JPS6160140B2 - - Google Patents

Info

Publication number
JPS6160140B2
JPS6160140B2 JP2966680A JP2966680A JPS6160140B2 JP S6160140 B2 JPS6160140 B2 JP S6160140B2 JP 2966680 A JP2966680 A JP 2966680A JP 2966680 A JP2966680 A JP 2966680A JP S6160140 B2 JPS6160140 B2 JP S6160140B2
Authority
JP
Japan
Prior art keywords
cast iron
weight
graphite cast
semi
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2966680A
Other languages
Japanese (ja)
Other versions
JPS56127747A (en
Inventor
Hideo Sugano
Kazuo Sato
Takao Furumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP2966680A priority Critical patent/JPS56127747A/en
Publication of JPS56127747A publication Critical patent/JPS56127747A/en
Publication of JPS6160140B2 publication Critical patent/JPS6160140B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は、優れた防振性を有するセミ球状黒鉛
鋳鉄に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semi-spheroidal graphite cast iron having excellent vibration damping properties.

一般に、黒鉛鋳鉄は鉄鋼よりも振動吸収能(減
衰能)が優れており、構造上防振性が要求される
部材、例えばエンジンのシリンダーブロツク等に
採用されている。
In general, graphite cast iron has better vibration absorbing ability (damping ability) than steel, and is used in components that structurally require vibration isolation, such as engine cylinder blocks.

この種の黒鉛鋳鉄の減衰能は、基本的には黒鉛
自体が有する高い減衰能に依存するものであつ
て、黒鉛の量、黒鉛の形状等によつて減衰能は大
きく左右され、一般には黒鉛の量を多くし、さら
に黒鉛形状をできるだけ片状とすることによつて
減衰能を向上させることができることが知られて
いる。
The damping capacity of this type of graphite cast iron basically depends on the high damping capacity of graphite itself, and the damping capacity is greatly influenced by the amount of graphite, the shape of graphite, etc. It is known that the attenuation ability can be improved by increasing the amount of graphite and making the graphite shape as flaky as possible.

しかしながら、一方では、基地組織そのものの
エネルギー吸収能を向上させるため、片状黒鉛鋳
鉄をオーステンパー処理しして基地組織をベーナ
イト組織中に細く分散しているセメンタイトとα
鉄との境界における粘性摩擦によつてエネルギー
吸収能を高めるようにしたものが本出願人により
既に提案されている(特願昭54−60888号明細書
参照)。
However, on the other hand, in order to improve the energy absorption ability of the matrix structure itself, flaky graphite cast iron is austempered to transform the matrix structure into a bainite structure with finely dispersed cementite and α.
The present applicant has already proposed a device in which the energy absorption ability is enhanced by viscous friction at the boundary with iron (see Japanese Patent Application No. 1988-60888).

かかるオーステンパー処理は、片状黒鉛鋳鉄で
は、炭素当量が4.3重量%を越えると効果がなく
なり、それ以上の減衰能の向上を望めない限界が
あつた。
Such austempering treatment becomes ineffective for flake graphite cast iron when the carbon equivalent exceeds 4.3% by weight, and there is a limit beyond which further improvement in damping capacity cannot be expected.

本発明は、炭素当量を4.3重量%以上とした場
合にも、黒鉛形状を適当な形状とすれば、オース
テンパー処理による基地組織のエネルギー吸収能
を向上させることができることに着目してなされ
たものである。
The present invention was made based on the fact that even when the carbon equivalent is 4.3% by weight or more, if the shape of graphite is appropriately shaped, it is possible to improve the energy absorption ability of the matrix structure by austempering treatment. It is.

即ち、本発明は、黒鉛結晶の形状を、球状と片
状の中間の形状、換言すればセミ球状とし、かつ
炭素当量が4.3重量%以上である黒鉛鋳鉄を用
い、このセミ球状黒鉛鋳鉄をオーステンパー処理
することにより、より一層優れた振動吸収能を有
し、強度的にも優れた黒鉛鋳鉄を提供することを
目的としている。
That is, the present invention uses graphite cast iron whose graphite crystal shape is intermediate between spherical and flaky, in other words, semi-spherical, and whose carbon equivalent is 4.3% by weight or more, and this semi-spheroidal graphite cast iron is austed. The purpose is to provide graphite cast iron that has even better vibration absorption ability and superior strength by tempering.

