A priority Critical patent/JPS559629A/en
Publication of JPS559629A publication Critical patent/JPS559629A/en
Publication of JPS6160841B2 publication Critical patent/JPS6160841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、アクリルアミドを含む単量体水溶液
の重合方法に関するものである。更に詳しくは、
微量の過酸化物の存在下にアゾ化合物により重合
を行う新規な重合方法に関するものである。 アクリルアミドを主成分とする水溶性重合体
は、凝集剤,粘剤などとして多分野で使用されて
いるが、特に凝集剤としての用途は、最近、公害
防止水質汚濁防止の見地から急激にその使用量が
増加している。また処理廃水の種類により、ノニ
オン系、アニオン系およびカチオン系凝集剤を使
い分け、その夫々の要求性能も年々高度になつて
きている。一方これらのアクリルアミド系重合体
の製造方法も多岐にわたつているが、高分子量高
性能化と低コスト製造法を指向しているのも当然
の結果であろう。 水溶液重合は比較的容易に高分子量の重合体が
得られ上記目的にかなつた製造法と云える。水溶
液中でアクリルアミドを主成分とする単量体を重
合する方法は多数の方法が提案されているが、特
に、重合開始剤についてこれら提案されている方
法を調べてみると、その殆んどが、アゾ化合物、
過酸化物あるいは過酸化物と還元剤とからなるレ
ドツクス開始剤を用いる方法になつている。その
他の例としてアゾ系開始剤とレドツクス開始剤を
併用して用いることも提案されている。これらの
開始剤を用いて重合して得られる重合体は、同一
分子量にすればほぼ同一性能を有していると考え
られるが、架橋や分子量低下などが関係すると考
えられる溶解性や長期保存における性能安定性、
耐熱性などが開始剤の種類によつて微妙な差を生
ずることはよく経験されることである。 本発明者らは、これらの問題について開始剤の
種類と重合体物性との関係について詳細に検討し
た結果、アゾ化合物を用いて合成したアクリルア
ミド系重合体は他の開始剤を用いたものに比べ
て、溶解性、長期間にわたる性能の安定性など総
合的に優れていることが判つた。 一般に高分子量アクリルアミド系重合体は水溶
液重合で重合温度の低下や開始剤量の減少により
得ることができ、この際重合温度の低下は、高粘
性あるいはゲル状のため重合熱の除去が困難なこ
の種の重合系にあつては、通常重合開始温度を下
げることによつて行われる。しかし重合温度の低
下、あるいは開始剤量の減少は重合所要時間が長
くなり、生産性を著しく低くするため製品コスト
は上昇することになる。このため一般にはレドツ
クス開始剤を用いることになるが、前述したよう
に重合体の安定性、溶解性などに問題を残す。こ
の点アゾ化合物は問題がない。しかしながら、ア
ゾ化合物はよく知られているように二次反応を伴
なわず正確に一次分解するが、低温重合を行うに
当つては、レドツクス重合における還元剤に相当
するような有効な物質は知られていない。従つ
て、低温で重合させるには比較的多量の開始剤を
用いるか、アゾ化合物自体を低温分解するように
立体障害のある基を導入するかの2つの方法しか
ない。前者の方法によれば、得られる重合体の分
子量は低下する方向であり、量を減少すれば著し
く長い誘導期および重合時間を伴う。後者につい
ては種々の化合物が合成されているが、工業的規
模では生産されていない場合が多く入手困難であ
る。 本発明者らは一般によく用いられているアゾ化
合物を用いてできるだけ低温で重合させる方法に
ついて鋭意研究したところ、ごく微量の過酸化物
を存在させることにより、重合時間および誘導期
の短縮などアゾ化合物による重合が著しく促進さ
れ、低温での重合がきわめて容易に進行し、溶解
性および長期保存安定性などの優れた高分子量重
合体が得られることを見出し本発明に到達した。
なお、ごく微量の過酸化物とは、これだけでは重
合が実質的に起こらない量を意味する。 すなわち、本発明はアクリルアミドまたはアク
