JPS6158943B2 - - Google Patents

Info

Publication number
JPS6158943B2
JPS6158943B2 JP12634975A JP12634975A JPS6158943B2 JP S6158943 B2 JPS6158943 B2 JP S6158943B2 JP 12634975 A JP12634975 A JP 12634975A JP 12634975 A JP12634975 A JP 12634975A JP S6158943 B2 JPS6158943 B2 JP S6158943B2
Authority
JP
Japan
Prior art keywords
metal
arc tube
deposited film
vapor
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12634975A
Other languages
Japanese (ja)
Other versions
JPS5251776A (en
Inventor
Masahide Suenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12634975A priority Critical patent/JPS5251776A/en
Publication of JPS5251776A publication Critical patent/JPS5251776A/en
Publication of JPS6158943B2 publication Critical patent/JPS6158943B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発光管内に金属ハロゲン化物と水銀、
希ガスおよび希土類などの金属を封入した金属蒸
気放電灯に関する。 金属蒸気放電灯用発光管材料は、まず透光性、
耐熱性、気密性、加工の容易さという点において
優れていなければならないが、そのほか封入金属
により侵蝕されないという性質をもつていること
も重要である。従来より前者の条件を満たすもの
として石英ガラスが多く使用されてきたが、発光
物質として沃化ナトリウムあるいは希土類などの
金属を封入する場合には上記の侵蝕が無視できな
いことがわかつてきた。すなわち沃化ナトリウム
はランプ作動中原子あるいはイオンとして発光管
壁中を通つて管外へ消失しやすく、また希土類金
属は石英ガラスと反応して酸化物を作りやすい。
そのためいずれの金属を封入した金属蒸気放電灯
も働程特性が悪く、かつ寿命が短いという欠点を
もつ。そこで、この改良として石英ガラス発光管
内面に高融点酸化物を被着させたものが提案され
た。しかしながらこれらの酸化物薄膜を被着する
場合に、従来はこれらの酸化物微粉末をニトロセ
ルロースと酢酸ブチルなどの溶剤中に分散させ
て、発光管内面に塗布して乾燥させ、その後発光
管を1000℃以上に加熱して焼結するという方法を
採用していた。そのため緻密な膜が得られず、封
入された金属がこれらの膜中に存在する比較的大
きな結晶粒の間隙を容易に通過して石英ガラス内
面に到り、これと反応していた。さらにこのよう
な方法により被着した薄膜は石英ガラスとの密着
性がわるく、はがれやすいという欠点を有してい
た。 このような観点から、上記高融点酸化物薄膜を
たとえば化学気相蒸着法などにより蒸着膜として
形成することも提案された。しかしながらこの場
合も反応温度を1000℃以上にすると比較的大きな
結晶が成長し、結晶粒の間隙を通しての上記金属
の拡散が無視できないことがわかつた。 本発明はこれらのことがらを考慮した結果なさ
れたものであり、本発明者等は石英ガラス発光管
内壁に、ある種の高融点酸化物からなる蒸着膜を
非晶質の状態で、すなわち、X線回折で鋭い回折
線が観測されない程度に結晶粒が小さくなるよう
に、あるいは結晶構造をもたないように被着形成
すると、上記の問題に対して非常に効果があるこ
とを確認した。以下その内容について詳述する。 第1図は本発明を具体化した発光管の構成図で
あり、石英ガラスバルブ1の両端に、主電極2,
3を封着するとともに、一方の主電極3に隣接し
て起動極4を封着している。これらの電極はバル
ブ1の端部に封着されているモリブデン箔5を介
して外導線6に接続されている。またバルブ1の
内壁面には希土類、タンタル,ジルコニウム,ハ
フニウム,ニオブ,アルミニウムのうち少なくと
も一種の酸化物蒸着膜7が非晶質の状態で被着さ
れている。そしてこのような発光管中には水銀、
金属沃化物、希ガス、希土類の金属が所要量封入
されている。 封入金属と石英ガラスとの反応を防止するのに
役立つ上記非晶質酸化物薄膜はたとえば第1表に
示した金属のアルコレートの熱分解を利用した化
学気相蒸着法により形成できる。
The present invention includes metal halides and mercury in the arc tube.
This invention relates to metal vapor discharge lamps filled with metals such as rare gases and rare earths. Arc tube materials for metal vapor discharge lamps are first of all translucent,
It must be excellent in terms of heat resistance, airtightness, and ease of processing, but it is also important that it has the property of not being corroded by the encapsulated metal. Although quartz glass has conventionally been widely used as a material that satisfies the former condition, it has become clear that the above-mentioned corrosion cannot be ignored when a metal such as sodium iodide or a rare earth is encapsulated as a luminescent material. That is, sodium iodide tends to disappear as atoms or ions through the wall of the arc tube and out of the tube during lamp operation, and rare earth metals tend to react with quartz glass to form oxides.
For this reason, metal vapor discharge lamps filled with any metal have poor operating characteristics and a short lifespan. Therefore, as an improvement on this, a method was proposed in which a high melting point oxide was coated on the inner surface of the quartz glass arc tube. However, when applying a thin film of these oxides, conventionally, fine powder of these oxides is dispersed in a solvent such as nitrocellulose and butyl acetate, applied to the inner surface of the arc tube, dried, and then the arc tube is removed. The method used was to heat the material to over 1000℃ and sinter it. Therefore, a dense film could not be obtained, and the encapsulated metal easily passed through the gaps between the relatively large crystal grains present in these films, reached the inner surface of the quartz glass, and reacted therewith. Furthermore, the thin film deposited by such a method has a disadvantage that it has poor adhesion to quartz glass and is easily peeled off. From this point of view, it has also been proposed to form the high melting point oxide thin film as a vapor deposited film by, for example, chemical vapor deposition. However, in this case as well, when the reaction temperature was raised to 1000°C or higher, relatively large crystals grew, and it was found that the diffusion of the metal through the gaps between the crystal grains could not be ignored. The present invention has been made as a result of taking these matters into consideration, and the present inventors have deposited a vapor-deposited film of a certain kind of high-melting point oxide on the inner wall of a quartz glass arc tube in an amorphous state, that is, It has been confirmed that depositing the crystal grains so that they are small enough that no sharp diffraction lines are observed in X-ray diffraction, or having no crystal structure, is very effective in solving the above problem. The details will be explained below. FIG. 1 is a block diagram of an arc tube embodying the present invention, in which main electrodes 2,
3 is sealed, and a starting electrode 4 is sealed adjacent to one main electrode 3. These electrodes are connected to an outer conductor 6 via a molybdenum foil 5 sealed to the end of the bulb 1. Further, on the inner wall surface of the bulb 1, an oxide vapor-deposited film 7 of at least one of rare earth, tantalum, zirconium, hafnium, niobium, and aluminum is deposited in an amorphous state. In such an arc tube, mercury,
Required amounts of metal iodides, rare gases, and rare earth metals are sealed. The amorphous oxide thin film useful for preventing the reaction between the encapsulated metal and the quartz glass can be formed, for example, by a chemical vapor deposition method utilizing thermal decomposition of metal alcoholates shown in Table 1.

