JPS6158929B2 - - Google Patents

Info

Publication number
JPS6158929B2
JPS6158929B2 JP53084654A JP8465478A JPS6158929B2 JP S6158929 B2 JPS6158929 B2 JP S6158929B2 JP 53084654 A JP53084654 A JP 53084654A JP 8465478 A JP8465478 A JP 8465478A JP S6158929 B2 JPS6158929 B2 JP S6158929B2
Authority
JP
Japan
Prior art keywords
conductor
paint
baking
insulated wire
insulating paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53084654A
Other languages
Japanese (ja)
Other versions
JPS5512620A (en
Inventor
Shigeo Masuda
Nobuyuki Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8465478A priority Critical patent/JPS5512620A/en
Priority to GB7924187A priority patent/GB2026035B/en
Priority to CH647279A priority patent/CH633905A5/en
Publication of JPS5512620A publication Critical patent/JPS5512620A/en
Priority to SG56883A priority patent/SG56883G/en
Publication of JPS6158929B2 publication Critical patent/JPS6158929B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 本発明は、「導体」(以下導体と呼ぶ)上に付着
した付着物を、「導体を陰極に接続して電解洗
浄」(以下電解洗浄と呼ぶ)することによつて除
去し、その後絶縁塗料を塗布焼付してなる絶縁電
線の製造法に関するものである。導体の表面は導
体の伸線工程や圧延工程において、発生したその
金属特有の金属粉が表面に付着しており、その他
潤滑油、グリース、あるいは高温加工中に生成し
たスケールや常温加工中に生じた変質層、あるい
は、貯蔵保管中に生じた酸化物、あるいは雰囲気
中からの粉塵等が付着しているのが常である。
DETAILED DESCRIPTION OF THE INVENTION The present invention removes deposits attached to a "conductor" (hereinafter referred to as "conductor") by "electrolytic cleaning by connecting the conductor to a cathode" (hereinafter referred to as "electrolytic cleaning"). This invention relates to a method for manufacturing an insulated wire by removing the insulated wire and then applying and baking an insulating paint. The surface of the conductor is coated with metal powder unique to the metal generated during the wire drawing and rolling processes, as well as lubricating oil, grease, scale generated during high-temperature processing, and other particles generated during room-temperature processing. Usually, there is a deteriorated layer, oxides generated during storage, or dust from the atmosphere attached.

絶縁電線に用いられる導体では導体上に絶縁塗
料を複数回塗布焼付けする為に、必ずしも導体表
面の付着物を除去する必要はないものと考えられ
て来た。しかしながら導体上の付着物が、絶縁電
線の特性を低下させるのではないかということは
従来から考えられて来た。この為に導体上の付着
物を除去する方法が、種々検討され、実施されて
来たが、いまだ完全に付着物を除去した導体に、
絶縁塗料を塗布焼付することによつて製造された
絶縁電線はない。
For conductors used in insulated wires, since insulating paint is applied and baked multiple times on the conductor, it has been thought that it is not necessarily necessary to remove deposits from the conductor surface. However, it has been conventionally considered that deposits on conductors may deteriorate the characteristics of insulated wires. For this reason, various methods have been studied and implemented to remove the deposits on the conductor, but it is still impossible to completely remove the deposits from the conductor.
There are no insulated wires manufactured by applying and baking insulating paint.