リルアミドを含む単量体混合物を水中で重合する
に当り、過酸化物の存在下にアゾ化合物により重
合を行い、その際前記過酸化物の使用量をそれ単
独では実質的に重合が起こらない量とすることを
特徴とするアクリルアミド系単量体の重合方法で
ある。 本発明で重合促進剤として用いられる過酸化物
には多くのものがあるが、例えば過硫酸カリウ
ム、過硫酸アンモニウム、過酸化水素などの無機
過酸化物、t―ブチルハイドロパーオキサイド、
t―ブチルパーオキシマレイン酸、シクロヘキサ
ノンパーオキサイドなどの有機過酸化物が好適に
使用できる。 また、アゾ化合物としては2,2′―アゾビス―
2―アミジノプロパンハイドロクロライド、4,
4′―アゾビス―4―シアノペンタノイツクアシツ
ド、アゾビスイソブチロニトリル、2,2′―アゾ
ビス―2,4―ジメチルバレロニトリル、2,
2′アゾビス―4―メチル―2,4―ジメチルバレ
ロニトリルなどがあるが、水溶性である2,2′―
アゾビス―2―アミジノブロパンハイドロクロラ
イド、4,4′―アゾビス―4―シアノペンタノイ
ツクアシツドが使い易い。 これらのアゾ化合物および過酸化物の使用量
は、使用する単量体の種類、純度などによつて変
化することがあり必ずしも限定できないが、通
常、アゾ化合物は100〜2000ppm(対単量体水溶
液重量、以下同じ)、過酸化物は0.1〜10ppm、よ
り好ましくは1〜5ppmである。特に、過酸化物
が0.1ppm以下では重合促進効果が小さく、
10ppm以上になるとこれ単独でも重合が起こる
こともあるため、高分子量の重合体は得られ難
く、得られた場合でも溶解性や長期保存の際、分
子量低下などの物性の低下をきたし好ましくな
い。なお、上記アゾ化合物および過酸化物はいず
れも単独または2種以上混合使用してもよい。 本発明においてアクリルアミドとの共重合単量
体として使用されるものは、例えば、ジメチルア
ミノエチル(メタ)アクリレート、ジエチルアミ
ノエチル(メタ)アクリレート、ジメチルアミノ
プロピル(メタ)アクリレート、ジメチルアミノ
ヒドロキシプロピル(メタ)アクリレート、ジメ
チルアミノエチルアクリルアミドなどの陽イオン
性ビニル単量体、これら陽イオン性単量体をアル
キルハライド、ジアルキル硫酸などの4級化剤で
第4級アンモニウム塩に、また硫酸などで3級塩
化した陽イオン性ビニル単量体、(メタ)アクリ
ロニトリル、メチル(メタ)アクリレート、エチ
ル(メタ)アクリレート、メタクリルアミドなど
の非イオン性単量体、(メタ)アクリル酸あるい
はこれらの塩などの陰イオン性単量体などであ
る。 これらの単量体または単量体混合物を重合する
に当つては、単量体濃度は18〜50重量%、好まし
くは20〜35重量%で行うが、この範囲は単量体組
成、重合体の分子量によつても重合体ゲルの性状
が変化するので厳密な意味での範囲ではない。 また、重合開始温度としては0℃〜40℃、好ま
しくは10〜30℃である。 以下、実施例により説明する。 実施例 1 アクリルアミド(結晶)180g、ジメチルアミ
ノエチルメタクリレートのメチルクロライド4級
塩の80重量%水溶液112.5g、50重量%の硫酸水
溶液18.5gおよびジメチルアミノエチルメタクリ
レート30gをイオン交換水に溶解して全量を990
gにした。この単量体混合液を1/10NH2SO4
PH3.5に調整し、温度24℃に調節した後、1.2デ
ユワーピンに移し、窒素置換を約30分行つた。こ
の溶液に過硫酸アンモニウム0.1%水溶液2ml、
および0.6gの2,2′アゾビス―2―アミジノプ
ロパンハイドロクロライドを含む水溶液4mlを添
加し、更に10分間窒素置換を行つたところ、溶液
の温度は20℃になり、約5分後に重合が開始され
132分で重合は完結した。この時の重合物の温度
は85℃であつた。 次にデユワーピンから重合ゲルを取出し、肉ひ
き機によりこのゲルをうどん状に細分化した後、
熱風乾燥機で60℃、16時間乾燥し、乾燥ペレツト
を粉砕機で径2mm以下に粉砕した。 得られたポリアクリルアミド共重合体粉末5g
を495gのイオン交換水に溶解し、B型粘度計を
用い粘度を測定(5000CPSまではローターNo.