【表】 第2図はこれを実現するために用いた装置を示
すものである。この装置を用いて発光管内面に蒸
着膜を形成するには、まず発光管用石英ガラス管
8内をボンベ9より出て、ストツプコツク10、
流量計11を経て基材ガラス管8に流入するキヤ
リヤガスで置換し、これを加熱装置12により所
要の温度まで加熱する。次に加熱装置13を働か
せて、金属アルコレート溜め14中に収容されて
いる金属アルコレートの蒸気圧を所要値まで高め
る。さらにこの蒸気をストツプコツク15、流量
計16を経て金属アルコレート溜め14に流入す
るキヤリヤガス、流量計11を経てくるキヤリヤ
ガス、およびボンベ17、ストツプコツク18、
流量計19を経てくる反応ガスと共に基材ガラス
管中に流入させて、熱分解させ、その内面に非晶
質金属酸化物の蒸着膜を形成する。 以下実施例について上記蒸着膜の効果を説明す
る。 実施例 第2図に示した装置を用いて、長さ50cm、内径
20mmの石英ガラス管内面に非晶質酸化イツトリウ
ムの蒸着膜を形成した。すなわち、イツトリウム
イソプロピレート(Y(OC3H73)溜め14の温
度を90℃、基材ガラス管8の温度を600℃とし、
キヤリヤガス(窒素)および反応ガス(酸素)の
流量をそれぞれ200c.c./分、2c.c./分とすると、
基材ガラス管内面に膜厚約1000Åの蒸着膜が得ら
れた。またこのようにして得られた蒸着膜の結晶
性を調べるため厚さ2μの蒸着膜についてデイフ
ラクトメータによるX線回折実験を行なつたとこ
ろ、鋭い回折線が観測されず非晶質であること、
さらにこの特性は蒸着膜を1200℃で10時間加熱し
ても全く変化しないことが確認された。つぎに膜
厚約1000Åの蒸着膜を内面に形成した基材ガラス
管を発光管に加工し、その内部に水銀、沃化タリ
ウム、沃化水銀、デイスプロシウム金属を封入し
て400Wのメタルハライドランプを作成し、光束
維持率を調べた。第3図は本発明によるランプと
従来のランプにおける光束維持率曲線である。こ
の図において、aが本発明によるランプの光束維
持率曲線、bは同じ膜厚の蒸着膜を発光管内面に
有しているが、反応物質としてYCl3を採用し、
したがつて反応温度を1200℃としたため、この膜
が結晶質となつているランプの光束維持率曲線、
さらにcは蒸着膜を有しないランプの光束維持率
曲線を示す。この図からも明らかなように、本発
明によるランプはその働程特性が従来のものと比
較して著しく向上していることがわかる。 以上非晶質酸化イツトリウム蒸着膜の効果につ
いて述べたが、同様の効果は、他の希土類、ジル
コニウム、ハフニウム、タンタル、ニオブ、アル
ミニウムの非晶質酸化物の蒸着膜においてもみら
れた。また上記発光管中にアークの安定性を増す
ため沃化ナトリウムを加えたランプにおいても、
本発明による非晶質酸化物蒸着膜は同様の効果を
およぼすことが確認された。 以上詳述したことから、本発明による非晶質酸
化物薄膜が、封入金属特に希土類金属による石英
ガラス発光管の侵蝕を防止し、働程特性を向上し
ていることは明らかである。
[Table] Figure 2 shows the equipment used to realize this. In order to form a vapor deposited film on the inner surface of the arc tube using this device, first, the inside of the quartz glass tube 8 for the arc tube is removed from the cylinder 9, and the stopcock 10 is opened.
The carrier gas is replaced by a carrier gas flowing into the base glass tube 8 through the flow meter 11, and heated by the heating device 12 to a required temperature. Next, the heating device 13 is activated to increase the vapor pressure of the metal alcoholate contained in the metal alcoholate reservoir 14 to the required value. Furthermore, this steam is transferred to a stop stock 15, a carrier gas flowing into the metal alcoholate reservoir 14 via a flow meter 16, a carrier gas passing through a flow meter 11, a cylinder 17, a stop stock 18,
It is caused to flow into the base glass tube together with the reaction gas passing through the flow meter 19, and is thermally decomposed to form a vapor deposited film of an amorphous metal oxide on its inner surface. The effects of the above deposited film will be explained below with reference to Examples. Example Using the device shown in Figure 2,
A vapor-deposited film of amorphous yttrium oxide was formed on the inner surface of a 20 mm quartz glass tube. That is, the temperature of the yttrium isopropylate (Y(OC 3 H 7 ) 3 ) reservoir 14 is 90°C, the temperature of the base glass tube 8 is 600°C,
Assuming that the flow rates of carrier gas (nitrogen) and reaction gas (oxygen) are 200c.c./min and 2c.c./min, respectively,
