JPS6159469B2 - - Google Patents

Info

Publication number
JPS6159469B2
JPS6159469B2 JP54149574A JP14957479A JPS6159469B2 JP S6159469 B2 JPS6159469 B2 JP S6159469B2 JP 54149574 A JP54149574 A JP 54149574A JP 14957479 A JP14957479 A JP 14957479A JP S6159469 B2 JPS6159469 B2 JP S6159469B2
Authority
JP
Japan
Prior art keywords
core
support frame
wall
ring
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54149574A
Other languages
Japanese (ja)
Other versions
JPS5673387A (en
Inventor
Shigeru Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14957479A priority Critical patent/JPS5673387A/en
Priority to US06/207,010 priority patent/US4379119A/en
Publication of JPS5673387A publication Critical patent/JPS5673387A/en
Publication of JPS6159469B2 publication Critical patent/JPS6159469B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/04Means for suppressing fires ; Earthquake protection
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/02Details
    • G21C5/08Means for preventing undesired asymmetric expansion of the complete structure ; Stretching devices, pins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は原子炉炉心支持枠装置に係る。[Detailed description of the invention] The present invention relates to a nuclear reactor core support frame device.

原子炉、例えば高速増殖炉においては、その炉
心内は高温の液体ナトリウムで満され、且つ炉心
内には六角形断面の数百体の炉心構成要素が収容
されている。これらの炉心構成要素は、下端部の
みが炉心下部に設けられた支持板に支持定位され
ており、上端部は自由とされている。而して、上
記の構成要素の熱又は地震による変形を抑制する
ため、構成要素群を包囲して、それらを束ねるよ
うに構成要素群の上部、中間部に炉心支持枠が設
けられている。従つて、炉心構成要素は、一端固
定、他端自由の片持梁であり、それらは高温の流
体中に小間隔を有し密に配列されているため、地
震時には複雑な挙動を示す。特に前記の炉心支持
枠に隣接した炉心構成要素は、内部の構成要素群
および支持枠との衝突によつて比較的大きな衝突
荷重を受ける可能性がある。そのため、炉心支持
枠は炉心構成要素群の熱および地震による変形を
最小限におさえるのみでなく、炉心構成要素群と
の衝突時の衝突成力を低減させ、炉心構成要素群
の耐震性向上についても配慮して設計されること
が望ましい。
In a nuclear reactor, such as a fast breeder reactor, the core is filled with high-temperature liquid sodium and contains several hundred core components each having a hexagonal cross section. Only the lower ends of these core components are supported and positioned on a support plate provided below the core, and the upper ends are free. In order to suppress deformation of the above-mentioned components due to heat or earthquakes, a core support frame is provided at the upper and intermediate portions of the component group so as to surround and bundle the component group. Therefore, the core components are cantilever beams with one end fixed and the other end free, and because they are closely arranged with small intervals in the hot fluid, they exhibit complex behavior during earthquakes. In particular, core components adjacent to the core support frame may be subjected to relatively large collision loads due to collisions with internal components and the support frame. Therefore, the core support frame not only minimizes deformation of the core components due to heat and earthquakes, but also reduces the collision force in the event of a collision with the core components, thereby improving the earthquake resistance of the core components. It is desirable that the design takes this into consideration.

ところが従来の炉心支持枠は剛に固定されてる
ため前記のような配慮はなされていない。
However, since the conventional core support frame is rigidly fixed, the above considerations are not taken.

本発明は上記の事情に基きなされたもので、炉
心構成要素群の熱変形を最小限に抑止すると共
に、炉心構成要素群との衝突時の衝突エネルギを
吸収し衝突力を減少させ、構成要素全体の衝突力
全体の衝突力を減少させることができ且つ制振効
果を得ることができる炉心支持枠装置を得ること
を目的としている。
The present invention has been made based on the above circumstances, and it suppresses thermal deformation of a group of core components to a minimum, absorbs collision energy when colliding with a group of core components, reduces collision force, and The object of the present invention is to obtain a core support frame device that can reduce the overall collision force and obtain a vibration damping effect.