25000CPS以上はローターNo.3使用、いずれも
6rpm、25℃測定、以下、各例とも同様に測定)
したところ7200CPSであつた。この水溶液中に不
溶解ゲルは全く存在しなかつた。次にこの重合体
粉末を90℃で5時間熱処理し、1%水溶液粘度を
測定したところ7100CPSであり、不溶解ゲルはな
かつた。また、この重合体をポリ袋に入れ倉庫に
3月〜10月の約7ケ月間保存した後、同様に1%
水溶液粘度を測定したところ7000CPSで不溶ゲル
はなかつた。 比較例 1 実施例1において、過硫酸アンモニウムを添加
しない以外は全く同様にして重合反応を行つた。
誘導期400分後に重合が開始され、300分で重合は
終了した。この重合体の1%水溶液粘度は
7700CPSであり、若干の不溶解物があつた。 比較例 2 実施例1において2,2′アゾビスアミジノプロ
パンハイドロクロライドを添加しない以外は全く
同様にして重合反応を行つたが24時間後重合は全
く起こつていなかつた。 実施例2〜5、比較例3〜5 別表に示した重合開始系を用いた以外は実施例
1と同様に重合反応を行つた。結果は上記各例と
共に別表に示した。 実施例 6 アクリルアミド(結晶)230gを、イオン交換
水に溶解し、全量を990gにした。カセイソーダ
水溶液で系のPHを7.0に調整し、この単量体混合
液を23℃に調節した後、1.2デユワービンに移
し、窒素置換を30分行つた。この溶液に0.1%の
過硫酸カリウム水溶液3mlおよび0.3gの4,
4′―アゾビス―4―シアノペンタノイツクアシツ
ドを含む水溶液5mlを添加し、更に10分間窒素置
換を行つた。20℃で約5分後に重合が開始され90
分で重合は完結した。この時の温度は89℃であつ
た。以下実施例1と同様な方法でポリアクリルア
ミドの粉末を得た。 得られた重合体の1%水溶液の粘度は3500CPS
であつた。この1%水溶液の一部をとり加水分解
率を測定したところ1.4mol%であつた。更にこの
1%水溶液に2NH2SO410mlを加え、酸性下(PH
2.1)での粘度を測定したところ2400CPSであつ
た。この水溶液中に不溶解物はなかつた。また、
この粉末を100℃、5時間熱処理を行つて溶解し
たが不溶解物はなかつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polymerizing an aqueous monomer solution containing acrylamide. For more details,
This invention relates to a novel polymerization method in which polymerization is carried out using an azo compound in the presence of a trace amount of peroxide. Water-soluble polymers containing acrylamide as a main component are used in many fields as flocculants and sticky agents, but their use as flocculants has recently seen rapid growth from the perspective of preventing pollution and preventing water pollution. The amount is increasing. Furthermore, nonionic, anionic, and cationic flocculants are used depending on the type of wastewater to be treated, and the performance requirements for each are becoming more sophisticated year by year. On the other hand, there are a wide variety of methods for producing these acrylamide polymers, and it is natural that they are aiming for high molecular weight, high performance, and low cost production methods. Aqueous solution polymerization can be said to be a production method that can relatively easily yield a polymer with a high molecular weight and thus meets the above objective. Many methods have been proposed for polymerizing monomers containing acrylamide as a main component in aqueous solutions, but when we examine these methods in particular regarding polymerization initiators, we find that most of them are , azo compound,
The method uses a redox initiator consisting of a peroxide or a peroxide and a reducing agent. As another example, it has been proposed to use an azo initiator and a redox initiator in combination. Polymers obtained by polymerization using these initiators are thought to have almost the same performance if they have the same molecular weight, but there are problems with solubility and long-term storage, which are thought to be related to crosslinking and molecular weight reduction. performance stability,
It is a common experience that heat resistance etc. vary slightly depending on the type of initiator. As a result of a detailed study on the relationship between the type of initiator and the physical properties of the polymer, the present inventors found that acrylamide polymers synthesized using azo compounds are superior to those using other initiators. It was found that the material was comprehensively superior in terms of solubility and long-term performance stability. Generally, high molecular weight acrylamide-based polymers can be obtained by lowering the polymerization temperature or reducing the amount of initiator through aqueous polymerization. In the case of seed polymerization systems, this is usually carried out by lowering the polymerization initiation temperature. However, lowering the polymerization temperature or decreasing the amount of initiator increases the time required for polymerization, significantly lowering productivity and increasing product cost. For this reason, a redox initiator is generally used, but as mentioned above, problems remain with respect to the stability and solubility of the polymer. In this respect, azo compounds have no problem. However, as is well known, azo compounds undergo accurate first-order decomposition without secondary reactions, but when performing low-temperature polymerization, there are no known effective substances equivalent to reducing agents in redox polymerization. It hasn't been done yet. Therefore, there are only two methods for polymerizing at low temperatures: use a relatively large amount of initiator, or introduce a sterically hindered group so that the azo compound itself decomposes at low temperatures. According to the former