A deposited film with a thickness of about 1000 Å was obtained on the inner surface of the base glass tube. In addition, in order to investigate the crystallinity of the deposited film obtained in this way, an X-ray diffraction experiment was conducted using a diffractometer on the deposited film with a thickness of 2μ, and no sharp diffraction lines were observed, indicating that it was amorphous. ,
Furthermore, it was confirmed that this property did not change at all even if the deposited film was heated at 1200°C for 10 hours. Next, a base glass tube with a vapor-deposited film of about 1000 Å thick formed on the inside is processed into an arc tube, and mercury, thallium iodide, mercury iodide, and disprosium metals are sealed inside the tube to produce a 400W metal halide lamp. was created and the luminous flux maintenance rate was investigated. FIG. 3 shows lumen maintenance curves for a lamp according to the present invention and a conventional lamp. In this figure, a shows the luminous flux maintenance factor curve of the lamp according to the present invention, and b shows a vapor-deposited film of the same thickness on the inner surface of the arc tube, but YCl 3 is used as the reactant.
Therefore, since the reaction temperature was set to 1200℃, the luminous flux maintenance curve of the lamp in which this film is crystalline,
Furthermore, c shows the luminous flux maintenance curve of a lamp without a deposited film. As is clear from this figure, it can be seen that the working characteristics of the lamp according to the present invention are significantly improved compared to the conventional lamp. Although the effects of the amorphous yttrium oxide vapor deposited film have been described above, similar effects were also observed in the vapor deposited films of amorphous oxides of other rare earths, zirconium, hafnium, tantalum, niobium, and aluminum. In addition, in the above-mentioned lamps in which sodium iodide is added to increase the stability of the arc,
It was confirmed that the amorphous oxide vapor deposited film according to the present invention exerts similar effects. From the detailed description above, it is clear that the amorphous oxide thin film according to the present invention prevents corrosion of the quartz glass arc tube by the enclosed metal, particularly rare earth metal, and improves the working characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による金属蒸気放電灯の発光管
の断面図を示す図、第2図は本発明による非晶質
酸化物薄膜を化学気相蒸着法により形成するため
の装置を示す図、第3図は本発明によるランプと
従来のランプにおける光束維持率曲線図である。
FIG. 1 is a cross-sectional view of an arc tube of a metal vapor discharge lamp according to the present invention, and FIG. 2 is a diagram showing an apparatus for forming an amorphous oxide thin film according to the present invention by chemical vapor deposition. FIG. 3 is a lumen maintenance factor curve diagram of a lamp according to the present invention and a conventional lamp.

