JPS6159169A - Method of discharging noncondensable gas from separate type heat exchange device - Google Patents

Method of discharging noncondensable gas from separate type heat exchange device

Info

Publication number
JPS6159169A
JPS6159169A JP17955384A JP17955384A JPS6159169A JP S6159169 A JPS6159169 A JP S6159169A JP 17955384 A JP17955384 A JP 17955384A JP 17955384 A JP17955384 A JP 17955384A JP S6159169 A JPS6159169 A JP S6159169A
Authority
JP
Japan
Prior art keywords
gas
pipe
condensable gas
heat exchange
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17955384A
Other languages
Japanese (ja)
Inventor
浄 竹内
健司 鈴木
池野 健
郡山 日出夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kawasaki Steel Corp filed Critical Furukawa Electric Co Ltd
Priority to JP17955384A priority Critical patent/JPS6159169A/en
Publication of JPS6159169A publication Critical patent/JPS6159169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はセパレート型熱交換装置の非凝縮性ガス排出方
法に関するもので、特に大型装誼内に滞留して熱交換特
性に恕影臂を及ぼす非凝縮性ガスを効果的に排出するも
のである。 〔従来の技術〕 一般に工場排ガスや排水等の顕然回収には作動液の蒸発
、凝縮による相変態により熱交換を行なうヒートパイプ
を用いた熱交換装置が用いられているが、排ガスや排水
等の排熱源(加熱流体)と熱利用部く液加P!A流体)
の条件によっては、作りノ液の蒸発と凝縮を離れた位置
で行なわせる必要があり、このような場合にはセパレー
ト型熱交換装置が用いられている。この装置は第5図に
示すように蒸発部(1)と凝縮部(2)を離れた位置に
配置し、凝縮部(2)の下方に作動液タンク(3)を連
結し、蒸発部(1)と凝縮部(2)を断熱配管(4)で
連結すると共に、蒸発部(1)とタンク(3)を断] 
     熱配管(5)で連結することにより、循環回
路を形成し、該回路内に作動液(6)を封入し、これを
矢印方向に循環させて蒸発部(1)で加熱流体(A)に
より作動液(6)を蒸発させ、発生した蒸気を配’i!
(4)により凝縮部(2)に導入し、被加熱流体(B)
により冷却凝縮させてタンク(3)内に流下さぼること
により、加熱流体(A)と被加熱流体(B)間で熱交換
を行なわせるものである。作動液(6)の循環は蒸発部
(1)と凝縮部(2)の高さ関係により自然循環させる
か、又は図に示すように配管く5)にポンプ(7〉を設
けて強制循環させている。 この装置はヒートパイプの原理を応用したもので、蒸発
部と凝縮部が離れていても作動液と蒸気の還流が良好で
、優れた熱交換特性を示す。 しかしながら実際の排熱回収等において回路内に非凝縮
性ガスが存在すると作動液と蒸気の移動を阻害するばか
りか、凝縮部内に滞留して熱交換特性を低下する。例え
ば作動時の回路内には空気等が残存し、また運転中に作
動液と装置材料の反応により非凝縮性ガス(水と鉄の場
合には水素)を発生することがあり、更に回路内を負圧
状態で運転すると、フランジ等から空気を吸込む。従っ
て凝縮部内の非凝縮性ガスの1lil留を速やかに検知
し、これを適当なタイミングで排出する必要がある。 非凝縮性ガスは凝縮部の蒸気の流れの下流側にn留する
ため、従来は下流側に排出管を設けて非凝縮性ガスの排
出を行なっている。例えば第6図に示すようにパイプ状
又はチャンバー状(図はパイプ状の場合を示す)の上下
両ヘッダー(2a)、(2b)間に多数の伝熱管(2C
)を取付けC凝縮部(2)を形成し、上部ヘッダー(2
a)に蒸気導入用配管(4)を接続し、下部ヘッダー(
2b)にタンク(3)と連結する配管(10)を取付け
、該配管(10)に排出バルブ(12〉を設けた排出管
(11)を取付番プる。このようにして配管(4)から
導入した蒸気を上部ヘッダー(2a)から各伝熱管(2
C)内に流し、被加熱流体(B)よ・り冷却して伝熱管
(2C)の内壁に凝縮液滴(8)とし、これを流下させ
ると、非凝縮性ガス(9)は蒸気の流れの下流側、即ち
下部ヘッダー(2b)とその下方に滞留する。 排出’!(11)に設けた排出バルブ(12)を人力又
は自動的に開閉することにより非凝縮性ガス(9)の排
出を行なっている。 〔発明が解決しようとする問題点〕 しかるに装置が大型になると、凝縮部における伝熱管の
数も多くなり、ヘッダーも長尺又は大型化するため、第
7図に示すように排出バルブ(12)を開くと、配管(
10)近傍の伝熱管(2cm6)、(2cm7)から非
凝縮性ガス(9)が抜は終り、次に蒸気が抜けてくる段
階になっても配管(10)から遠い伝熱管(2cm1)
 、(2cm2)(2cm3 )・・・内には非凝縮性
ガス(9)が残留する。そのため配管(10)近傍の伝
熱管(2cm6 )、(2cm7)では管内の全長に蒸
気が充満して高い熱交換特性を示すも、配管(10)か
ら遠い伝熱fl (2cm1)、(2cm2 )、(2
cm3>−’Pは非ill Jla性ガス(9)の残留
部分が伝熱面として寄与しないため装置全体としての熱
交換特性が低下する欠点があった。 〔問題点を解決するだめの手段〕 本発明はこれに鑑み種々検討の結果、ガス排出管又はガ
ス排出管付配管を2個以上間隔を設けて取付けるか、又
は/及び非凝縮性ガス排出側の伝熱管端部にオリフィス
を取付け、ガス排出管又はガス排出管付配管に近いほど
オリフィス径を小さくすると有効であることを知見し、
更に検討の結果、大型装置において滞留する非凝縮性ガ
スを効果的に排出することかぐきるセパレート型熱交換
装置の非凝縮性ガス排出方法を開発したものである。 本発明の一つは多数の伝熱管の両端にヘッダーを取付け
た蒸発部と凝縮部を分離して配置し、これを断熱配管に
より連結して循環回路を形成し、該回路内に作動液を封
