JPS6159303A - Plastic optical fiber - Google Patents

Plastic optical fiber

Info

Publication number
JPS6159303A
JPS6159303A JP59179435A JP17943584A JPS6159303A JP S6159303 A JPS6159303 A JP S6159303A JP 59179435 A JP59179435 A JP 59179435A JP 17943584 A JP17943584 A JP 17943584A JP S6159303 A JPS6159303 A JP S6159303A
Authority
JP
Japan
Prior art keywords
core
optical fiber
refractive index
polymer
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59179435A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
隆 山本
Ryuji Murata
龍二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59179435A priority Critical patent/JPS6159303A/en
Publication of JPS6159303A publication Critical patent/JPS6159303A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Multicomponent Fibers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To improve flexibility, environmental resistance characteristic, scratching resistance, etc. by constituting the core layer of an org. polymer having crosslinked structure and joining a light transmittable body consisting of an org. polymer or inorg. glass having high hardness to at least one end thereof. CONSTITUTION:The core layer 1 is formed of the org. polymer (e.g.;silicone resin, bisallyl carbonate resin) having the crosslinked structure of >=1.41 refractive index and the clad layer 2l consisting of the transparent org. polymer (e.g.; polytetrafluoroethylene, tetrafluoroethylene/ethylene copolymer) having the refractive index lower by <=0.01 than the refractive index of the core is provided on the outside circumference of the core 1. The light transmittable body 3 consisting of the transparent org. polymer (e.g.; polystyrene, polymethyl methacrylate) or inorg. glass having >=40 Rockwell hardness is joined to at least one end thereof by which the intended plastic optical fiber is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は可撓性に優れ、耐環境特性に優れた架橋構造を
有する樹脂成分をコア成分としたプラスチック系光学繊
維に関するものであシ、とくに、その末端の耐損傷性を
改良したプラスチック系光学繊維に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plastic optical fiber whose core component is a resin component having a crosslinked structure with excellent flexibility and environmental resistance. In particular, it relates to plastic optical fibers with improved damage resistance at their ends.

〔従来の技術〕[Conventional technology]

従来、光伝送性繊維としては、広い波長にわたってすぐ
れた光伝送性を有する無機ガラス系のものが知られてい
るが、加工性が悪く、曲げ応力に弱いばかシでなく高価
であることから合成樹脂を基体とする光伝送性繊維が開
発されている。合成樹脂製の光伝送性繊維は屈折率が大
きく、かつ光の透過性が良好な重合体をコアとし、これ
よりも屈折率が小さく、かつ透明な重合体をクラッド層
としてコアークラッド構造を有する繊維を製造すること
によって得られる。光透過性の高いコア成分として有用
な重合体と1〜ては無定形の材料が好ましく、ポリメタ
クリル酸メチル、あるいはポリスチレンが一般に使用さ
れている。
Conventionally, inorganic glass-based fibers have been known to have excellent optical transmission properties over a wide range of wavelengths, but synthetic fibers have poor workability, are weak against bending stress, and are expensive. Light transmitting fibers based on resin have been developed. Light transmitting fibers made of synthetic resin have a core-clad structure, with a core made of a polymer with a high refractive index and good light transmittance, and a cladding layer made of a transparent polymer with a smaller refractive index. Obtained by manufacturing fibers. The polymer useful as a core component with high light transmittance is preferably an amorphous material, and polymethyl methacrylate or polystyrene is generally used.

これらコア成分重合体のうち、ポリメタクリル酸メチル
は透明性をはじめとして力学的性質、熱的性質、耐候性
等に優れ、高性能プラスチック光学繊維の芯材として工
業的に用いられている。
Among these core component polymers, polymethyl methacrylate has excellent transparency, mechanical properties, thermal properties, weather resistance, etc., and is used industrially as a core material for high-performance plastic optical fibers.

