JPS6160807A - Production of metallic powder having narrow width of grain size - Google Patents

Production of metallic powder having narrow width of grain size

Info

Publication number
JPS6160807A
JPS6160807A JP18349084A JP18349084A JPS6160807A JP S6160807 A JPS6160807 A JP S6160807A JP 18349084 A JP18349084 A JP 18349084A JP 18349084 A JP18349084 A JP 18349084A JP S6160807 A JPS6160807 A JP S6160807A
Authority
JP
Japan
Prior art keywords
powder
molten metal
size
granular material
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18349084A
Other languages
Japanese (ja)
Other versions
JPH0249363B2 (en
Inventor
Katsu Okumura
奥村 濶
Ki Hara
原 機
Kazuo Yoshizumi
吉積 一雄
Kensuke Hidaka
日高 謙介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Kinzoku Hakufun Kogyo Kk
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Kinzoku Hakufun Kogyo Kk
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Kinzoku Hakufun Kogyo Kk, Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Kinzoku Hakufun Kogyo Kk
Priority to JP18349084A priority Critical patent/JPS6160807A/en
Publication of JPS6160807A publication Critical patent/JPS6160807A/en
Publication of JPH0249363B2 publication Critical patent/JPH0249363B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain easily metallic powder having a narrow width of grain size at a good yield by cooling the molten metal drops by a gap or liquid at a specific solidifying rate in such a manner that the size of the crystal grains of the formed powder and granular material attains a prescribed grain size then pulverizing mechanically such material and breaking the material at the grain boundary. CONSTITUTION:The molten metal obtd. by melting the metals [e.g.; Si-Al-Fe(9%-6%-Bal)] in a melting furnace is discharged from the hole provided to the bottom of, for example, a refractory vessel to manufacture the molten metal drops. The molten metal drops are then cooled at 10-10<4> deg.C/sec cooling rate by the refrigerant consisting of the gas or liquid, i.e., water, inert gas, molten salt, etc. in such a manner that the size of the crystal grain of the resulted powder and granular material attains 50-200mum. The resulted powder and granular material is broken at the grain boundary of the powder and granular material by using an ordinary ball mill, rod mill, etc. The metallic powder having the narrow width of grain size is thus obtd. at a good yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粒度巾の狭い金属粉末を容易に、しかも収率よ
く製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for easily producing metal powder having a narrow particle size range with good yield.

〔従来の技術〕[Conventional technology]

金属粉末の用途の中で特に限られた狭い粒度巾のものが
要求されるものとして、フィルター用、クラッチ用、キ
ャリヤー用、溶射用、磁性材用に用いるものがある。
Among the uses of metal powders, those that require a particularly narrow particle size range include those used for filters, clutches, carriers, thermal spraying, and magnetic materials.

従来、この粒度巾の狭い金属粉末はインゴット鋳造片を
粉砕する方法や、噴霧法により粉末を製造し、これを篩
分けして製造していた。しかしながら、インゴット鋳造
片を粉砕して金属粉末を製造する場合、200μm以上
のものはこの方法で容易に製造することができるが、粒
度巾の狭い金属粉末の収率は非常に悪い。これは結晶粒
が200μm以上となっているため、200μm以下の
金属粉末を製造する場合、結晶粒そのものの粉砕を必要
とするためである、すなわち、結晶粒自体に塑性加工、
加工硬化等の変形を与えながら破壊に至らせる過程を経
るため、得られた粉末は粒度巾の広い不ぞろいのものと
なる。噴霧法により粉末を製造する場合は、50μm以
下のものは比較的収率良(製造できるが、50μm以上
で粒度巾の狭い粉末では収率が10%以下の時もあり、
好ましい方法ではない。
Conventionally, metal powder with a narrow particle size width has been produced by pulverizing an ingot cast piece or by a spraying method to produce a powder, which is then sieved. However, when producing metal powder by crushing an ingot cast piece, powders of 200 μm or more can be easily produced using this method, but the yield of metal powders with a narrow particle size range is very poor. This is because the crystal grains are 200 μm or more, so when producing metal powder of 200 μm or less, the crystal grains themselves must be crushed. In other words, the crystal grains themselves must undergo plastic processing,
Since the powder undergoes a process of deformation such as work hardening that leads to destruction, the resulting powder has a wide particle size range and is irregular. When producing powder by the spraying method, powders with a diameter of 50 μm or less have a relatively good yield (it can be produced, but powders with a narrow particle size width of 50 μm or more may have a yield of less than 10%,
Not the preferred method.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は前記従来の技術の問題点に留意してなされたも
のであり、粒度巾の狭い金属粉末を容易にかつ簡単に製
造することを種々検討し、一定の大きさの結晶粒を有す
る粉粒体を結晶粒界で粉砕すれば、粒度巾の狭い金属粉
末を収率良(製造し得るとの知見に基ずき本発明を完成
したものである。
The present invention has been made in consideration of the problems of the conventional technology, and has been made by various studies to easily and simply produce metal powder with a narrow particle size width, and has been developed by making a powder having crystal grains of a certain size. The present invention was completed based on the knowledge that metal powder with a narrow particle size width can be produced in good yield by crushing granules at grain boundaries.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は金属の溶滴を気体または液体により、得
られた粉粒体の結晶粒の大きさが50〜200μmとな
るように10〜b で冷却し、次いで得られる粉粒体を機械的に粉砕し、結
晶粒界で破壊することを特徴とする粒度巾の狭い金属粉
末の製造方法である。
That is, in the present invention, metal droplets are cooled with gas or liquid at a temperature of 10 to 100 m so that the crystal grain size of the obtained powder becomes 50 to 200 μm, and then the obtained powder is machined. This is a method for producing metal powder with a narrow particle size range, which is characterized by pulverizing the metal powder and destroying it at the grain boundaries.