本発明においては、炉心支持枠を炉容器内壁に
摩擦ダンパを介して支持させることにより前記目
的を達成している。
In the present invention, the above object is achieved by supporting the core support frame on the inner wall of the reactor vessel via a friction damper.

以下、図面につき本発明の詳細を説明する。第
1図、第2図において、炉心構成要素1は下端を
炉心下部に設けた支持板2の透孔に挿入して所定
配置に支持されており、それらの形成する構成要
素群の外周には、構成要素群の上部および中間部
で構成要素群を包囲する炉心支持枠3,3が設け
られ、支持枠3は第3図に詳細を示した摩擦ダン
パ4を介して炉容器5の内壁に取付けられてい
る。なお、図中6は構成要素群を包囲して設けた
熱遮蔽板を示す。
The invention will be explained in detail below with reference to the drawings. In FIGS. 1 and 2, core components 1 are supported in a predetermined position by inserting their lower ends into through-holes in a support plate 2 provided at the bottom of the core, and the outer periphery of the component group formed by these components is , core support frames 3, 3 are provided to surround the component group at the upper and intermediate parts of the component group, and the support frame 3 is connected to the inner wall of the reactor vessel 5 via a friction damper 4, the details of which are shown in FIG. installed. Note that 6 in the figure indicates a heat shield plate provided surrounding the component group.

第3図において、支持枠3から炉容器5内壁に
向つて突出された支持部材7は、円筒状で容器5
の内壁側の端部が開放されたばね筒7aと、この
ばね筒7aと同心で前記開放端から突出した端部
に円形頭部7cをそなえた軸棒7bとを有する。
一方、容器5内壁に取り付けられた支持部材8
は、ばね筒7a内にはまり込むばね筒8aと、こ
のばね筒に前記円形頭部7cより小径の透孔を有
する隔壁8bを介して連るストツパ室8cとを有
し、軸棒7b先端の円形頭部7cはストツパ室8
c内に収容されている。また、軸棒7b先端はね
じ山が切られており、ナツト状の円形頭部7cに
よつて軸棒8bの長さが調節される。さらに軸棒
7bには輪ばね9が係合されている。輪ばね9は
外周面がそろばん玉状の内輪9aと、内輪9aの
傾斜面に対応する逆円錐面を両端面にそなえた外
輪9bとを組合わせて構成されている。これら傾
斜面と逆円錐面とは輪ばね9の収縮時に互いに摺
接する摩擦摺動面を構成している。なお、上記構
成の摩擦ダンパ4の箇数、組合せ、特性は適切に
選定し、炉心支持枠3の支持鋼性は原子炉平常運
転時の炉心構成要素の熱変形を抑止するに足るも
のとしておく。また、円形頭部7cによつて摩擦
ダンパの長さおよび軸棒7bにかかる初期張力を
適切に調整しておく。
In FIG. 3, a support member 7 protruding from the support frame 3 toward the inner wall of the furnace vessel 5 is cylindrical and has a cylindrical shape.
The spring cylinder 7a has an open end on the inner wall side, and a shaft rod 7b that is concentric with the spring cylinder 7a and has a circular head 7c at the end that protrudes from the open end.
On the other hand, a support member 8 attached to the inner wall of the container 5
has a spring cylinder 8a that fits into the spring cylinder 7a, and a stopper chamber 8c connected to the spring cylinder via a partition wall 8b having a through hole with a diameter smaller than that of the circular head 7c. The circular head 7c is the stopper chamber 8
It is housed in c. Further, the tip of the shaft rod 7b is threaded, and the length of the shaft rod 8b is adjusted by a nut-shaped circular head 7c. Further, a ring spring 9 is engaged with the shaft rod 7b. The ring spring 9 is constructed by combining an inner ring 9a having an abacus bead-shaped outer peripheral surface and an outer ring 9b having inverted conical surfaces on both end faces corresponding to the inclined surfaces of the inner ring 9a. These inclined surfaces and inverted conical surfaces constitute frictional sliding surfaces that slide against each other when the ring spring 9 contracts. Note that the number, combination, and characteristics of the friction dampers 4 having the above configuration are appropriately selected, and the supporting steel of the core support frame 3 is set to be sufficient to suppress thermal deformation of the core components during normal reactor operation. . Further, the length of the friction damper and the initial tension applied to the shaft rod 7b are appropriately adjusted by the circular head 7c.