入循環させて作動液の相変態により熱交換を行なう装置
の非凝縮性ガスを排出する方法において、:凝縮部の蒸
気の流れの下流側ヘッダーに、ガス排出管又はガス排出
管付配管を2個以上間隔を設けて取付け、該排出管より
非凝縮性ガスを排出することを均一化するものである。 また本発明の他の一つは多数の伝熱管の両端にヘッダー
を取付$−J /ζ蒸発部と凝縮部を分離しで配置し、
これを断熱配管により連結して循環回路を形成し、該回
路内に作動液を封入循環させて作動液の相変態により熱
交換を行なう装置の非凝縮性ガスを排出する方法におい
て、凝縮部の蒸気の流れの下流側ヘッダーに、ガス排出
管又はガス排出管付配管を11以上取付()、該ヘッダ
ーに取付けた伝熱管端部にオリフィスを設け、ガス排出
管又はガス排出管付配管の取付は部に近いほどオリフィ
スの穴径を小さくして排出管より非凝縮性ガスを排出す
ることを均一化するものである。 即ち本発明の一つは
第1図に示すように多数の伝熱管(2cm1)、(2c
m2 )・・・Bc−n)を取付けた凝縮部(2)の蒸
気の流れの下流側(図では下方)のヘッダー(2b)に
、ガス排出管 (11a)を設けた配管(10)を2個
以上(図は3個の場合を示す)間隔を設けて取付けるか
、又は第2図に示すようにヘッダー(2b)に1個の配
管(10)と2個以上(図は3個の場合を示す)のガス
排出管(11b)を間隔を設け′C取付けたものである
。このようにし゛C各排出管 (lla)、(11b)
を単独又は並列に連結しC排出バルブ(12)と接続り
るか、又は図に示すように排出管(11a)、(llb
)に絞り弁(13)を取付けて並列に連結し、これを排
出バルブ(12)と接続する。このようにして図には示
していないが配管より凝縮部内に導入した蒸気を被加熱
流体により冷却し、凝縮した作動液(6)を配管(10
)によりタンク内に流上せしめ、各蒸発管(2cm  
1)、(2cm2)・・・(2cmn)内に滞留した非
凝縮性ガス(9)を排出バルブ(12)を通して排出す
るものである。 また本発明の他の一つは第3図に示づように多数の伝熱
管< 20−1 )、(2cm2) ・(2cmn)取
付けた凝縮部(2)の蒸気の流れの下流側(図では下方
)のヘッダー(2b)に、ガス排出色・(11)又はガ
ス排出管(=J配管(10)を1個以上〔図は排出管付
き配管(10)が1個の場合を示す〕取付け、ヘッダー
(2b)に取付(プた伝熱管(2cm1 )、(20−
2)−(2O−n)の端部にオリフィス(14)を設け
、排出管(11)又は排出管付配管(10)に近いほど
オリフィス(14)の穴径を小さくりる。このようにし
て図には示してないが配管より凝縮部内に導入した蒸気
を被加熱流体により冷却し、凝縮した作動液(6)を配
管(10)よりタンク内に流下せしめ、各蒸発管(2c
m1 >、(2cm2)−(2cmn)内に滞留りる非
凝縮性ガス(9)を排出バルブ(12)より排出り゛る
ものである。尚排出管又は排出管イ」配管を2個以上設
けた場合には第1図又は第2図の場合と同様排出管に絞
り弁を設けるとよい。 (作 用) このように蒸気の流れの下流側ヘッダーにガス排出管又
はガス排出管付配管を21[!!1以上間隔を設
[Industrial Field of Application] The present invention relates to a method for discharging non-condensable gas from a separate heat exchange device, and in particular, to effectively eliminate non-condensable gas that accumulates in a large equipment and affects heat exchange characteristics. It is something that is discharged. [Prior art] Heat exchange equipment using heat pipes that exchange heat through phase transformation due to evaporation and condensation of the working fluid is generally used for the apparent recovery of factory exhaust gas, waste water, etc. Exhaust heat source (heating fluid) and heat utilization section liquid addition P! A fluid)
Depending on the conditions, it is necessary to evaporate and condense the preparation liquid at separate locations, and in such cases a separate heat exchanger is used. As shown in Fig. 5, this device has an evaporation section (1) and a condensation section (2) placed at separate positions, a working fluid tank (3) connected below the condensation section (2), and a working fluid tank (3) connected to the bottom of the condensation section (2). 1) and the condensing section (2) are connected with an insulated pipe (4), and the evaporating section (1) and tank (3) are disconnected]
A circulation circuit is formed by connecting the heat pipes (5), and a working fluid (6) is sealed in the circuit, which is circulated in the direction of the arrow to be heated by the heating fluid (A) in the evaporation section (1). Evaporate the working fluid (6) and distribute the generated steam!