しかしこのポリメタクリル酸メチルを芯としたプラスチ
ック光伝送性繊維といえども可撓性においては充分とい
えるものではなく、直径が1mm以上になると剛直で折
れやすいものであり、大容量の光を送るライトガイド等
の大口径であることが要求される用途においては十分な
特性を発揮することができず、大口径で柔軟な光伝送性
繊維の開発が要請されている。
However, even this plastic light transmitting fiber made of polymethyl methacrylate does not have sufficient flexibility, and if the diameter exceeds 1 mm, it is rigid and easily breaks, allowing it to transmit a large amount of light. In applications requiring a large diameter such as light guides, sufficient characteristics cannot be exhibited, and there is a need for the development of large diameter, flexible light transmitting fibers.

また、ポリメタクリル酸メチルをコアとしたプラスチッ
ク光伝送性繊維はポリメタクリル酸メチルのガラス転移
温度が100℃であシ、使用環境条件が100℃以上に
なると全く使用することができず、また耐薬品性、耐水
性にも劣るためプラスチック系光学繊維の用途拡大が阻
まれている。
In addition, the glass transition temperature of polymethyl methacrylate is 100°C, and plastic optical fibers with a core of polymethyl methacrylate cannot be used at all if the environmental conditions exceed 100°C. Expanding the use of plastic optical fibers is hampered by their poor chemical resistance and water resistance.

このような問題点を解決し得るプラスチック系光学繊維
として、特開昭57−88405号公報及び特開昭57
−102604号公報にシリコンゴムをコア成分とした
プラスチック系光学繊維に関する発EAが示されている
As a plastic optical fiber that can solve these problems, Japanese Patent Application Laid-Open No. 57-88405 and Japanese Patent Application Laid-Open No. 57-884
Publication No. 102604 discloses an EA related to plastic optical fibers containing silicone rubber as a core component.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これら先行発明に示されたシリコンゴムをコア成分とす
る光学繊維は、ゴム弾性を有し、かつ、その硬度も低い
ため、光学繊維の使用に際して必ず行われる繊維端部の
加工に際し、その端面を平滑に加工することが難しく、
かつ、その加工の際或いは、使用時に端面のコアークラ
ッド界面に剥離が生じ、塵埃が剥離界面に侵入し、光学
繊維の光伝送特性を低下させるという不都合が生じてい
たO 〔問題点を解決するための手段〕 そこで本発明者等は、上述した如き不都合のない架橋構
造を有する有機重合体をコア成分とするプラスチック系
光学繊維を開発すべく検討した結果、本発明を完成した
Optical fibers containing silicone rubber as a core component shown in these prior inventions have rubber elasticity and low hardness. Difficult to process smoothly,
Moreover, during processing or use, peeling occurs at the core-clad interface on the end face, causing dust to enter the peeled interface and reducing the optical transmission characteristics of the optical fiber. [Means for Achieving] Therefore, the present inventors conducted studies to develop a plastic optical fiber having a core component of an organic polymer having a crosslinked structure that does not have the above-mentioned disadvantages, and as a result, completed the present invention.

本発明の要旨とするところは、屈折率1.41以上の架
橋構造を有する有機重合体から成るコアと、このコアの
外周に設けられコアの屈折率よりも0.01以上低い屈
折率を有する実質的に透明な有機重合体から成るクラッ
ド層とを有するプラスチック系光学繊維であって、少な
くとも一端にロックウェル硬度40以上の透明な有機重
合体又は無機ガラスから成る透光体が接合されているこ
とを特徴とするプラスチック系光学繊維にある。
The gist of the present invention is to have a core made of an organic polymer having a crosslinked structure with a refractive index of 1.41 or more, and a core made of an organic polymer having a crosslinked structure with a refractive index of 1.41 or more, and a core that is provided on the outer periphery of the core and has a refractive index that is 0.01 or more lower than the refractive index of the core. A plastic optical fiber having a cladding layer made of a substantially transparent organic polymer, and a transparent material made of a transparent organic polymer or inorganic glass having a Rockwell hardness of 40 or more is bonded to at least one end. This is a plastic optical fiber that is characterized by:

本発明でコアを構成する架橋構造を有する有機重合体と
しては、シリコン樹脂、ビスアリルカーゼネート樹脂、
アリルフタレート樹脂、架橋構造を有するアクリル樹脂
などを用いることができるが、これらのうち、本発明の
光学繊維の取扱い性を考慮する際には、引張り強度0゜
5 k’i/1m”υ上、伸度20%以上なる特性を有
する架橋有機重合体であることが好ましい。これら樹脂
類のうちでも特にシリコン樹脂が好ましく、その架橋反
応形式としては例えば次の如きものを用いることができ
る。
Examples of the organic polymer having a crosslinked structure constituting the core in the present invention include silicone resin, bisallyl casenate resin,
Allyl phthalate resin, acrylic resin with a crosslinked structure, etc. can be used, but among these, when considering the handleability of the optical fiber of the present invention, a tensile strength of 0゜5 k'i/1 m"υ or more is recommended. , a crosslinked organic polymer having an elongation of 20% or more is preferable. Among these resins, silicone resins are particularly preferable, and the following types of crosslinking reactions can be used, for example.

(但し、Rは水素原子又は任意の一価の有機基を示して
いるものとする。) コアを構成する架橋有機重合体の屈折率は1.41以上
であることが必要であり、この屈折率の選定は、本発明
のプラスチック系光学繊維に要求される開口数に応じ適
宜選択すればよい。
(However, R shall represent a hydrogen atom or any monovalent organic group.) The refractive index of the crosslinked organic polymer constituting the core must be 1.41 or more; The ratio may be selected as appropriate depending on the numerical aperture required of the plastic optical fiber of the present invention.

コアを構成する架橋有機重合体を形成するに際しては、
上述した如き付加反応による架橋の他、架橋法としてパ
ーオキサイド、光、放射線、ルイス酸触媒などを用いて
行なうこともできる。
When forming the crosslinked organic polymer that constitutes the core,
In addition to crosslinking by addition reaction as described above, crosslinking can also be carried out using peroxide, light, radiation, Lewis acid catalyst, etc.

本発明において使用可能なりラッド層の成分はコア成分
重合体の屈折率より0.01以上低い屈折率を有し、実
質的に透明な有機重合体(好ましくは熱可塑性有機重合
体)であることが必要である。
The component of the rad layer that can be used in the present invention is a substantially transparent organic polymer (preferably a thermoplastic organic polymer) having a refractive index lower by 0.01 or more than the refractive index of the core component polymer. is necessary.

屈折率の差が0.01未満では得られる光学性繊維の開
口数が小さいばかりでなく、伝送損失は極めて大きくな
り、さらにクラッド層成分の屈折率がコア成分の屈折率
よシ大きくなると光は全く伝送されないからである。
If the difference in refractive index is less than 0.01, not only will the numerical aperture of the resulting optical fiber be small, but also the transmission loss will be extremely large.Furthermore, if the refractive index of the cladding layer component is larger than that of the core component, the light This is because it is not transmitted at all.