〔作用〕[Effect]

本発明において、粉砕前の粉粒体の結晶粒を調節するこ
とは重要なことである。この粉粒体の結晶粒の大小は、
その材質、凝固速度、添加剤等により影響されているこ
とは知られている。中でも特に凝固速度は重要な要因で
ある。
In the present invention, it is important to control the crystal grains of the granular material before pulverization. The size of the crystal grains of this granular material is
It is known that it is influenced by the material, solidification rate, additives, etc. Among these, the solidification rate is an especially important factor.

本発明では、50〜200μmの結晶粒を有する粉末を
得ることが目的であることから溶滴の凝固速度を10〜
10〜104℃/sec としたへ10℃八eへより遅い凝固速度では結晶粒の大
きさを200μm以下とするのが困難で、また10”C
/secより速い凝固速度では結晶粒の大きさが50μ
m以下となりこれを粉砕したとしても、50μm以上の
粒度巾の狭い粉末が得られないためである。たとえば、
40μmの結晶粒を有する粉粒体をその結晶粒界で粉砕
した場合、40μmの粉末は容易に得られるが、80μ
mの粉末を得ようとすると結晶粒を2ケ存する様に粉砕
する必要があり、この様な粉砕は実際には困難である。
In the present invention, since the purpose is to obtain powder having crystal grains of 50 to 200 μm, the solidification rate of the droplets is set to 10 to 200 μm.
If the solidification rate is slower than 10 to 104℃/sec, it is difficult to reduce the grain size to 200μm or less;
When the solidification rate is faster than /sec, the grain size is 50μ.
This is because even if it is crushed, powder with a narrow particle size width of 50 μm or more cannot be obtained. for example,
When a powder material having crystal grains of 40 μm is crushed at its grain boundaries, 40 μm powder is easily obtained, but 80 μm powder is easily obtained.
In order to obtain a powder of m, it is necessary to grind so that two crystal grains exist, and such grinding is actually difficult.

通常、結晶粒が1ケもしくは2〜3ケの粉末が混在する
ことになり、このため50μm以上の粒度巾の狭い粉末
は得られない。
Usually, powders having one or two to three crystal grains coexist, and therefore powder with a narrow particle size width of 50 μm or more cannot be obtained.

なお、この凝固速度は溶滴の大きさ、冷媒の材質によっ
てかなり影響される。
Note that this solidification rate is considerably influenced by the size of the droplets and the material of the refrigerant.

溶滴は溶解炉にて目的とする材料の組成を溶解して、例
えば耐火物容器の底に設けた孔から溶湯を流出して溶滴
を作る方法、同様に耐火物容器の底に設けた孔から溶湯
を流出して低圧の冷媒を用いて溶湯を粉砕させる方法、
金属線または棒を加熱源、例えばガスバナー等を用いて
溶滴を作る方法等がある。
Droplets can be created by melting the desired material composition in a melting furnace, and then flowing the molten metal through a hole provided at the bottom of a refractory container. A method in which the molten metal flows out from a hole and is crushed using a low-pressure refrigerant;
There is a method of forming droplets using a metal wire or rod as a heating source, such as a gas banner.