(4), the fluid to be heated (B) is introduced into the condensing section (2).
By cooling and condensing the fluid and flowing down into the tank (3), heat exchange is performed between the heating fluid (A) and the fluid to be heated (B). The working fluid (6) can be circulated naturally depending on the height relationship between the evaporating section (1) and the condensing section (2), or it can be forced to circulate by installing a pump (7) in the piping 5) as shown in the figure. This device applies the principle of a heat pipe, and even if the evaporating section and condensing section are separated, the working fluid and steam can circulate well, and it exhibits excellent heat exchange characteristics.However, actual waste heat recovery is difficult. If non-condensable gas exists in the circuit, it not only obstructs the movement of the working fluid and steam, but also stays in the condensing section and deteriorates the heat exchange characteristics.For example, if non-condensable gas exists in the circuit during operation, air etc. Also, during operation, non-condensable gas (hydrogen in the case of water and iron) may be generated due to the reaction between the hydraulic fluid and equipment materials, and if the circuit is operated under negative pressure, air may be drawn from the flange etc. Therefore, it is necessary to promptly detect 1 liter of non-condensable gas in the condensing section and discharge it at an appropriate timing. Conventionally, a discharge pipe is provided on the downstream side to discharge non-condensable gas. For example, as shown in Fig. 6, a pipe-shaped or chamber-shaped (the figure shows a pipe-shaped case) both upper and lower headers ( A large number of heat exchanger tubes (2C
) to form the C condensing section (2), and attach the upper header (2).
Connect the steam introduction pipe (4) to a) and connect the lower header (
Attach the piping (10) that connects to the tank (3) to 2b), and attach the exhaust pipe (11) with the exhaust valve (12>) to the piping (10).In this way, the piping (4) Steam introduced from the upper header (2a) is passed through each heat exchanger tube (2
C) and is cooled by the heated fluid (B) to form condensed droplets (8) on the inner wall of the heat transfer tube (2C). When this is allowed to flow down, the non-condensable gas (9) becomes a vapor. It stays on the downstream side of the flow, that is, in and below the lower header (2b). Exhaust'! The non-condensable gas (9) is discharged by manually or automatically opening and closing a discharge valve (12) provided at (11). [Problems to be Solved by the Invention] However, as the device becomes larger, the number of heat exchanger tubes in the condensing section also increases, and the header also becomes longer or larger. When you open the pipe (
10) Even after the non-condensable gas (9) has been exhausted from the nearby heat exchanger tubes (2cm6) and (2cm7), the heat exchanger tube (2cm1) is far from the piping (10) even when steam starts to escape.