このように本発明のプラスチック系光学繊維のクラッド
層成分として用いられる低屈折率熱可塑性重合体の例と
しては、たとえばポリテトラフルオロエチレン(nd=
1.35)、テトラフルオロエチレン//f−フルオロ
アルキルビニルエーテル共重合体(1d=l、34〜1
.36 )、テトラフルオロエチレン/ヘキサフルオロ
プロピレン共重合体(”d =l、34 ) 、 yl
 !Jジクロロリフルオロエチレン(na ==l、4
25 ) 、テトラフルオロエチレン/エチレン共重合
体(nd=1.40)、ポリビニルフルオライド(nd
=1.42)、ポリビニリデンフルオライド(nd=1
.47)、テトラフルオロエチレン/ビニリデンフルオ
ライド共重合体(”d == 1.38〜1.42)、
その他各種の弗化アルキルメタクリレートの重合体、共
1合体(nd=1.38〜1.48)、ポリビニリデン
フルオライドとポリメチルメタクリレートのブレンド体
(nd−1,43〜1.48 )等の弗素系ポリマーの
外、ポリ4−メチル−1−ペンテン(n4=x、46)
、ポリメチルメタクリレ−) (nd=1.49 )が
コアの屈折率が高い場合には使用可能である。
Examples of the low refractive index thermoplastic polymer used as the cladding layer component of the plastic optical fiber of the present invention include, for example, polytetrafluoroethylene (nd=
1.35), tetrafluoroethylene//f-fluoroalkyl vinyl ether copolymer (1d=l, 34-1
.. 36), tetrafluoroethylene/hexafluoropropylene copolymer ("d = l, 34), yl
! J dichlorolifluoroethylene (na == l, 4
25), tetrafluoroethylene/ethylene copolymer (nd=1.40), polyvinyl fluoride (nd
= 1.42), polyvinylidene fluoride (nd = 1
.. 47), tetrafluoroethylene/vinylidene fluoride copolymer (“d == 1.38 to 1.42),
Other various fluorinated alkyl methacrylate polymers, comonomers (nd = 1.38 to 1.48), blends of polyvinylidene fluoride and polymethyl methacrylate (nd - 1,43 to 1.48), etc. In addition to fluorine-based polymers, poly4-methyl-1-pentene (n4=x, 46)
, polymethyl methacrylate) (nd=1.49) can be used if the core has a high refractive index.

本発明のプラスチック系光学繊維のコアの径は従来の光
学繊維の範囲5〜3000μmはもちろん、可撓性に優
れていることから、3000μmよシさらに太く50謳
程度の超極太の光伝送路も製造可能である。
The diameter of the core of the plastic optical fiber of the present invention is not only within the range of conventional optical fibers of 5 to 3000 μm, but due to its excellent flexibility, it is even thicker than 3000 μm, and can be used for ultra-thick optical transmission lines of about 50 mm. Manufacturable.

クラッド層の厚さは1μm以上であることが、得られる
光学繊維の全反射による光伝送を良好に行わしめるのに
必要であシ、クラッド層の厚味の上限はその使用目的に
応じ適宜選択することができる。
It is necessary for the thickness of the cladding layer to be 1 μm or more in order to achieve good optical transmission by total reflection of the obtained optical fiber, and the upper limit of the thickness of the cladding layer is selected as appropriate depending on the purpose of use. can do.

本発明の光学繊維の少なくとも一端に接合される透光体
に使用される透明な有機重合体は、 ASTMD785
Mスケールにて測定したロックウェル硬度が40以上の
ものであることが必要である。この硬度が40未満の場
合には、光学繊維の加工性が悪くなると共に使用時に容
器に損傷を受け、その光伝送性が低下するようになる。
The transparent organic polymer used for the transparent body bonded to at least one end of the optical fiber of the present invention meets ASTM D785.
It is necessary that the Rockwell hardness measured on the M scale is 40 or more. If the hardness is less than 40, the processability of the optical fiber will be poor and the container will be damaged during use, resulting in a decrease in its light transmission properties.

硬度が40以上の透明な有機重合体の例としてはポリス
チレン、ポリメチルメタクリレート、ポリベンジルメタ
クリレート、ポリカー?ネートなどを挙げることができ
、形状としては球体凸レンズ体状、凹レンズ体状、円柱
体状等種々の形状のものを用いることができる。この透
光体の光学繊維への接合は第1図中(イ)に示す如く、
貼シ合せによる接合法、あるいは、(ハ)の如くクラッ
ド層内に透光体の大部分を挿入する接合法も取シ得るが
、最も望しい形態は第1図(ロ)に示す如く透光体の一
部が光学繊維先端のクラッド層内に挿入された形態とし
たものである・これらの図中1は架橋構造を有するコア
を、2はクラッドを、3は透光体である。
Examples of transparent organic polymers with a hardness of 40 or higher include polystyrene, polymethyl methacrylate, polybenzyl methacrylate, and polycarbonate. Various shapes such as a spherical convex lens shape, a concave lens shape, and a cylindrical shape can be used. The connection of this transparent material to the optical fiber is as shown in (a) in Figure 1.
A bonding method by pasting or a bonding method in which most of the transparent material is inserted into the cladding layer as shown in (c) is also possible, but the most desirable form is a transparent material as shown in Figure 1 (b). A part of the light body is inserted into the cladding layer at the tip of the optical fiber. In these figures, 1 is a core having a crosslinked structure, 2 is a cladding, and 3 is a transparent body.