method, the molecular weight of the resulting polymer tends to decrease, and decreasing the amount is accompanied by a significantly longer induction period and polymerization time. Regarding the latter, various compounds have been synthesized, but they are often not produced on an industrial scale and are difficult to obtain. The present inventors conducted intensive research on a method of polymerizing commonly used azo compounds at the lowest possible temperature, and found that by adding a very small amount of peroxide, the polymerization time and induction period could be shortened. The present invention has been achieved based on the discovery that the polymerization is significantly accelerated by the above method, the polymerization proceeds extremely easily at low temperatures, and a high molecular weight polymer with excellent solubility and long-term storage stability can be obtained.
Note that a very small amount of peroxide means an amount that does not substantially cause polymerization by itself. That is, in the present invention, when acrylamide or a monomer mixture containing acrylamide is polymerized in water, the polymerization is carried out using an azo compound in the presence of a peroxide, and in this case, the amount of the peroxide used alone is substantially reduced. This is a method for polymerizing an acrylamide monomer, which is characterized in that the amount of the acrylamide monomer is such that no polymerization occurs. There are many peroxides that can be used as polymerization accelerators in the present invention, such as potassium persulfate, ammonium persulfate, inorganic peroxides such as hydrogen peroxide, t-butyl hydroperoxide,
Organic peroxides such as t-butyl peroxymaleic acid and cyclohexanone peroxide can be suitably used. In addition, as an azo compound, 2,2′-azobis-
2-amidinopropane hydrochloride, 4,
4'-azobis-4-cyanopentanoid acid, azobisisobutyronitrile, 2,2'-azobis-2,4-dimethylvaleronitrile, 2,
There are 2'azobis-4-methyl-2,4-dimethylvaleronitrile, etc., but 2,2'-
Azobis-2-amidinopropane hydrochloride and 4,4'-azobis-4-cyanopentanoid acid are easy to use. The amount of these azo compounds and peroxides used may vary depending on the type and purity of the monomer used, and cannot necessarily be limited, but usually the azo compound is 100 to 2000 ppm (based on the monomer aqueous solution). The amount of peroxide is 0.1 to 10 ppm, more preferably 1 to 5 ppm. In particular, if the peroxide content is less than 0.1 ppm, the polymerization promotion effect is small;
If it exceeds 10 ppm, polymerization may occur even when it is used alone, so it is difficult to obtain a high molecular weight polymer, and even if it is obtained, physical properties such as solubility and molecular weight decrease during long-term storage are undesirable. Incidentally, the above azo compound and peroxide may be used alone or in combination of two or more. Examples of the comonomer used in the present invention with acrylamide include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, and dimethylaminohydroxypropyl (meth)acrylate. Cationic vinyl monomers such as acrylate and dimethylaminoethyl acrylamide; convert these cationic monomers into quaternary ammonium salts using quaternizing agents such as alkyl halides and dialkyl sulfuric acids, and convert them into tertiary salts using sulfuric acid, etc. cationic vinyl monomers, nonionic monomers such as (meth)acrylonitrile, methyl (meth)acrylate, ethyl (meth)acrylate, and methacrylamide, and anions such as (meth)acrylic acid or their salts. sexual monomers, etc. When polymerizing these monomers or monomer mixtures, the monomer concentration is 18 to 50% by weight, preferably 20 to 35% by weight, but this range depends on the monomer composition and polymer composition. Since the properties of the polymer gel also change depending on the molecular weight, this is not a strict range. Moreover, the polymerization initiation temperature is 0°C to 40°C, preferably 10 to 30°C. Examples will be explained below. Example 1 180 g of acrylamide (crystals), 112.5 g of an 80 wt% aqueous solution of methyl chloride quaternary salt of dimethylaminoethyl methacrylate, 18.5 g of a 50 wt% aqueous sulfuric acid solution, and 30 g of dimethylaminoethyl methacrylate were dissolved in ion-exchanged water and the total amount 990
I made it g. Add this monomer mixture to 1/10NH 2 SO 4
After adjusting the pH to 3.5 and the temperature to 24°C, the mixture was transferred to a 1.2 dewar pin and replaced with nitrogen for about 30 minutes. Add 2 ml of ammonium persulfate 0.1% aqueous solution to this solution.