, (2cm2) (2cm3)..., the non-condensable gas (9) remains. Therefore, although the heat transfer tubes (2cm6) and (2cm7) near the pipe (10) are filled with steam throughout their length and exhibit high heat exchange characteristics, the heat transfer tubes (2cm1) and (2cm2) that are far from the pipe (10) exhibit high heat exchange characteristics. ,(2
cm3>-'P has the disadvantage that the remaining portion of the non-ill Jla gas (9) does not contribute as a heat transfer surface, resulting in a decrease in the heat exchange characteristics of the entire device. [Means for Solving the Problems] In view of this, the present invention has been developed as a result of various studies, and has been developed by installing two or more gas exhaust pipes or piping with gas exhaust pipes at intervals, or/and by installing a non-condensable gas exhaust side. We found that it is effective to install an orifice at the end of the heat exchanger tube and make the orifice diameter smaller the closer it is to the gas exhaust pipe or piping with the gas exhaust pipe.
As a result of further studies, we have developed a method for discharging non-condensable gas from a separate heat exchanger that can effectively discharge non-condensable gas stagnant in large-scale equipment. One of the present inventions is to separately arrange an evaporation section and a condensation section with headers attached to both ends of a large number of heat transfer tubes, connect them with heat insulated piping to form a circulation circuit, and supply the working fluid into the circuit. In a method for discharging non-condensable gas from a device that performs heat exchange through phase transformation of a working fluid by enclosing and circulating it: Two gas discharge pipes or piping with gas discharge pipes are installed in the header on the downstream side of the flow of steam in the condensing section. The pipes are installed at intervals of at least 1,000,000,000, and the non-condensable gas is uniformly discharged from the discharge pipe. Another aspect of the present invention is to attach headers to both ends of a large number of heat transfer tubes, and to separate the evaporation section and condensation section,
In a method for discharging non-condensable gas from a device that connects these with insulated piping to form a circulation circuit, encloses and circulates a working fluid in the circuit, and performs heat exchange through phase transformation of the working fluid, the condensing section is Attach 11 or more gas exhaust pipes or piping with gas exhaust pipes to the header on the downstream side of the steam flow (), provide an orifice at the end of the heat transfer tube attached to the header, and install gas exhaust pipes or piping with gas exhaust pipes. The diameter of the orifice is made smaller as it gets closer to the exhaust pipe to uniformly discharge non-condensable gas from the exhaust pipe. That is, one of the present inventions is as shown in FIG.
A pipe (10) equipped with a gas discharge pipe (11a) is connected to the header (2b) on the downstream side (downward in the figure) of the steam flow of the condensing section (2) where the Install two or more pipes (the figure shows three pipes) at intervals, or install one pipe (10) and two or more pipes (the figure shows three pipes) on the header (2b) as shown in Figure 2. The gas exhaust pipes (11b) are installed at intervals. In this way, each discharge pipe (lla), (11b)
be connected singly or in parallel and connected to the C discharge valve (12), or as shown in the figure, the discharge pipes (11a), (llb
) is connected in parallel with a throttle valve (13), which is then connected to the discharge valve (12). Although not shown in the figure, the steam introduced into the condensing section from the piping is cooled by the heated fluid, and the condensed working fluid (6) is transferred to the piping (10).