Claims (1)

【特許請求の範囲】[Claims] 1 発光管内に希土類金属とハロゲンとを含む、
あるいはこれらにさらにハロゲン化ナトリウムを
含む封入物が封入され、かつこの発光管内面に希
土類,ジルコニウム,ハフニウム,タンタル,ニ
オブ,アルミニウムの酸化物のうち少なくとも一
種が非晶質の蒸着膜状態で被着されてなることを
特徴とする金属蒸気放電灯。
1 Containing rare earth metals and halogens in the arc tube,
Alternatively, these are further filled with a filler containing sodium halide, and at least one of rare earth, zirconium, hafnium, tantalum, niobium, and aluminum oxides is deposited in the form of an amorphous vapor deposited film on the inner surface of the arc tube. A metal vapor discharge lamp characterized by:
JP12634975A 1975-10-22 1975-10-22 Metal vapor discharge lamp Granted JPS5251776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12634975A JPS5251776A (en) 1975-10-22 1975-10-22 Metal vapor discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12634975A JPS5251776A (en) 1975-10-22 1975-10-22 Metal vapor discharge lamp

Publications (2)

Publication Number Publication Date
JPS5251776A JPS5251776A (en) 1977-04-25
JPS6158943B2 true JPS6158943B2 (en) 1986-12-13

Family

ID=14932963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12634975A Granted JPS5251776A (en) 1975-10-22 1975-10-22 Metal vapor discharge lamp

Country Status (1)

Country Link
JP (1) JPS5251776A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH631575A5 (en) * 1978-04-28 1982-08-13 Bbc Brown Boveri & Cie METHOD FOR INCREASING THE LIFE OF A GAS DISCHARGE VESSEL.
JP2819988B2 (en) * 1993-06-29 1998-11-05 松下電工株式会社 Metal vapor discharge lamp
TW503449B (en) * 2000-04-18 2002-09-21 Ngk Insulators Ltd Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
FR2858684B1 (en) * 2003-08-07 2005-10-21 Valeo Vision HEATED CIGAR LIGHTER HEAD CAP AND CIGAR LIGHTER ARRANGEMENT COMPRISING SAID PLUG

Also Published As

Publication number Publication date
JPS5251776A (en) 1977-04-25

Similar Documents

Publication Publication Date Title
EP0060582B1 (en) Composite body
US3842304A (en) High-pressure gas discharge lamp
US4047067A (en) Sodium halide discharge lamp with an alumina silicate barrier zone in fused silica envelope
US3586898A (en) Aluminum chloride discharge lamp
US20070138961A1 (en) Conductive element having a core and coating and method of making
KR0130879B1 (en) Protective metal silicate coating for a metal halide arc
US4256988A (en) Incandescent halogen lamp with protective envelope coating
HU196270B (en) High-pressure mercury-vapour discharge lamp with improved current lead-trough
US4387319A (en) Metal halide lamp containing ScI3 with added cadmium or zinc
US3530327A (en) Metal halide discharge lamps with rare-earth metal oxide used as electrode emission material
JP2010262935A (en) Lamp and coating
JPS6158943B2 (en)
US2659678A (en) Transparent luminescent screen and method for preparing same
CA1088994A (en) High-pressure discharge lamp with hydrogen getter
JPH03238747A (en) Metal vapor discharge lamp and manufacture thereof
US3263113A (en) Tungsten filament lamp comprising hexafluoride gas at partial pressure not exceeding 10 torrs
JP2009054588A5 (en)
US2449493A (en) Attaining high vacuum in photoelectric tubes
US2778485A (en) Vacuum tube getter body material
US6316875B1 (en) Electroded selenium lamp
JP2819988B2 (en) Metal vapor discharge lamp
US3266861A (en) Method of applying an alkali-earth metal getter
JPS6040665B2 (en) metal vapor discharge lamp
US3470018A (en) Thin film capacitor
JPS6236992B2 (en)