溶滴はおおむね直径20mm以下が好ましい、20II
IIm以上になると溶滴の外表面と中心の凝固速度の差
が太き(なり、このため結晶粒の大きさにバラツキを生
じ、結果として得られる粉末の粒度巾が大きくなる。
The droplets preferably have a diameter of approximately 20 mm or less, 20II
When the temperature exceeds IIm, the difference in the solidification rate between the outer surface and the center of the droplet becomes large, which causes variations in the size of crystal grains, and the resulting powder has a large particle size range.

冷媒は、水、不活性ガス、溶融塩等を溶滴の材質と、目
的とする結晶粒の大きさによって適当に選択し、使用す
ればよい。
The coolant may be appropriately selected from water, inert gas, molten salt, etc. depending on the material of the droplets and the desired size of crystal grains.

5i−AI−Fe(9%−6%−Bal)合金のような
比較的、結晶粒の大きくなりやすい合金は速く凝固させ
て結晶粒を細かくすることが必要であり、この場合、水
を冷媒として用いることが適当である。
Alloys such as 5i-AI-Fe (9%-6%-Bal) alloy, which tend to have large crystal grains, need to be solidified quickly to make the crystal grains fine. In this case, water is used as a coolant. It is appropriate to use it as

逆に、Fe−N1(18%−Bal)合金の場合のよう
に比較的結晶粒が細かくなるものは凝固速度が速いので
溶融塩のような冷却能の低い冷媒を用いて凝固させれば
よい、なお、それぞれの冷媒に添加剤を添加し、その冷
却能を調整すること、また、溶融塩の場合には、その温
度を調節して溶滴の凝固速度を調節することも可能であ
る。
On the other hand, if the crystal grains are relatively fine, such as the Fe-N1 (18%-Bal) alloy, the solidification rate is fast, so it is best to solidify it using a coolant with low cooling capacity, such as molten salt. Note that it is also possible to add additives to each refrigerant to adjust its cooling capacity, and in the case of a molten salt, to adjust the temperature to adjust the solidification rate of the droplets.

本発明では結晶粒の大きさ50〜200μmの粉粒体の
結晶粒界で破壊するが、この場合の粉砕は通常のボール
ミル、ロッドミル、搗砕機、アトライター、ジェットミ
ル等が使用できる。
In the present invention, the powder particles having a crystal grain size of 50 to 200 μm are destroyed at the grain boundaries, and in this case, a conventional ball mill, rod mill, crusher, attritor, jet mill, etc. can be used for pulverization.

例えば5t−AI−Fe合金では通常、搗砕機による場
合、粒界での破壊を発生できるが、Fe−Ni合金では
同じ搗砕機を用いても粉砕されない。この合金にはボー
ルミルを使用すれば結晶粒界での破壊が容易である。し
かし、あまり大きな粉砕能力を有する粉砕機を用いると
粒界破壊のみでなく、結晶粒内でも破壊するので粉粒体
の材質に応じて粉砕機を選択する必要がある。
For example, in a 5t-AI-Fe alloy, fracture at the grain boundaries can usually occur when using a crusher, but in a Fe-Ni alloy, even if the same crusher is used, it will not be crushed. This alloy can be easily fractured at grain boundaries by using a ball mill. However, if a pulverizer with too large a pulverizing capacity is used, not only the grain boundary fracture but also the intracrystalline fracture occurs, so it is necessary to select the pulverizer according to the material of the granular material.

なお、粉粒体の材質により結晶粒界の強度と結晶粒の強
度に大差のない場合、もしくは結晶粒界の強度が強い場
合には結晶粒界に脆い析出物を析出させる添加材、例え
ばS s P 、S +等を添加し、それらの基材との
化合物を析出させるとにより結晶粒界での破壊を容易に
することができる。車に溶湯から粉粒体を製造したとし
ても、結晶粒界に前記脆い析出物が析出しない場合は、
得られた粉粒体を熱処理して結晶粒界に前記、脆い析出
物を析出させればよい。
In addition, if there is not much difference between the strength of the grain boundaries and the strength of the grains depending on the material of the powder or grains, or if the strength of the grain boundaries is strong, additives that precipitate brittle precipitates at the grain boundaries, such as S, may be added. By adding s P , S + , etc. and precipitating a compound with the base material, fracture at grain boundaries can be facilitated. Even if powder and granules are manufactured from molten metal for cars, if the brittle precipitates do not precipitate at the grain boundaries,
The obtained powder may be heat-treated to precipitate the brittle precipitates at the grain boundaries.