) to flow up into the tank, and each evaporator tube (2 cm
1), (2cm2)...(2cmn), the non-condensable gas (9) retained in the chamber is discharged through the discharge valve (12). Another aspect of the present invention is that, as shown in Fig. 3, a large number of heat exchanger tubes <20-1), (2cm2) and (2cmn) are installed on the downstream side of the steam flow of the condensing section (2) (Fig. At least one gas discharge color (11) or gas discharge pipe (=J pipe (10)) is installed in the header (2b) of the lower part (the figure shows a case where there is one pipe with a discharge pipe (10)). Installation, attach to the header (2b) (Puta heat exchanger tube (2cm1), (20-
2) An orifice (14) is provided at the end of the pipe (2O-n), and the hole diameter of the orifice (14) is made smaller as it approaches the discharge pipe (11) or piping with a discharge pipe (10). In this way, although not shown in the figure, the steam introduced into the condensing section from the piping is cooled by the heated fluid, and the condensed working fluid (6) is made to flow down into the tank from the piping (10). 2c
m1>, (2cm2)-(2cmn), the non-condensable gas (9) remaining within the space is discharged from the discharge valve (12). In addition, when two or more discharge pipes or discharge pipes are provided, a throttle valve may be provided in the discharge pipes as in the case of FIG. 1 or FIG. 2. (Function) In this way, a gas exhaust pipe or piping with a gas exhaust pipe is connected to the header on the downstream side of the steam flow. ! Set an interval of 1 or more

【プで
取付けるか、又は/及びヘッダーに取付けた蒸発管の蒸
気の流れの下流側端部にオリフィスを設け、ガス排出管
又はガス排出管付配管に近いものほどオリフィスの穴径
を小ざくすることにより、ヘッダー内部に一部非凝柑1
性ガスが滞留しても伝熱管内にはn留することがなく、
良好な熱交換特性を示す。排出管又は排出管付配管を2
個以上用いる場合には、各排出色・に絞り弁を設(プ、
”Ill!Jの排出バルブによる排出を均一化すること
が望ましい。また副リフイスの穴径については実験によ
り定める。排出バルブの作動は蒸発管内の非凝縮性ガス
を適宜の方法により検知して行なう。例えば凝縮部内の
蒸気の流れの上流側と下流側の温度を熱電対等により検
出し、その温度差が2℃以上の場合には非凝縮性ガスが
滞留していると判断し、排出バルブを直ちに聞くか、又
は一定時間送らせて開く、この場合、同時に凝縮部内の
圧力を検出して負圧の場合にはガスポンプ等により強制
排出を行ない、正圧の場合には自然排出する。 ]      ガス排出管又はガス排出管付配管の数は
ガス排出管又はガス排出管付配管の内壁端から最も遠い
伝熱管の内壁端までの距離をL m 、ガス排出管又は
ガス排出管イ」配管の内径又は等価内径(回収外の断面
をもつ排出管において断面積をπで除した値)をD 7
1Lとすると L>0.6+0.8 (D−0,05>となる場合にガ
ス排出管又はガス排出色・有配管を2本以上設置プる。 また伝熱管の蒸気の流れの“ト流側端部に取付けるオリ
フィスとしては絞り作用を有づるものであれば何でもよ
く、ガス排出管又はガス排出管付配管に近いものほどオ
リフィスの穴径を小さくして蒸気や非凝縮性ガスの流れ
を均一化づる。 〔実施例〕 直径0.05TrL、長さ 1’、0TrLのCu製伝
熱管、直径0.1mのCLI製ヘッダー、内径0.05
馴のCLI製ガス排出管付配管を用い、第1表に示す凝
縮部を作成した。尚排出管は絞り弁を介して排出バルブ
に接続した。 第1表 蒸気凝縮部について第1図に示すように各蒸発管の蒸気
の流れの下流側温度を熱雷対(15−1)(15−2)
・・・(15−n)で測定し、伝熱管の蒸気の流れの上
流側温度と下流側温度の差が2°C以上のどきに非凝縮
性ガスが滞留したものと判断し、排出バルブを聞いて滞
留゛ガスの排出を行ない、該ガス排出後の伝熱管の温度
変化を第4図(イ)、(ロ)、(ハ)に示す。 図面は縦軸に温度、横軸に伝熱管数を現わして温度変化
を示したもので、(イ)図はLが0.55 mと比較的
短かい場合で(1)は排出管付配管が1個の場合の従来
方法による温度変化を示し、L < 0.6+ 0.8
([) −0,05>が成立するため、1本の排出管付
配管による非凝縮ガスの排出によって全伝熱管の温度差
は2℃以内となっている。これに対しく口)図のように
Lが1,2mの長さで1よ、l>  0.6+ 0.8
(D−0,05)となり(2)に示すように1本の排出
管付配管では、最もはなれた位置の伝熱等は6℃以上と
なり、非凝縮製ガスの排出ガスが不十分となっているこ
とが判る。しかるに(3)に示すように排出色・付記管
を2個用いるか、又は(4)に示すように伝熱管の下端
にオリフィスを取付けて穴径を調整した本発明方法では
何れも全伝熱管の温度差は2°C以内となっていること
が判る。史に(ハ)図のようにLが1.87nと長くな
っても(5)、(6)に示すように3個の排出管付配管
を用いるか、2個の排出管付配管を用い、かつ伝熱管の
下端にオリフィスを取+iけて穴(¥を調整した本発明
方法によれば、何れも全伝熱管の温度差は2°C以内と
なることが判る。 〔発明の効果〕 このように本発明によれば、セパレート型熱交換装置の
大型化にともなう非凝縮性ガスの排出時に起る該ガス残
留問題を解消し、装置の熱交@特性を向上し得るもので
、工業上穎格な効果を奏】“るものである。
[An orifice is installed at the downstream end of the steam flow of the evaporator tube installed in a pipe or/and header, and the hole diameter of the orifice is made smaller as it is closer to the gas exhaust pipe or piping with the gas exhaust pipe. Due to this, some parts of the header are not covered.