かくの如き形態をとらせることによって光学繊維と透光
体の接合状態は極めて良好なものとすることができ、光
学繊維の先端加工に際してもコアー(9,) クラッド界面の剥離という不都合をほぼ完全に防止する
ことができる。
By adopting such a configuration, the bonding state between the optical fiber and the light-transmitting material can be made extremely good, and the problem of peeling at the core (9,)-clad interface can be almost completely eliminated when processing the tip of the optical fiber. can be prevented.

本発明のプラスチック系光学繊維はクラッド層を構成す
る有機重合体を中空繊維状に賦形し、この中にコア成分
となる架橋有機重合体を形成せしめるための流動体状の
前駆体を吸引法ないし圧入法にて注入し、流動体物が静
止状態となったことを確認した後、架橋反応を開始せし
めるのが望ましい。なお、透光体の接合は、コア成分の
架橋反応前の流動状態のとぎに行ってもよいし、架橋後
に行ってもよい。
The plastic optical fiber of the present invention is produced by shaping the organic polymer constituting the cladding layer into a hollow fiber shape, and then using a suction method to form a fluid precursor into the hollow fiber to form the crosslinked organic polymer that will become the core component. It is preferable that the crosslinking reaction is started after the fluid is injected by a press injection method and it is confirmed that the fluid is in a stationary state. Note that the light-transmitting body may be joined after the core component is in a fluid state before the crosslinking reaction, or after the crosslinking reaction.

コア形成用前駆体は、賦形前に0.05〜10μm好ま
しくは0105〜1μmの孔径を持つメンブレンフィル
ターで濾過精製し、可視レーザー光線を照射して輝点が
ほとんど観察されない前駆体を使用することが光伝送性
繊維の伝送損失を低下させるためには必要となる。この
ような精製された前駆体を用いることによシ、600〜
700 nmの可視光による伝送損失を1000 dB
/km以下にすることは容易であシ、異物、塵の混入を
完全に防止すC10) れば、伝送損失を100 dB/km以下に低下させる
ことも可能となる。
The core-forming precursor should be purified by filtration with a membrane filter having a pore size of 0.05 to 10 μm, preferably 0.105 to 1 μm, before being shaped, and then irradiated with a visible laser beam to use a precursor in which almost no bright spots are observed. is necessary in order to reduce the transmission loss of the optically transmitting fiber. By using such a purified precursor, 600 ~
1000 dB transmission loss due to 700 nm visible light
It is easy to reduce the transmission loss to less than 100 dB/km, but if the incorporation of foreign matter and dust is completely prevented (C10), it is possible to reduce the transmission loss to less than 100 dB/km.

〔発明の効果〕〔Effect of the invention〕

本発明のプラスチック系光学繊維は従来のプラスチック
系光学#!維の5躊を越えた柔軟性、耐熱耐久性、耐寒
耐久性、耐薬品性、耐振動性を有する高性能、高信頼の
光伝送性繊維であシ、極めて過酷な環境下におかれても
、数百メートルの光通信が可能なプラスチック系光学繊
維であシ、また、端面加工に際するコアークラッド界面
の剥離等が防がれ、耐損傷性にも優れておシ、本発明の
意義は極めて大きい。
The plastic optical fiber of the present invention is similar to the conventional plastic optical fiber #! Made of high-performance, highly reliable light transmitting fiber that has flexibility, heat resistance, cold resistance, chemical resistance, and vibration resistance that exceeds the five resistances of fibers, and can be used in extremely harsh environments. The plastic optical fiber of the present invention is capable of optical communication over several hundred meters, and also prevents peeling of the core-clad interface during end face processing and has excellent damage resistance. The significance is extremely large.