以下、本発明の代表的な実施例を示す。Hereinafter, typical examples of the present invention will be shown.

〔実施例〕〔Example〕

実施例(1) Si 9wt%、Al 6nt%、残部Fe合金を溶解
し、1550°Cの溶湯を耐火物容器の底の孔の径1O
IIIII+から流出させ、溶滴の凝固速度が10”C
/secとなるように噴霧圧カフkg/cal、噴霧水
15j!/5ecT:溶湯流を粉砕、水中に落下させて
冷却し、粉粒体を製造した。得られた粉粒体は粒径が1
〜5II1m、平均粒径3IIl1)1であり、結晶粒
の大きさは70〜1)0μmであった。
Example (1) Si 9wt%, Al 6nt%, balance Fe alloy was melted, and the molten metal at 1550°C was poured into a hole in the bottom of a refractory container with a diameter of 10
III+, and the solidification rate of the droplet is 10"C
/sec, spray pressure cuff kg/cal, spray water 15j! /5ecT: The molten metal stream was pulverized, dropped into water, and cooled to produce granular material. The obtained powder has a particle size of 1
~5II1m, average grain size 3II1)1, and crystal grain size was 70~1)0 μm.

次に、上記のようにして得られた粉粒体を搗砕機で6時
間粉砕し、63〜149μmの巾の粉末を採取したとこ
ろその収率は80%であった。
Next, the powder obtained as described above was crushed for 6 hours using a crusher, and powder having a width of 63 to 149 μm was collected, and the yield was 80%.

実施例(2) Cr13wt%、AI Q、3wt%、残部Feからな
る直径201)mの合金棒をガスバーナーで溶解し、溶
滴の温度が1600’C,溶滴の大きさが約21)1)
1となるようにガスバーナーを調節し、えられた溶滴を
水中に落下させ、約103°C/secで冷却、凝固さ
せた。
Example (2) An alloy rod with a diameter of 201) m consisting of 13 wt% Cr, 3 wt% AI Q, and the balance Fe was melted with a gas burner, and the temperature of the droplet was 1600'C, and the size of the droplet was about 21) 1)
The gas burner was adjusted so that the temperature was 1, and the resulting droplets were dropped into water, cooled and solidified at about 103°C/sec.

得られた粉粒体の粒径は1〜4mm、平均粒径は2m+
++であった。また結晶粒の大きさは80〜120μm
であった。
The particle size of the obtained powder is 1 to 4 mm, and the average particle size is 2 m+
It was ++. In addition, the crystal grain size is 80 to 120 μm
Met.

次に、上記のようにして得られた粉粒体をボールミルで
5時間粉砕し、74〜149μmの粉末を採取したとこ
ろその収率は65%であった。
Next, the powder obtained as described above was pulverized in a ball mill for 5 hours, and powder with a diameter of 74 to 149 μm was collected, and the yield was 65%.

実施例(3) Fe18wt%、S O,1wt%、残部Niの合金を
溶解し、1500°Cの溶湯を耐火物容器の底の孔の径
15mmから流出させ、溶滴の凝固速度が102℃八e
cへなるように噴霧圧力5kg/cd、噴霧水1)3 
R/secで溶湯流を粉砕、水中に落下させて冷却し、
粉粒体を製造したゆ得られた粉粒体は粒径が2〜71I
lffl、平均粒径41であり、結晶粒の大きさは1)
0〜150μmであった。
Example (3) An alloy of 18 wt% Fe, 1 wt% SO, and the balance Ni was melted, and the molten metal at 1500°C was flowed out from a hole with a diameter of 15 mm at the bottom of a refractory container, and the solidification rate of the droplets was 102°C. 8e
Spray pressure 5kg/cd, spray water 1) 3 so that it becomes c.
The molten metal stream is crushed at R/sec, cooled by dropping into water,
The powder and granular material obtained by producing the powder and granular material has a particle size of 2 to 71I.
lffl, the average grain size is 41, and the crystal grain size is 1)
It was 0 to 150 μm.