Even if the reactive gas remains, it will not remain inside the heat transfer tube,
Shows good heat exchange properties. 2 exhaust pipes or piping with exhaust pipes
If more than one is used, a throttle valve is installed for each discharge color.
It is desirable to equalize the discharge by the discharge valve of ``Ill! For example, the temperature on the upstream and downstream sides of the steam flow in the condensing section is detected using a thermocouple, etc., and if the temperature difference is 2°C or more, it is determined that non-condensable gas has accumulated, and the discharge valve is closed. Either listen to it immediately or open it after a certain period of time. In this case, the pressure inside the condensing part is detected at the same time, and if the pressure is negative, it is forced to discharge using a gas pump, etc., and if it is positive pressure, it is discharged naturally. ] Gas The number of exhaust pipes or piping with gas exhaust pipes is L m, the distance from the inner wall end of the gas exhaust pipe or piping with gas exhaust pipe to the inner wall end of the farthest heat transfer tube, and the inner diameter of the gas exhaust pipe or gas exhaust pipe A' piping. Or the equivalent inner diameter (the value obtained by dividing the cross-sectional area by π in a discharge pipe with a cross-section outside the collection) is D 7
If 1L, then L>0.6+0.8 (D-0,05>), install two or more gas exhaust pipes or gas exhaust pipes with color and color. The orifice installed at the side end may be of any type as long as it has a restricting action, and the closer the orifice is to the gas exhaust pipe or piping with the gas exhaust pipe, the smaller the orifice diameter will be to reduce the flow of steam and non-condensable gas. Uniformization. [Example] Cu heat exchanger tube with diameter 0.05TrL, length 1', 0TrL, CLI header with diameter 0.1m, inner diameter 0.05
The condensing section shown in Table 1 was created using a pipe with a gas exhaust pipe manufactured by CLI. The discharge pipe was connected to the discharge valve via a throttle valve. Table 1 Concerning the steam condensing section As shown in Figure 1, the temperature on the downstream side of the steam flow in each evaporator tube is determined by thermal lightning pairs (15-1) (15-2).
... (15-n), and when the difference between the upstream and downstream temperatures of the steam flow in the heat transfer tube is 2°C or more, it is determined that non-condensable gas has accumulated, and the discharge valve is closed. After listening to this, the remaining gas was discharged, and the temperature changes in the heat transfer tube after the gas was discharged are shown in FIGS. 4(a), (b), and (c). The diagram shows the temperature change with temperature on the vertical axis and the number of heat exchanger tubes on the horizontal axis. Figure (a) shows the case where L is relatively short at 0.55 m, and (1) shows the case with a discharge pipe. The temperature change according to the conventional method when there is one pipe is shown, L < 0.6 + 0.8
([) −0,05> holds, so the temperature difference among all the heat exchanger tubes is within 2° C. by discharging the non-condensable gas through one pipe with a discharge pipe. On the other hand, as shown in the figure, L is 1.2 m long and 1, l > 0.6 + 0.8