本発明に係る防線セミ球状黒鉛鋳鉄は、C:
3.0〜4.1重量%,Si:1.5〜4.0重量%,炭素当量
(C+1/3Si):4.3重量%以上、Mg:0.01〜
0.08重量%のセミ球状黒鉛鋳鉄をオーステンパー
処理したものであつて、黒鉛の球状化率が35〜70
%で、黒鉛を面積率で7〜15%含み、基地が残留
オーステナイトを面積率で10〜40%有するベーナ
イト組織からなることを特徴としている。
The wire-proof semi-spheroidal graphite cast iron according to the present invention has C:
3.0 to 4.1 wt%, Si: 1.5 to 4.0 wt%, carbon equivalent (C+1/3Si): 4.3 wt% or more, Mg: 0.01 to
0.08% by weight semi-spheroidal graphite cast iron is austempered, and the graphite spheroidization rate is 35 to 70.
%, it contains graphite in an area ratio of 7 to 15%, and the matrix is characterized by consisting of a bainitic structure having a retained austenite in an area ratio of 10 to 40%.

本発明において、黒鉛の球状化率は、日本鋳物
協会によつて提案された算出法によつて算出す
る。即ち、一定エリヤ内における各黒鉛粒のその
外接円に対する面積比に応じて5段階の形態〜
に分類し、各型態に属する黒鉛粒の粒数を数
え、これら各粒数に、形態ごとに与えた形状係数
を乗じたものの総和を全粒数で除した値をもつて
黒鉛の球状化率としている。
In the present invention, the spheroidization rate of graphite is calculated by a calculation method proposed by the Japan Foundry Association. That is, there are five levels of morphology depending on the area ratio of each graphite grain to its circumscribed circle within a certain area.
, count the number of graphite grains belonging to each type, and calculate the spheroidization of graphite by dividing the sum of the number of grains multiplied by the shape coefficient given for each type by the total number of grains. rate.

本発明においては、球状化率が上記範囲にある
ようなセミ球状黒鉛鋳鉄をオーステンパー処理し
て場合、残留オーステナイト量が少なく、セメン
タイトFe3Cが多くなることに着目し、セメンタ
イトとα鉄との境界摩擦量によつて決定される基
地のエネルギー吸収能を高めるようにしたことを
原理的な特徴としている。
In the present invention, we focused on the fact that when semi-spheroidal graphite cast iron with a spheroidization rate within the above range is austempered, the amount of retained austenite is small and the amount of cementite Fe 3 C increases. The principle feature is that the energy absorption capacity of the base is increased, which is determined by the amount of boundary friction.

即ち、本発明にかかるセミ球状黒鉛鋳鉄では、
比較的多量に基地中に存在する黒鉛結晶のすべり
によるエネルギー損失に、上記基地のエネルギー
損失を加え、両者のエネルギー損失によつて高い
振動吸収能を得ることができるのである。
That is, in the semi-spheroidal graphite cast iron according to the present invention,
By adding the energy loss of the base to the energy loss due to the sliding of the graphite crystals present in a relatively large amount in the base, high vibration absorption ability can be obtained by the energy loss of both.

次に、本発明にかかるセミ球状黒鉛鋳鉄の限定
理由について説明する。
Next, the reasons for limiting the semi-spheroidal graphite cast iron according to the present invention will be explained.

炭素量は、3.0重量%より少ないと生成黒鉛量
が不足し、4.1重量%より多くなると黒鉛鋳鉄の
強度が低下するので、炭素量は3.0〜4.1重量%と
することが好ましい。
If the amount of carbon is less than 3.0% by weight, the amount of graphite produced will be insufficient, and if it is more than 4.1% by weight, the strength of the graphite cast iron will decrease, so the amount of carbon is preferably 3.0 to 4.1% by weight.