When 4 ml of an aqueous solution containing 0.6 g of 2,2'azobis-2-amidinopropane hydrochloride was added and the atmosphere was replaced with nitrogen for another 10 minutes, the temperature of the solution reached 20°C, and polymerization started after about 5 minutes. Been
Polymerization was completed in 132 minutes. The temperature of the polymer at this time was 85°C. Next, take out the polymerized gel from the dewar pin, cut this gel into udon-like pieces using a meat grinder, and then
The pellets were dried in a hot air dryer at 60°C for 16 hours, and the dried pellets were ground in a grinder to a diameter of 2 mm or less. 5 g of the obtained polyacrylamide copolymer powder
Dissolve it in 495g of ion-exchanged water and measure the viscosity using a B-type viscometer (rotor No. up to 5000CPS).
For 25000CPS or more, use rotor No. 3.
Measured at 6rpm, 25℃ (measured in the same way for each example below)
When I tried it, it was 7200CPS. There was no undissolved gel in this aqueous solution. Next, this polymer powder was heat-treated at 90° C. for 5 hours, and the viscosity of a 1% aqueous solution was measured to be 7100 CPS, and there was no insoluble gel. In addition, after storing this polymer in a plastic bag in a warehouse for about 7 months from March to October, 1%
When the viscosity of the aqueous solution was measured, it was 7000 CPS and there was no insoluble gel. Comparative Example 1 A polymerization reaction was carried out in exactly the same manner as in Example 1 except that ammonium persulfate was not added.
Polymerization started after 400 minutes of induction period and ended after 300 minutes. The viscosity of a 1% aqueous solution of this polymer is
It was 7700 CPS, and there was some undissolved matter. Comparative Example 2 A polymerization reaction was carried out in exactly the same manner as in Example 1 except that 2,2' azobisamidinopropane hydrochloride was not added, but no polymerization occurred after 24 hours. Examples 2 to 5, Comparative Examples 3 to 5 Polymerization reactions were carried out in the same manner as in Example 1, except that the polymerization initiation system shown in the attached table was used. The results are shown in a separate table along with each of the above examples. Example 6 230 g of acrylamide (crystals) was dissolved in ion-exchanged water to make a total amount of 990 g. The pH of the system was adjusted to 7.0 with an aqueous solution of caustic soda, and the monomer mixture was adjusted to 23° C., then transferred to a 1.2 Duwer bottle, and replaced with nitrogen for 30 minutes. Add 3 ml of 0.1% potassium persulfate aqueous solution and 0.3 g of 4,
5 ml of an aqueous solution containing 4'-azobis-4-cyanopentanoid acid was added, and the mixture was purged with nitrogen for another 10 minutes. Polymerization started after about 5 minutes at 20℃90
Polymerization was completed in minutes. The temperature at this time was 89°C. Thereafter, polyacrylamide powder was obtained in the same manner as in Example 1. The viscosity of the 1% aqueous solution of the obtained polymer is 3500CPS
It was hot. When a portion of this 1% aqueous solution was taken and the hydrolysis rate was measured, it was found to be 1.4 mol%. Furthermore, 10 ml of 2NH 2 SO 4 was added to this 1% aqueous solution, and the mixture was heated under acidic conditions (PH
When the viscosity in 2.1) was measured, it was 2400 CPS. There were no undissolved substances in this aqueous solution. Also,
This powder was heat treated at 100° C. for 5 hours to dissolve it, but there was no undissolved matter. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アクリルアミドまたはアクリルアミドを含む
単量体混合物を水中で重合するに当り、過酸化物
の存在下にアゾ化合物により重合を行い、その際
前記過酸化物の使用量をそれ単独では実質的に重
合が起こらない量とすることを特徴とするアクリ
ルアミド系単量体の重合方法。
1. When polymerizing acrylamide or a monomer mixture containing acrylamide in water, the polymerization is carried out using an azo compound in the presence of a peroxide, and the amount of the peroxide used is set so that the amount of the peroxide used alone is not enough to substantially polymerize. A method for polymerizing an acrylamide monomer, characterized in that the amount of acrylamide monomer is reduced to such an amount that no polymerization occurs.