(D-0,05), and as shown in (2), with one pipe with a discharge pipe, the heat transfer at the farthest position is 6℃ or more, and the exhaust gas of non-condensable gas is insufficient. It can be seen that However, in the method of the present invention, in which two discharge color/marked tubes are used as shown in (3), or an orifice is attached to the lower end of the heat transfer tube to adjust the hole diameter as shown in (4), all of the heat transfer tubes are It can be seen that the temperature difference is within 2°C. (c) Even if L is as long as 1.87n as shown in the figure, it is not possible to use three pipes with discharge pipes as shown in (5) and (6), or to use two pipes with discharge pipes. , and according to the method of the present invention in which an orifice is provided at the lower end of the heat exchanger tube and the hole (¥) is adjusted, the temperature difference of all the heat exchanger tubes is within 2°C. [Effects of the Invention] As described above, according to the present invention, it is possible to solve the gas residual problem that occurs when non-condensable gas is discharged due to the increase in size of a separate heat exchange device, and improve the heat exchange characteristics of the device. It is something that has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は凝縮部における本発明方法の一例を示す説明図
、第2図は凝縮部における本発明方法の他の一例を示す
説明図、第3図は凝縮部における本発明方法の更に他の
一例を示す説明図、第4図(イ)、(ロ)、(ハ)は本
発明方法による効果を従来方法と比較して示すものC1
(イ)は小型!!i置の従来例、(ロ)は大型装置の従
来例と本発明方法の比較図、(ハ)は更に大型化した装
置の本発明例、第5図は従来のセパレート型熱交換装置
の一例を示す説明図、第6図は第5図における従来の小
型凝縮部の一例を示す説明図、第7図は従来の大型凝縮
部の一例を示す説明図である。 1・・・焦梵部、2・・・凝縮部、2a・・・上部ヘッ
ダー、2b・・・下部ヘッダー、 2c、 2cm1.2cm2.−2cmn−・・伝熱管
、3・・・タンク、4.5・・・断熱配管、6・・・作
動膜、7・・・ポンプ、9・・・非凝縮製ガス、10・
・・配管、11、11a 、 11b −・・ガス排出
管、12・・・排出バルブ、13・・・絞り弁、14・
・・オリスイス 第5図
FIG. 1 is an explanatory diagram showing an example of the method of the present invention in the condensing section, FIG. 2 is an explanatory diagram showing another example of the method of the present invention in the condensing section, and FIG. 3 is an explanatory diagram showing another example of the method of the present invention in the condensing section. An explanatory diagram showing an example, FIG. 4 (a), (b), and (c) show the effects of the method of the present invention in comparison with the conventional method C1
(A) is small! ! (b) is a comparison diagram of a conventional example of a large-sized device and the method of the present invention, (c) is an example of an even larger device of the present invention, and Fig. 5 is an example of a conventional separate type heat exchange device. FIG. 6 is an explanatory diagram showing an example of a conventional small condensing section in FIG. 5, and FIG. 7 is an explanatory diagram showing an example of a conventional large condensing section. 1... Chobon part, 2... Condensing part, 2a... Upper header, 2b... Lower header, 2c, 2cm1.2cm2. -2cmn-...Heat transfer tube, 3...Tank, 4.5...Insulated piping, 6...Working membrane, 7...Pump, 9...Non-condensable gas, 10...
... Piping, 11, 11a, 11b - ... Gas discharge pipe, 12 ... Discharge valve, 13 ... Throttle valve, 14.
... Oriswiss Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)多数の伝熱管の両端にヘッダーを取付けた蒸発部
と凝縮部を分離して配置し、これを断熱配管により連結
して循環回路を形成し、該回路内に作動液を封入循環さ
せて作動液の相変態により熱交換を行なう装置の非凝縮
性ガスを排出する方法において、凝縮部の蒸気の流れの
下流側ヘッダーに、ガス排出管又はガス排出管付配管を
2個以上間隔を設けて取付け、該排出管より非凝縮性ガ
スを排出することを特徴とするセパレート型熱交換装置
の非凝縮性ガス排出方法。
(1) The evaporating section and the condensing section with headers attached to both ends of a large number of heat transfer tubes are arranged separately, connected by insulated piping to form a circulation circuit, and the working fluid is enclosed and circulated within the circuit. In a method for discharging non-condensable gas from a device that performs heat exchange by phase transformation of a working fluid, two or more gas discharge pipes or piping with gas discharge pipes are installed at intervals in the header on the downstream side of the steam flow in the condensing section. 1. A method for discharging non-condensable gas from a separate heat exchange device, characterized in that the non-condensable gas is discharged from the discharge pipe.
(2)排出管に絞り弁を設けて各排出管の排出ガス量を
均一化する特許請求の範囲第1項記載のセパレート型熱
交換装置の非凝縮性ガス排出方法。
(2) A method for discharging non-condensable gas from a separate heat exchanger according to claim 1, wherein a throttle valve is provided in each discharge pipe to equalize the amount of exhaust gas from each discharge pipe.