SiはCと同様、炭素飽和度の関係で少なくとも
1.5重量%必要で、4.0重量%より多くなると、炭
素量の場合と同様黒鉛鋳鉄の強度が低下する。
Similar to C, Si has at least
1.5% by weight is required, and if it exceeds 4.0% by weight, the strength of graphite cast iron will decrease as in the case of carbon content.

炭素当量(C+1/3Si)は、4.3重量%より少
ないと鋳造性が悪化するため、4.3重量%以上必
要である。
If the carbon equivalent (C+1/3Si) is less than 4.3% by weight, castability deteriorates, so it is necessary to be at least 4.3% by weight.

Mgは黒鉛のセミ球状化に不可欠であつて、
0.01重量%より少ないと好ましい球状化率を得る
ことができず、0.08重量%より多いと、球状化率
が高くなりすぎ、減衰能が低下してしまうので
0.01〜0.08重量%の範囲とすることが好ましい。
Mg is essential for the semi-spheroidization of graphite.
If it is less than 0.01% by weight, a desirable spheroidization rate cannot be obtained, and if it is more than 0.08% by weight, the spheroidization rate becomes too high and the damping ability decreases.
It is preferably in the range of 0.01 to 0.08% by weight.

本発明にかかるセミ球状黒鉛鋳鉄の球状化率は
35〜70%とすることが好ましい。35%より低い球
状化率では、引張等の強度が不足し、70%を越え
ると、実質的に球状黒鉛鋳鉄の領域に移行して減
衰能が悪化する。
The spheroidization rate of the semi-spheroidal graphite cast iron according to the present invention is
It is preferably 35 to 70%. If the spheroidization rate is lower than 35%, tensile strength etc. will be insufficient, and if it exceeds 70%, it will substantially shift to the region of spheroidal graphite cast iron and the damping capacity will deteriorate.

黒鉛は、減衰能向上の点から面積率で7%以上
必要で、上限は上述したCとSiの量からして15%
までとなる。
Graphite needs to have an area ratio of 7% or more in order to improve damping ability, and the upper limit is 15% based on the amounts of C and Si mentioned above.
Until.

また、オーステンパー処理は、セミ球状黒鉛鋳
鉄をオーステナイト域で加熱後(920℃×2Hr)、
220〜360℃のソルト中で恒温変態させ、基地をベ
ーナイト組織とすることによつて行なう。240℃
以下では熱変形などの問題が生じ、360℃以上で
は析出するセメンタイトの形状が針状から羽毛状
に変わり、減衰能が低下してしまう。このオース
テンパー処理によつて、基地中にはセメンタイト
が比較的多く析出し、前述したようにセメンタイ
トとα鉄との境界摩擦の増大によつて基地のエネ
ルギー吸収能が向上するのである。
In addition, austempering treatment is performed after heating semi-spheroidal graphite cast iron in the austenite region (920℃ x 2Hr).
This is done by isothermal transformation in salt at 220 to 360°C to create a bainite structure as a base. 240℃
At temperatures below 360°C, problems such as thermal deformation occur, and at temperatures above 360°C, the shape of the precipitated cementite changes from needle-like to feather-like, reducing the damping ability. Due to this austempering treatment, a relatively large amount of cementite is precipitated in the base, and as mentioned above, the energy absorption ability of the base is improved by increasing the boundary friction between cementite and α-iron.

第1図は、本発明にかかるオーステンパー処理
セミ球状黒鉛鋳鉄の減衰能を、他の比較例ととも
に示している。
FIG. 1 shows the damping capacity of the austempered semi-spheroidal graphite cast iron according to the present invention, together with other comparative examples.

第1図中、曲線Aは、C3.6重量%,Si2.6重量
%,Mg0.03重量%、Mn0.4重量%、S0.02重量%
を含み球状化率37%のセミ球状黒鉛鋳鉄をソルト
温度360℃でオーステンパー処理した本発明にか
かるセミ球状黒鉛鋳鉄の減衰能を示し、曲線B
は、上記成分を有し、オーステンパー処理を施さ
なかつた無処理のセミ球状黒鉛鋳鉄の減衰能を示
している。
In Figure 1, curve A is 3.6% by weight of C, 2.6% by weight of Si, 0.03% by weight of Mg, 0.4% by weight of Mn, and 0.02% by weight of S.
Curve B shows the damping capacity of semi-spheroidal graphite cast iron according to the present invention, which is austempered semi-spheroidal graphite cast iron with a spheroidization rate of 37% at a salt temperature of 360°C.
represents the damping capacity of untreated semi-spheroidal graphite cast iron having the above components and not subjected to austempering treatment.