前記の摩擦ダンパ4は、次のように作動する。 The friction damper 4 described above operates as follows.

すなわち、ばね筒7a,8aが互に近接する方
向の力(圧縮力)が作用すると、内輪9aが外輪
9b内にはまり込み、内輪9aは圧縮され外輪9
bは押拡げられる。その時、各輪は傾斜面に沿つ
てすべることとなり、摩擦による摩擦力が生じま
た内輪9aの圧縮、外輪9bの拡がりに対するそ
れらの復原力によつてばねとしての復原力が生じ
る。この時の輪ばね9の荷重特性は第4図に示す
ように、ヒステリシスループを示し、そのループ
内の面積に相当するエネルギが吸収される。
That is, when a force (compressive force) is applied in a direction that causes the spring tubes 7a and 8a to approach each other, the inner ring 9a fits into the outer ring 9b, the inner ring 9a is compressed, and the outer ring 9
b is expanded. At this time, each ring slides along the inclined surface, and a frictional force is generated due to friction, and a restoring force as a spring is generated by the restoring force against the compression of the inner ring 9a and the expansion of the outer ring 9b. The load characteristic of the ring spring 9 at this time shows a hysteresis loop as shown in FIG. 4, and energy corresponding to the area within the loop is absorbed.

上記のような摩擦ダンパ4を介して容器5内壁
に支持させた本発明の炉心支持枠3は次のように
作動する。地震の際に、炉心構成要素群が振動し
始め、支持わくと接する構成要素群1が炉心支持
枠3に衝突すると、摩擦ダンパ4内の輪ばね9に
荷重が作用し、輪ばね9は前記説明したようにし
て衝突エネルギを吸収すると共に適当な復源力を
生じる。炉心構成要素群の振動中、前記の衝突エ
ネルギの吸収と復原力の発生がくり返され、衝突
時の衝突エネルギを減少させ、また、炉心構成要
素群の振動を減少さ、炉心構成要素の過大な衝突
力の発生を防止することができる。
The core support frame 3 of the present invention supported on the inner wall of the vessel 5 via the friction damper 4 as described above operates as follows. During an earthquake, when the core component group begins to vibrate and the component group 1 in contact with the support frame collides with the core support frame 3, a load acts on the ring spring 9 in the friction damper 4, and the ring spring 9 In the manner described, the impact energy is absorbed and an appropriate restoring force is generated. While the core components are vibrating, the above-mentioned absorption of collision energy and generation of restoring force are repeated, reducing the collision energy at the time of the collision, reducing the vibration of the core components, and reducing the excessive force of the core components. It is possible to prevent the occurrence of severe collision force.

上記の如くであるから、本発明の炉心支持枠
は、原子炉の通常運転時には炉心構成要素群の熱
変形を抑止することができ、また地震発生時に
は、構成要素と支持枠との衝突力をばねの伸縮に
よる緩衝作用とばね間の摩擦摺動面の摺接による
振動減衰作用とにより吸収減少させ、炉心内の耐
震性を向上させることができる。また、特別な減
衰装置を設けることなく、各ばね間の摩擦作用で
振動減衰を行なうものであるため、構造が簡単で
あると共に、炉心がコンパクトになり炉心構成要
素と支持枠との間に介設するのに有利である。
As described above, the core support frame of the present invention can suppress thermal deformation of the core component group during normal operation of a nuclear reactor, and also reduce the collision force between the components and the support frame in the event of an earthquake. It is possible to reduce the amount of vibration absorbed by the shock absorbing effect caused by the expansion and contraction of the springs and the vibration damping effect caused by the sliding contact between the frictional sliding surfaces between the springs, thereby improving the seismic resistance within the core. In addition, since vibration is damped by the friction between each spring without the need for a special damping device, the structure is simple, the core is compact, and there is no need for an intervening device between the core components and the support frame. It is advantageous to set up