本発明のプラスチック系光学繊維は自動車、船舶、飛行
機等の移動体内の特にエンジンルーム等の環境条件の厳
しい部体内の光コントロールに適している。
The plastic optical fiber of the present invention is suitable for controlling light in moving bodies such as automobiles, ships, and airplanes, especially in parts such as engine rooms that have severe environmental conditions.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

なお、各実施例において、Meはメチル基、phはフェ
ニル基、Viはビニル基を表すものとする。
In each example, Me represents a methyl group, pH represents a phenyl group, and Vi represents a vinyl group.

また、実施例中すべての部および壬は重量部およびMt
%を示1.、粘度はすべて25℃で測定した値である。
In addition, all parts and parts in the examples are parts by weight and Mt.
Indicates %1. , all viscosities are values measured at 25°C.

実施例1 粘度が700センチストークスの との混合物を孔径0.1μmのポリテトラフルオロエチ
レン製フィルターで濾過して得られた濾過物95.0部
にpbs t÷08iPh2H)、 5.0部および2
−エチルヘキサノールに溶解した塩化白金酸5/100
万部をそれぞれ孔径0,1μmのポリテトラフルオロx
 チL/ン製フィルターでP3mしてクリーンルーム内
で混合脱泡し、芯成分用前駆体を調製した。
Example 1 To 95.0 parts of a filtrate obtained by filtering a mixture with a polytetrafluoroethylene having a viscosity of 700 centistokes through a polytetrafluoroethylene filter having a pore size of 0.1 μm, 5.0 parts of pbs t÷08iPh2H), and 2
- chloroplatinic acid 5/100 dissolved in ethylhexanol
10,000 parts of polytetrafluoro x with a pore size of 0.1 μm
A core component precursor was prepared by mixing and defoaming in a clean room at P3m using a Chin L/N filter.

この前駆体を150℃で2時間加熱して得られたポリシ
ロキサンの物性は次の如くであった。
The physical properties of the polysiloxane obtained by heating this precursor at 150° C. for 2 hours were as follows.

屈折率nD1.51 +、引張り強さ2 kl’m” 
e伸び60チでありた。
Refractive index nD1.51 +, tensile strength 2 kl'm"
e elongation was 60 inches.

一方テドラフルオロエチレン/ヘキサフルオロプロピレ
ン、85/15共重合体(nd=1.34 )を325
℃で中空成形用ノズルよシ溶融押出し、内径911II
IIφ、外径10mnφの中空糸を得た。
On the other hand, 325 tedrafluoroethylene/hexafluoropropylene, 85/15 copolymer (nd=1.34)
Melt extrusion through blow molding nozzle at °C, inner diameter 911II
A hollow fiber having an outer diameter of 10 mmφ and an outer diameter of 10 mmφ was obtained.

この中空糸をLoomに切ったものを2本用意し、一端
を真空ポンプに継ぎ、他端よシ上述の芯成分用前駆体を
充填し、一方の中空繊維の両末端はロックウェル硬度8
0の外径9.:3++Im、長さ10暉の円柱状凸プラ
スチックレンズを中空糸内へ前駆体と円柱状凸レンズの
接点との間に気泡が入らないように第1図(ロ)に示す
如く挿入し、他方の中空糸は、このような処理を行なわ
なかった。
Prepare two pieces of this hollow fiber cut into looms, connect one end to a vacuum pump, fill the other end with the above-mentioned core component precursor, and both ends of one hollow fiber have a Rockwell hardness of 8.
0 outer diameter 9. : A cylindrical convex plastic lens with a length of 3++Im and 10 mm is inserted into the hollow fiber as shown in Figure 1 (b) so that no air bubbles enter between the contact point of the precursor and the cylindrical convex lens, and the other The hollow fibers were not subjected to such treatment.