第1図から明らかなように、本発明にかかるセ
ミ球状黒鉛鋳鉄Aは、無処理のセミ球状黒鉛鋳鉄
Bに比して約30%程度減衰能が高くなつている。
As is clear from FIG. 1, the semi-spheroidal graphite cast iron A according to the present invention has a damping capacity approximately 30% higher than that of the untreated semi-spheroidal graphite cast iron B.

また、第1図中、曲線C,Dは夫々、C3.6重
量%,Si2.6重量%,Mg0.045重量%、Mn0.4重量
%、S0.02重量%、球状化率80%の球状黒鉛鋳鉄
についてオーステンパー処理を施したものと無処
理のものを示す。
In addition, in Fig. 1, curves C and D indicate C3.6% by weight, Si2.6% by weight, Mg0.045% by weight, Mn0.4% by weight, S0.02% by weight, and spheroidization rate of 80%. Shown are spheroidal graphite cast iron with and without austempering treatment.

したがつて、球状化率が高い黒鉛鋳鉄では、オ
ーステンパー処理の効果が実際上認められず、減
衰能も低い。本発明にかかるセミ球状黒鉛鋳鉄A
は、これら球状黒鉛鋳鉄C,Dに比して約2倍の
減衰能を示す。
Therefore, in graphite cast iron with a high spheroidization rate, the effect of austempering treatment is practically not recognized and the damping capacity is low. Semi-spheroidal graphite cast iron A according to the present invention
exhibits a damping capacity approximately twice that of these spheroidal graphite cast irons C and D.

また、第2図、第3図は、球状化率37%、黒鉛
12%;球状化率60%、黒鉛13%のオーステンパー
処理する前セミ球状黒鉛鋳鉄を、夫々、ノーエツ
チングで倍率100で示す顕微鏡写真である。
In addition, Figures 2 and 3 show that the spheroidization rate is 37% and the graphite
12%; Micrographs showing semi-spheroidal graphite cast iron before austempering treatment with a spheroidization rate of 60% and a graphite rate of 13% at a magnification of 100 without etching, respectively.

さらに、第4図は、第2図に示すセミ球状黒鉛
鋳鉄をオーステンパー処理した後の組織を倍率
450で示す顕微鏡写真である。この場合、基地は
実質的にベーナイト組織であつて、残留オーステ
ナイトは約20%である。
Furthermore, Figure 4 shows the structure of the semi-spheroidal graphite cast iron shown in Figure 2 after being austempered.
This is a micrograph shown at 450. In this case, the base is essentially a bainitic structure, with retained austenite being about 20%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるセミ球状黒鉛鋳鉄等の
減衰能を最大ひずみ振幅との関係で示すグラフ、
第2図、第3図はオーステンパー処理前のセミ球
状黒鉛鋳鉄の顕微鏡組織(倍率100倍)を夫々示
す図面代用写真、第4図は第2図に示したセミ球
状黒鉛鋳鉄をオーステンパー処理した後の顕微鏡
組織(倍率450倍)を示す図面代用写真である。
FIG. 1 is a graph showing the damping capacity of semi-spheroidal graphite cast iron, etc. according to the present invention in relation to the maximum strain amplitude.
Figures 2 and 3 are photographs substituted for drawings showing the microscopic structure (100x magnification) of semi-spheroidal graphite cast iron before austempering treatment, and Figure 4 is austempering treatment of semi-spheroidal graphite cast iron shown in Figure 2. This is a photograph substituted for a drawing showing the microscopic structure (450x magnification) after the process.