次に、上記のようにして得られた粉粒体をアトライター
で10時間粉砕して後、88〜177 μmの粉末を採
取したところその収率は80%であった。
Next, the powder obtained as described above was pulverized for 10 hours using an attritor, and then powder having a diameter of 88 to 177 μm was collected, and the yield was 80%.

実施例(4) SUS316Lにs o、i%添加した1550℃の溶
湯を耐火物容器の底の穴の径10mmから流出させ、溶
滴の凝固速度が10℃/secとなるように、NaC1
50wt%−にCL 50wt%の750°C溶融塩中
に滴下した。溶融塩中より回収した粉粒体は水で充分に
洗浄し、乾燥したところ、得られた粉粒体の粒径は1〜
5mm、平均粒径31であった。また、粉粒体の結晶粒
の大きさは150−190μmであった。
Example (4) A 1550°C molten metal containing SUS316L with SO, i% added was flowed out from a hole with a diameter of 10 mm at the bottom of a refractory container, and NaCl was added so that the solidification rate of the droplets was 10°C/sec.
50 wt% of CL was added dropwise to 50 wt% of 750°C molten salt. When the powder and granules recovered from the molten salt were thoroughly washed with water and dried, the particle size of the obtained powder and granules was 1 to 1.
The particle size was 5 mm, and the average particle size was 31. Moreover, the size of crystal grains of the powder and granular material was 150-190 μm.

次に、上記のようにして得られた粉粒体を搗砕機で8時
間粉砕し、125〜210μmの粉末を採取したところ
その収率は70%であった。
Next, the powder obtained as described above was crushed for 8 hours using a crusher, and a powder having a diameter of 125 to 210 μm was collected, and the yield was 70%.

比較例(1) 実施例1〜4で用いた合金と同一組成の合金を通常の水
噴霧法、即ち噴霧圧力10kg/cut、噴霧氷量20
β/secで噴霧し、得られた粉末の粒径を、それぞれ
実施例1〜4の粒径に合わせて篩分けした場合の収率を
第1表に示す。
Comparative Example (1) An alloy having the same composition as the alloy used in Examples 1 to 4 was prepared using a normal water spray method, that is, a spray pressure of 10 kg/cut and an amount of sprayed ice of 20
Table 1 shows the yield when spraying at β/sec and sieving the obtained powder to match the particle size of Examples 1 to 4, respectively.

なお、第1表には実施例1〜4の収率も同時に示す。Note that Table 1 also shows the yields of Examples 1 to 4.

第1表 比較例(2) 実施例1〜4で用いた合金と同一組成の合金を溶解し、
10 X 30 X 200ff+mの金型鋳造片を製
造して、予め3mmc程度の粒径にクラッシャーで粉砕
した後、実施例1〜4と同じ粉砕方法、条件で粉砕し、
それぞれ実施例1〜・tの粒径の粉末を採取した場合の
収率を第1表に示す。
Table 1 Comparative Example (2) An alloy having the same composition as the alloy used in Examples 1 to 4 was melted,
A mold cast piece of 10 x 30 x 200ff+m was produced, and after crushing it in advance to a particle size of about 3 mmc with a crusher, it was crushed using the same crushing method and conditions as in Examples 1 to 4,
Table 1 shows the yields when powders having particle sizes of Examples 1 to t were collected.

〔効果〕〔effect〕

前記、第1表に示す通り、本発明の方法によれば、粒度
巾の狭い金属粉末を収率よく製造することが可能であり
、得られた粉末は粒度が揃っていることからフィルター
、流体クラッチ、複写機用キャリヤー、等に有用である
。また、本発明の方法による粉末は、単一の結晶粒がほ
ぼそのまま一個の粒子を形成しているので磁気的特性に
バラツキが少なく、磁性材にも有用な粉末かえられる特
徴がある。
As shown in Table 1 above, according to the method of the present invention, it is possible to produce metal powder with a narrow particle size width in good yield, and the obtained powder has a uniform particle size, so it can be used in filters and fluids. Useful for clutches, copier carriers, etc. Further, since the powder obtained by the method of the present invention is made up of a single crystal grain that forms a single particle, there is little variation in magnetic properties, and the powder can be used as a powder useful for magnetic materials.