なお、例示した輪ばねによる摩擦ダンパは、比
較的小型であり乍ら剛性を大きくとることがで
き、しかもエネルギ吸収効率がよいので、同程度
の大きさの粘性ダンパ等に比しはるかに大きな減
衰効果が得られる。特に一時に荷重が作用する衝
突荷重に対して有効である。また、金属製である
ため耐熱性がすぐれている。さらに、内輪、外輪
の組合せによつて所望の特性のものを得ることが
できる。また、構造が簡単なため保守が容易であ
る。そのため、輪ばねを使用した摩擦ダンパは高
温の炉心内で使用するものとして最適であるが、
輪ばねにかえ皿ばねを使用した摩擦ダンパを採用
してもよい。さらに、本発明は例示の高速増殖以
外の原子炉にも適用し得る。
The friction damper using a ring spring as shown in the example is relatively small and has high rigidity, and has good energy absorption efficiency, so it has much greater damping than a viscous damper of similar size. Effects can be obtained. This is particularly effective against collision loads where loads are applied all at once. Also, since it is made of metal, it has excellent heat resistance. Furthermore, desired characteristics can be obtained by combining the inner ring and outer ring. Moreover, since the structure is simple, maintenance is easy. Therefore, friction dampers using ring springs are ideal for use inside high-temperature reactor cores, but
A friction damper using a disc spring instead of a ring spring may be used. Additionally, the present invention may be applied to nuclear reactors other than the illustrated fast breeder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の横断面図、第2図は
その縦断面図、第3図はその摩擦ダンパの断面
図、第4図は摩擦ダンパの荷重・たわみの特性線
図である。 3…炉心支持枠、4…摩擦ダンパ、5…炉容器
内壁、7,8…支持部材、7a,8a…ばね筒、
7b…軸棒、7c…頭部、8b…隔壁、8c…ス
トツパ室、9a,9b…輪ばね。
Fig. 1 is a cross-sectional view of an embodiment of the present invention, Fig. 2 is a longitudinal sectional view thereof, Fig. 3 is a sectional view of the friction damper, and Fig. 4 is a characteristic diagram of load and deflection of the friction damper. . 3...Core support frame, 4...Friction damper, 5...Inner wall of reactor vessel, 7, 8...Support member, 7a, 8a...Spring cylinder,
7b... Axis rod, 7c... Head, 8b... Partition wall, 8c... Stopper chamber, 9a, 9b... Ring spring.

Claims (1)

【特許請求の範囲】 1 炉心構成要素群を包囲する炉心支持枠と、こ
の炉心支持枠を炉容器内壁に固着するものであつ
て下記構成要件を有する摩擦ダンパとをそなえた
ことを特徴とする原子炉炉心支持枠装置。 a 前記炉心支持枠から炉容器内壁に向つて突出
した第1の支持部材、 b 前記容器内壁に設けられ前記第1の支持部材
に対向する第2の支持部材、 c 前記第1、第2の支持部材間に介設された複
数のばね、 d 前記複数のばね間に形成されこれらばねの収
縮により摺接する摩擦摺動面。
[Claims] 1. A reactor core support frame that surrounds a group of core components, and a friction damper that fixes the core support frame to the inner wall of the reactor vessel and has the following structural requirements. Nuclear reactor core support frame device. a: a first support member protruding from the core support frame toward the inner wall of the reactor vessel; b: a second support member provided on the inner wall of the vessel and facing the first support member; c: the first and second supports. a plurality of springs interposed between the support members; d a friction sliding surface formed between the plurality of springs and slidingly contacted by contraction of these springs;
JP14957479A 1979-11-20 1979-11-20 Nuclear reactor core supporting frame device Granted JPS5673387A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14957479A JPS5673387A (en) 1979-11-20 1979-11-20 Nuclear reactor core supporting frame device
US06/207,010 US4379119A (en) 1979-11-20 1980-11-13 Apparatus for supporting core constituting elements in nuclear reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14957479A JPS5673387A (en) 1979-11-20 1979-11-20 Nuclear reactor core supporting frame device

Publications (2)

Publication Number Publication Date
JPS5673387A JPS5673387A (en) 1981-06-18
JPS6159469B2 true JPS6159469B2 (en) 1986-12-16

Family

ID=15478159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14957479A Granted JPS5673387A (en) 1979-11-20 1979-11-20 Nuclear reactor core supporting frame device