JP8194678A 1978-07-07 1978-07-07 Polymerization of acrylamide monomer Granted JPS559629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8194678A JPS559629A (en) 1978-07-07 1978-07-07 Polymerization of acrylamide monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8194678A JPS559629A (en) 1978-07-07 1978-07-07 Polymerization of acrylamide monomer

Publications (2)

Publication Number Publication Date
JPS559629A JPS559629A (en) 1980-01-23
JPS6160841B2 true JPS6160841B2 (en) 1986-12-23

Family

ID=13760660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8194678A Granted JPS559629A (en) 1978-07-07 1978-07-07 Polymerization of acrylamide monomer

Country Status (1)

Country Link
JP (1) JPS559629A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801643A (en) * 1987-03-30 1989-01-31 Hercules Incorporated Small particle size non-surface active protective colloid-stabilized latexes derived from monomers of high aqueous phase grafting tendencies
FR2700771B1 (en) * 1993-01-28 1995-03-17 Snf Sa Improved process for polymerizing acrylamide in an aqueous medium.

Also Published As

Publication number Publication date
JPS559629A (en) 1980-01-23

Similar Documents

Publication Publication Date Title
CA1099423A (en) Method for producing acrylamide polymers
US3975341A (en) Water in oil emulsion process for preparing gel-free polyelectrolyte particles
JPH0214364B2 (en)
JP2008544107A5 (en)
WO1988007559A1 (en) Water-soluble cationic polymer
US4622356A (en) Polyacrylamide and polyacrylic acid polymers
CN107325213B (en) A kind of MethacryloyloxyethylTrimethyl Trimethyl Ammonium Chloride method for producing polymer of adjustable molecular weight section
US4415717A (en) Polymeric cationic substituted acrylamide surfactants
JPS5814425B2 (en) Method for stabilizing unsaturated tertiary amine or its quaternary ammonium salt
JPS6160841B2 (en)
EP2617742B1 (en) N-vinyl lactam polymer and method for producing same
US3803104A (en) High molecular weight and low viscosity vinylpyrrolidone polymer flocculants and catalyst and process producing the same
JPS6154805B2 (en)
JPS6160842B2 (en)
CN106317306B (en) A kind of preparation method of cationic polyacrylamide
JP4108491B2 (en) Method for producing acrylamide-based water-soluble polymer
CN110036045B (en) Method for producing polyacrylonitrile
JPH0441686B2 (en)
CA1155139A (en) PREPARATION OF WATER-IMMISCIBLE, ACID-SOLUBLE N- (AMINOMETHYL)-.alpha.,.beta.-ETHYLENICALLY UNSATURATED CARBOXAMIDES, QUATERNARY DERIVATIVES AND POLYMERS THEREOF
JPH0361687B2 (en)
JPH0257084B2 (en)
JPH062779B2 (en) Process for producing polymer of inorganic acid salt of monoallylamine or N-substituted monoallylamine
JP5461978B2 (en) Method for producing acrylamide-based water-soluble polymer
JPS6220511A (en) Production of water-soluble polymer dispersion
SU927802A1 (en) Process for producing fiber-forming (co)polymers of acrylonitrile