上記した前駆体を充填した2本の中空繊維を150℃で
1時間加熱処理して前駆体の架橋処理を完了しプラスチ
、り系光学繊維を作成した。
Two hollow fibers filled with the above-mentioned precursor were heat-treated at 150° C. for 1 hour to complete crosslinking of the precursor, and a plasti-based optical fiber was produced.

得られた2種類のプラスチック系光学繊維をそれぞれ5
mにナイフで切断し、同一光源に取シ付は出射光量を測
定した。この時凸レンズを取り付けた光学繊維は凸レン
ズ側を光源部に取シ付けた。
Each of the two types of plastic optical fibers obtained was
The light source was cut with a knife into the same length as the light source, and the amount of light emitted was measured. At this time, the convex lens side of the optical fiber to which the convex lens was attached was attached to the light source.

出射光量は凸レンズを取シ付けた光学繊維は凸レンズを
取シ付けないものに比べて2.3倍明るかった。
The amount of light emitted from the optical fiber with a convex lens was 2.3 times brighter than that without a convex lens.

実施例2 実施例1において円柱状凸レンズを9.5 Wm径の透
明ガラス球に変え、かつ両端面に取シ付ける以外は、実
施例1と同様にして、光学繊維を得た。
Example 2 An optical fiber was obtained in the same manner as in Example 1, except that the cylindrical convex lens in Example 1 was replaced with a transparent glass sphere with a diameter of 9.5 Wm, and the lenses were attached to both end faces.

この光学繊維を使用して160℃に加熱された暗箱内部
の照明を行ったところ、その明るさは24時間たっても
変化しなかった。
When this optical fiber was used to illuminate the inside of a dark box heated to 160°C, the brightness did not change even after 24 hours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(ハ)、(ロ)及びeうは本発明のプラスチック
系光学繊維の先端部の断面図である。
FIGS. 1C, 1B, and 1E are cross-sectional views of the tip of the plastic optical fiber of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 屈折率1.41以上の架橋構造を有する有機重合体から
成るコアと、このコアの外周に設けられコアの屈折率よ
りも0.01以上低い屈折率を有する実質的に透明な有
機重合体から成るクラッド層とを有するプラスチック系
光学繊維であつて、少なくとも一端にロックウェル硬度
40以上の透明な有機重合体又は無機ガラスから成る透
光体が接合されていることを特徴とするプラスチック系
光学繊維。
A core made of an organic polymer having a crosslinked structure with a refractive index of 1.41 or more, and a substantially transparent organic polymer provided around the outer periphery of the core and having a refractive index lower than the refractive index of the core by 0.01 or more. 1. A plastic optical fiber having a cladding layer comprising a cladding layer, the optical fiber having a transparent material made of a transparent organic polymer or inorganic glass having a Rockwell hardness of 40 or more bonded to at least one end. .
JP59179435A 1984-08-30 1984-08-30 Plastic optical fiber Pending JPS6159303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59179435A JPS6159303A (en) 1984-08-30 1984-08-30 Plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59179435A JPS6159303A (en) 1984-08-30 1984-08-30 Plastic optical fiber

Publications (1)

Publication Number Publication Date
JPS6159303A true JPS6159303A (en) 1986-03-26

Family

ID=16065811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59179435A Pending JPS6159303A (en) 1984-08-30 1984-08-30 Plastic optical fiber

Country Status (1)