Claims (1)

【特許請求の範囲】[Claims] 1 C:3.0〜4.1重量%,Si:1.5〜4.0重量%,
炭素当量(C+1/3Si):4.3重量%以上、
Mg:0.01〜0.08重量%のセミ球状黒鉛鋳鉄オー
ステンパー処理したものであつて、黒鉛の球状化
率が35〜70%で、黒鉛を面積率で7〜15%含み、
基地が残留オースナイトを面積率で10〜40%有す
るベーナイト組織からなることを特徴とする防振
セミ球状黒鉛鋳鉄。
1 C: 3.0-4.1% by weight, Si: 1.5-4.0% by weight,
Carbon equivalent (C+1/3Si): 4.3% by weight or more,
Mg: 0.01-0.08% by weight semi-spheroidal graphite Cast iron is austempered, with a graphite spheroidization rate of 35-70% and an area ratio of graphite of 7-15%.
Anti-vibration semi-spheroidal graphite cast iron characterized in that the base consists of a bainitic structure having residual ausnite in an area ratio of 10 to 40%.
JP2966680A 1980-03-08 1980-03-08 Vibration isolating semispherical graphite cast iron Granted JPS56127747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2966680A JPS56127747A (en) 1980-03-08 1980-03-08 Vibration isolating semispherical graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2966680A JPS56127747A (en) 1980-03-08 1980-03-08 Vibration isolating semispherical graphite cast iron

Publications (2)

Publication Number Publication Date
JPS56127747A JPS56127747A (en) 1981-10-06
JPS6160140B2 true JPS6160140B2 (en) 1986-12-19

Family

ID=12282431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2966680A Granted JPS56127747A (en) 1980-03-08 1980-03-08 Vibration isolating semispherical graphite cast iron

Country Status (1)

Country Link
JP (1) JPS56127747A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2522291A1 (en) * 1982-03-01 1983-09-02 Pont A Mousson CENTRIFUGAL CAST IRON WITH SPHEROIDAL GRAPHITE AND MANUFACTURING METHOD THEREOF
US4744211A (en) * 1984-01-06 1988-05-17 Hitachi Metals, Ltd. Detachable chain and method of producing the same
JPS61264155A (en) * 1985-01-30 1986-11-22 Asahi Malleable Iron Co Ltd Spheroidal graphite cast iron having bainite matrix and its manufacture
JPS61264156A (en) * 1985-01-30 1986-11-22 Asahi Malleable Iron Co Ltd Spheroidal graphite cast iron having bainite matrix and its manufacture
SE531107C2 (en) * 2006-12-16 2008-12-23 Indexator Ab Method
CN110387457A (en) * 2019-07-04 2019-10-29 西安理工大学 A kind of regulation method of eutectic graphite steel and its high-carbon metastable austenite volume fraction

Also Published As

Publication number Publication date
JPS56127747A (en) 1981-10-06

Similar Documents

Publication Publication Date Title
JPH0239563B2 (en)
WO2014185455A1 (en) High-strength, high-damping-capacity cast iron
EP0144907A3 (en) Method of producing austempered spheroidal graphite cast iron body
JPS6160140B2 (en)
JPS58185745A (en) Spherical graphite cast iron parts and their manufacture
JP2000256776A (en) Brake disk material for vehicle
CN107090561A (en) The alloy cast iron and its Technology for Heating Processing of a kind of brake disk
US4666533A (en) Hardenable cast iron and the method of making cast iron
JP4252351B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
US3013911A (en) Malleable cast iron compositions
JPH0238645B2 (en) KOKYODOKYUJOKOKUENCHUTETSUNOSEIZOHOHO
JP2620695B2 (en) Iron-based casting with high strength
JPH01152240A (en) High toughness cast steel
JPH04175524A (en) Brake disc member
JPS60110843A (en) Spheroidal graphite cast iron for austempering
JP2812609B2 (en) Graphite cast steel
JP2602907B2 (en) Sheave material
JPH0140900B2 (en)
JPS6196054A (en) Spheroidal graphite cast iron and manufacture thereof
JPS62112753A (en) High strength cast steel and its manufacture
JP2730959B2 (en) Spheroidal graphite cast iron and method for producing the same
JPS60106946A (en) Spheroidal graphite cast iron and its production
JPH01268843A (en) Engine crankshaft bearing
JP2645416B2 (en) Anti-vibration alloy and its manufacturing method
JPH0116886B2 (en)