(3)多数の伝熱管の両端にヘッダーを取付けた蒸発部
と凝縮部を分離して配置し、これを断熱配管により連結
して循環回路を形成し、該回路内に作動液を封入循環さ
せて作動液の相変態により熱交換を行なう装置の非凝縮
性ガスを排出する方法において、凝縮部の蒸気の流れの
下流側ヘッダーに、ガス排出管又はガス排出管付配管を
1個以上取付け、該ヘッダーに取付けた伝熱管端部にオ
リフィスを設け、ガス排出管又はガス排出管付配管の取
付け部に近いほどオリフィスの穴径を小さくして排出管
より非凝縮性ガスを排出することを特徴とするセパレー
ト型熱交換装置の非凝縮性ガス排出方法。
(3) Separately arrange the evaporating section and condensing section with headers attached to both ends of a large number of heat transfer tubes, connect them with insulated piping to form a circulation circuit, and enclose and circulate the working fluid in the circuit. In a method for discharging non-condensable gas from a device that performs heat exchange by phase transformation of a working fluid, one or more gas discharge pipes or piping with gas discharge pipes are attached to the header downstream of the flow of steam in the condensing section, An orifice is provided at the end of the heat exchanger tube attached to the header, and the hole diameter of the orifice is made smaller as it approaches the gas exhaust pipe or the attachment point of the gas exhaust pipe attached pipe, so that non-condensable gas is discharged from the exhaust pipe. Method for discharging non-condensable gas from separate heat exchange equipment.
(4)2個以上設けた排出管に絞り弁を設けて、各排出
管の排出ガス量を均一化する特許請求の範囲第3項記載
のセパレート型熱交換装置の非凝縮性ガス排出方法。
(4) A method for discharging non-condensable gas from a separate heat exchanger according to claim 3, wherein a throttle valve is provided in two or more exhaust pipes to equalize the amount of exhaust gas from each exhaust pipe.
JP17955384A 1984-08-29 1984-08-29 Method of discharging noncondensable gas from separate type heat exchange device Pending JPS6159169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17955384A JPS6159169A (en) 1984-08-29 1984-08-29 Method of discharging noncondensable gas from separate type heat exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17955384A JPS6159169A (en) 1984-08-29 1984-08-29 Method of discharging noncondensable gas from separate type heat exchange device

Publications (1)

Publication Number Publication Date
JPS6159169A true JPS6159169A (en) 1986-03-26

Family

ID=16067751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17955384A Pending JPS6159169A (en) 1984-08-29 1984-08-29 Method of discharging noncondensable gas from separate type heat exchange device

Country Status (1)

Country Link
JP (1) JPS6159169A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736487B2 (en) * 1973-06-27 1982-08-04
JPS592838A (en) * 1982-06-02 1984-01-09 ウエスチングハウス エレクトリツク コ−ポレ−シヨン Heat-resisting laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736487B2 (en) * 1973-06-27 1982-08-04
JPS592838A (en) * 1982-06-02 1984-01-09 ウエスチングハウス エレクトリツク コ−ポレ−シヨン Heat-resisting laminate

Similar Documents

Publication Publication Date Title
CA1105922A (en) Heat transfer apparatus
CN101245971B (en) Enclosed cavity type heat exchanger
US2134058A (en) Heat exchanger
CN107328280A (en) A kind of hot pond of multiple-unit transverse tube
CN106488687A (en) For the device that the rack closed is cooled down
CN108770281A (en) A kind of high heat flux density electronic device radiating device and application method
JPS5773392A (en) Corrugated fin type heat exchanger
JPS6159169A (en) Method of discharging noncondensable gas from separate type heat exchange device
CN113309684B (en) Variable-heat-conductivity-coefficient liquid metal cooler in vacuum environment
CN211451940U (en) Low-resistance liquid film water vapor condensing device and heat exchange system thereof
CN2384188Y (en) Reducing flow area heat exchanger
CN111508624A (en) Cooling system
CN209865785U (en) Copper foil production is with safe type copper dissolving tank
CN203286907U (en) Shell-and-tube air cooler
CN207922731U (en) Hot pipe type vacuum drying box
CN206803799U (en) Direct steam-water mixing heat exchanger
CN1284646A (en) Heat exchanger with reducing channel area
CN105571364B (en) A kind of heat exchanger
CA2299682C (en) Freeze-protected heat exchanger
CN111879157B (en) Air temperature recovery type LNG vaporizer and working method thereof
CN217584694U (en) Small-space efficient heat exchange device
US6286587B1 (en) Freeze-protected heat exchanger
CN216011289U (en) Device containing superheated steam heating heat conduction oil in three temperature intervals
CN219454722U (en) Condensing equipment is used in polymerization of acrylic ester emulsion
CN218155681U (en) Separation type gravity heat pipe capable of preventing steam from flowing back