Claims (1)

【特許請求の範囲】[Claims] (1)金属の溶滴を気体または液体により、得られる粉
粒体の結晶粒の大きさが50〜200μmとなるように
10〜10^4℃/secの凝固速度で冷却し、次いで
得られた粉粒体を機械的に粉砕し、結晶粒界で破壊する
ことを特徴とする粒度巾の狭い金属粉末の製造方法。
(1) Cool the metal droplets with gas or liquid at a solidification rate of 10 to 10^4°C/sec so that the crystal grain size of the obtained powder becomes 50 to 200 μm, and then A method for producing metal powder with a narrow particle size width, characterized by mechanically crushing powder particles and destroying them at grain boundaries.
JP18349084A 1984-09-01 1984-09-01 Production of metallic powder having narrow width of grain size Granted JPS6160807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18349084A JPS6160807A (en) 1984-09-01 1984-09-01 Production of metallic powder having narrow width of grain size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18349084A JPS6160807A (en) 1984-09-01 1984-09-01 Production of metallic powder having narrow width of grain size

Publications (2)

Publication Number Publication Date
JPS6160807A true JPS6160807A (en) 1986-03-28
JPH0249363B2 JPH0249363B2 (en) 1990-10-30

Family

ID=16136726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18349084A Granted JPS6160807A (en) 1984-09-01 1984-09-01 Production of metallic powder having narrow width of grain size

Country Status (1)

Country Link
JP (1) JPS6160807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238305A (en) * 1986-04-07 1987-10-19 Fukuda Metal Foil & Powder Co Ltd Production of flake fe-si-al alloy powder
JP2011121812A (en) * 2009-12-10 2011-06-23 Tokuyama Corp Aluminum nitride powder
CN107452458A (en) * 2017-07-05 2017-12-08 深圳顺络电子股份有限公司 A kind of ferroalloy magnetic material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371642A (en) * 1976-12-08 1978-06-26 Toyota Motor Co Ltd Preparation of powder for melting and injection
JPS5389865A (en) * 1977-01-19 1978-08-08 Shiyouji Nishimura Production of flaky microparticle zinc powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371642A (en) * 1976-12-08 1978-06-26 Toyota Motor Co Ltd Preparation of powder for melting and injection
JPS5389865A (en) * 1977-01-19 1978-08-08 Shiyouji Nishimura Production of flaky microparticle zinc powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238305A (en) * 1986-04-07 1987-10-19 Fukuda Metal Foil & Powder Co Ltd Production of flake fe-si-al alloy powder
JP2011121812A (en) * 2009-12-10 2011-06-23 Tokuyama Corp Aluminum nitride powder
CN107452458A (en) * 2017-07-05 2017-12-08 深圳顺络电子股份有限公司 A kind of ferroalloy magnetic material and preparation method thereof
CN107452458B (en) * 2017-07-05 2020-10-13 深圳顺络汽车电子有限公司 Iron alloy magnetic material and preparation method thereof

Also Published As

Publication number Publication date
JPH0249363B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
TWI431140B (en) Method for manufacturing sputtering standard materials for aluminum - based alloys
CA2161959A1 (en) Microstructurally refined multiphase castings
JPH0328341A (en) Aluminum-strontium mother alloy
EP0105595B1 (en) Aluminium alloys
JPS6160807A (en) Production of metallic powder having narrow width of grain size
US4168967A (en) Nickel and cobalt irregularly shaped granulates
US2200258A (en) Boron carbide composition and method of making the same
JP3694732B2 (en) Manufacturing method of high hardness and high chromium cast iron powder alloy
JPH04502784A (en) Phase redistribution process
JP2002004015A (en) Iron-based amorphous spherical grain
JP2926397B2 (en) Impact-resistant iron-based alloy spherical particles
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
AU608394B2 (en) Preparation process of acrylamide
WO1992007676A1 (en) Hypereutectic aluminum/silicon alloy powder and production thereof
JPH10158755A (en) Production of bcc type hydrogen storage alloy
JPH08209207A (en) Production of metal powder
JPH06306413A (en) Production of hydrogen storage alloy powder
JPS62238305A (en) Production of flake fe-si-al alloy powder
JPS58120702A (en) Manufacture of rapid coagulated aluminum alloy powder
JPS62124242A (en) Manufacture of high-strength aluminum alloy member
WO2021157156A1 (en) Titanium alloy powder production method
JPS6311606A (en) Production of fe-si-al alloy powder
JPS63100107A (en) Production of amorphous alloy powder
JPH10335126A (en) Alloy powder
JPS631364B2 (en)