Country Link
JP (1) JPS6159303A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289914A (en) * 1985-05-31 1987-04-24 Sumitomo Electric Ind Ltd Optical waveguide integrated with optical element and its production
JPS63291003A (en) * 1987-05-25 1988-11-28 Hitachi Ltd Regular optical fiber
JPH04108751U (en) * 1991-03-07 1992-09-21 由之 林 Construction concrete plate hanging tool
EP1291687A2 (en) * 2001-09-07 2003-03-12 Nhk Sales Company Limited Fiber end surface processing method and apparatus for a plastic optical fiber
WO2003021309A1 (en) * 2001-08-27 2003-03-13 Kurabe Industrial Co., Ltd. Light transmitting material, structure connecting light transmitting material and optical device, and method for manufacturing light transmitting material
US6671432B2 (en) * 2000-04-05 2003-12-30 Canon Kabushiki Kaisha Plastic optical fiber with a lens portion, optical fiber connector, and connecting structures and methods between optical fibers and between optical fiber and light emitting/receiving device
US6826329B2 (en) 2000-04-05 2004-11-30 Canon Kabushiki Kaisha Plastic optical fiber with a lens, light-emitting/receiving apparatus with the plastic optical fiber with a lens, and method of fabricating the plastic optical fiber with a lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289914A (en) * 1985-05-31 1987-04-24 Sumitomo Electric Ind Ltd Optical waveguide integrated with optical element and its production
JPS63291003A (en) * 1987-05-25 1988-11-28 Hitachi Ltd Regular optical fiber
JPH04108751U (en) * 1991-03-07 1992-09-21 由之 林 Construction concrete plate hanging tool
US6671432B2 (en) * 2000-04-05 2003-12-30 Canon Kabushiki Kaisha Plastic optical fiber with a lens portion, optical fiber connector, and connecting structures and methods between optical fibers and between optical fiber and light emitting/receiving device
US6826329B2 (en) 2000-04-05 2004-11-30 Canon Kabushiki Kaisha Plastic optical fiber with a lens, light-emitting/receiving apparatus with the plastic optical fiber with a lens, and method of fabricating the plastic optical fiber with a lens
WO2003021309A1 (en) * 2001-08-27 2003-03-13 Kurabe Industrial Co., Ltd. Light transmitting material, structure connecting light transmitting material and optical device, and method for manufacturing light transmitting material
EP1291687A2 (en) * 2001-09-07 2003-03-12 Nhk Sales Company Limited Fiber end surface processing method and apparatus for a plastic optical fiber
EP1291687A3 (en) * 2001-09-07 2004-12-15 Nhk Sales Company Limited Fiber end surface processing method and apparatus for a plastic optical fiber

Similar Documents

Publication Publication Date Title
KR100242043B1 (en) Plastic optical fiber
US4828359A (en) Alkyl methacrylate homo - or copolymer optical waveguide for illumination and production of the same
JPS6159303A (en) Plastic optical fiber
JPS5880602A (en) Fiber for infrared light
EP0153414A1 (en) Optical transmission fibers and process for their production
KR20200128006A (en) Plastic optical fiber and plastic optical fiber cord
CN110431459B (en) Plastic optical fiber, plastic optical cable, wire harness, and vehicle
US9798043B2 (en) Optical fiber, optical fiber cable and communication equipment
JPS6043613A (en) Light-transmittable fiber
JP2021119413A (en) Plastic optical fiber, plastic optical fiber cable, plastic optical fiber cable with connector, optical communication system, and plastic optical fiber sensor
JP2005099447A (en) Method of manufacturing plastic optical fiber cable
JP4149605B2 (en) Heat-resistant plastic optical fiber
JPS6122306A (en) Light guide for illumination
JP2019003162A (en) Plastic optical fiber and plastic optical fiber cable
JP7501007B2 (en) Fiber optic cable
JP2504760B2 (en) Heat resistant plastic optical fiber
JPS62204209A (en) Plastic optical fiber
JP2971626B2 (en) Image fiber
JP2004093639A (en) Optical fiber having sea-island structure
JP5713218B2 (en) Fiber optic cable
JP2021120941A (en) Peripheral surface light-emitting type light guide bar
JPS62269905A (en) Optical transmission fiber
JPS61273504A (en) Plastic optical fiber
JP2024137126A (en) Plastic optical fiber cable and its manufacturing method
JP2547669B2 (en) Optical fiber sheath material composition