Country Status (2)

Country Link
US (1) US4379119A (en)
JP (1) JPS5673387A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102189A (en) * 1982-12-06 1984-06-13 株式会社東芝 Earthquake-proof device of reactor core
JPS6089795A (en) * 1983-10-24 1985-05-20 財団法人電力中央研究所 Fast breeder reactor
US5402570A (en) * 1994-02-02 1995-04-04 Mpr Associates, Inc. Method for repairing boiling water reactor shrouds
US5600690A (en) * 1994-02-02 1997-02-04 Mpr Associates, Inc. Method and apparatus for repairing boiling water reactor shrouds utilizing tie-rods and braces
US5600689A (en) * 1994-02-02 1997-02-04 Mpr Associates, Inc. Method and apparatus for repairing boiling water reactor shrouds utilizing tie-rods with multiple longitudinal members
US5488643A (en) * 1994-05-11 1996-01-30 Combustion Engineering, Inc. Method and apparatus for supporting a shroud in a nuclear reactor
US5430779A (en) * 1994-05-16 1995-07-04 Combustion Engineering, Inc. Apparatus for supporting a shroud in a nuclear reactor
US5621778A (en) * 1994-05-19 1997-04-15 General Electric Company Shroud restraint stabilizer
US5588031A (en) * 1994-10-27 1996-12-24 Westinghouse Electric Corporation Apparatus for reinforcing a reactor vessel core shroud
US5687206A (en) * 1996-03-15 1997-11-11 Mpr Associates, Inc. Method of replacing a boiling water reactor core shroud
US5815543A (en) * 1996-03-25 1998-09-29 Mpr Associates, Inc. Seismic support with clearance gap and yieldable member
US5828713A (en) * 1996-10-15 1998-10-27 Mpr Associates, Inc. Replacement core shroud assembly for a boiling water reactor
CA2535280C (en) * 2003-08-15 2013-02-19 Pebble Bed Modular Reactor (Proprietary) Limited A support arrangement
PL3563387T3 (en) * 2016-12-30 2022-06-27 Nuscale Power, Llc Control rod damping system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022678A (en) * 1973-06-26 1975-03-11

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA608030A (en) * 1960-11-01 Commissariat A L'energie Atomique Nuclear reactor core supporting structure
CA585879A (en) * 1959-10-27 Rodwell William Gas cooled nuclear reactors
GB854144A (en) * 1958-05-12 1960-11-16 Hawker Siddeley Nuclear Power Improvements in or relating to nuclear reactors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022678A (en) * 1973-06-26 1975-03-11

Also Published As

Publication number Publication date
JPS5673387A (en) 1981-06-18
US4379119A (en) 1983-04-05

Similar Documents

Publication Publication Date Title
JPS6159469B2 (en)
CN201246433Y (en) Harmonic tremor peak-avoiding vibration damper
JPS6335201Y2 (en)
JP4638537B2 (en) Fuel assembly shock absorber and fuel assembly storage container
JP2000055117A (en) Base isolation device
SU717438A2 (en) Spring shock absorber
CN214657774U (en) A assembled building supporting seat for among building engineering
JP6420012B1 (en) Passive vibration control device for buildings
JP2811524B2 (en) Viscous type vibration dampers acting in horizontal and vertical directions
US3249330A (en) Shock and vibration isolation mounting
JPH0643286A (en) Vibration damper
JP2669112B2 (en) Damper for vibration isolation
JP2001228286A (en) Damper of cask
JPS62242145A (en) Damper for earthquake proofing use
JP3616425B2 (en) Lead damper with axial movement adjustment mechanism
JPS59151092A (en) Reactor
JP6579768B2 (en) boiler
RU209420U1 (en) SHOCK ABSORBER FOR REDUCING SEISMIC IMPACT
JPS6366987B2 (en)
CN216766343U (en) Novel steel construction with anti-seismic performance
JPS61189342A (en) Damper
JP2001041283A (en) Three-dimensional base isolation device
JPH0720637Y2 (en) Anti-vibration and seismic isolation device for heat insulation structure of reactor vessel
JPH05157206A (en) Boiler structure
JP2672540B2 (en) Fuel assembly