導体上の付着物を除去する1つの方法として
は、フエルトあるいは布によつて導体を押えるこ
とによつて物理的に、付着物を除去する方法があ
る。この方法では、わずか数分でフエルト、布に
導体上の付着物で汚れ、フエルト、布で導体をし
ごくことによる除去効果はなくなつて来る。その
為に、数分おきに、フエルト、布をとりかえない
と導体上の付着物を連続的に除去することは出来
ない。このようなことは、現実的には実用化しえ
ないことであり、フエルトのとりかえはせいぜい
数時間に1回ということになる。その為、フエル
ト、布等で導体で押えていても、有効に付着物が
除去されていないのが現状である。また、有機溶
剤中を通過させて、付着物を除去する場合、有機
溶剤が新しい期間は、洗浄効果は大きいが、短期
間に洗浄効果を低下させて来る。その為に、絶縁
電線のような長尺物に対しては、部分的に付着物
の除去程度がかわり好ましい洗浄方法とは言えな
い。
One method for removing deposits on the conductor is to physically remove the deposits by pressing the conductor with felt or cloth. With this method, in just a few minutes, the felt or cloth becomes dirty with the deposits on the conductor, and the removal effect of squeezing the conductor with the felt or cloth disappears. Therefore, the deposits on the conductor cannot be continuously removed unless the felt or cloth is changed every few minutes. This kind of thing cannot be put into practical use, and the felt would have to be replaced at most once every few hours. For this reason, the current situation is that even if it is pressed down with a conductor such as felt or cloth, the deposits are not effectively removed. Further, when removing deposits by passing through an organic solvent, the cleaning effect is great while the organic solvent is new, but the cleaning effect decreases in a short period of time. For this reason, it cannot be said to be a preferable cleaning method for long objects such as insulated wires, since the degree of removal of deposits varies from part to part.

また、引火性がつよい溶剤が多く、しかも安全
及び衛生上の問題もあり、局所排気、全体換気等
の設備が必要となつて来る。さらに、超音波洗浄
による振動エネルギーを用いた方法は、有効では
あるが、強固に付着した付着物や、油脂、グリー
ス等は完全に除去されず、いきおい、有機溶剤と
超音波洗浄との組合せた方法が用いられるが、設
備的に大がかりなものとなりやすい。
In addition, many solvents are highly flammable, and there are also safety and hygiene issues, and facilities such as local exhaust ventilation and general ventilation are required. Furthermore, although the method of using vibration energy through ultrasonic cleaning is effective, it does not completely remove firmly adhered deposits, oils, fats, grease, etc. Although this method is used, it tends to require large-scale equipment.

ところが最近、絶縁皮膜や導体に欠陥のない高
性能の絶縁電線の要求が強くなつて来たこと、ま
た、極細線、超極細線と呼ばれる非常に細い線径
(0.100mm〜0.008mm)に薄く絶縁塗料を塗布焼付
した絶縁電線が多く製造され、この絶縁電線の外
観評価を顕微鏡で行なうようになると、従来、あ
まり問題とならなかつた絶縁電線の外観がより一
層厳しくチエツクされ始められたこと、さらに
は、省資源対策として、無溶剤タイプあるいは高
濃度タイプの絶縁塗料が、多く用いられるように
なり、塗布焼付回数の減少というメリツトと同時
に皮膜表面が波だつたり、凸凹を生じたりしやす
く、結果的には低品質の絶縁電線に甘んじなけれ
ばならない状態にあり、これらの問題を解決しよ
うという気運が高まつて来たこと。また、絶縁電
線のような長尺物の全長保証を厳しく求める声が
高まつて来ている中で、本発明者等は、鋭意研究
を進めた結果導体上の付着物や導体変色を、電解
洗浄を用いて、完全に除去することにより、上記
要求を完全に満足した絶縁電線を提出出来ること
を確認した。
However, recently, there has been a growing demand for high-performance insulated wires with no defects in the insulation coating or conductor, and there has also been an increase in the demand for high-performance insulated wires with no defects in the insulation coating or conductor. As many insulated wires coated with insulating paint and baked on were manufactured, and the appearance of these insulated wires began to be evaluated using a microscope, the appearance of insulated wires, which had not been a problem in the past, began to be checked more rigorously. Furthermore, as a measure to conserve resources, solvent-free or high-concentration insulating paints are increasingly being used, and while they have the advantage of reducing the number of times of coating and baking, they also tend to cause the coating surface to become undulating or uneven. As a result, we were forced to settle for low-quality insulated wires, and there was a growing momentum to solve these problems. In addition, as there is an increasing demand for strict guarantees on the full length of long items such as insulated wires, the inventors of the present invention have conducted extensive research and have found that deposits on conductors and conductor discoloration can be prevented by electrolysis. It was confirmed that by completely removing the particles through cleaning, it was possible to provide an insulated wire that completely met the above requirements.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明は、導体を電解洗浄することによつて、
導体上の付着物や、導体変色部分を除去するわけ
であるが、導体径が、0.10mm越える場合、本発明
を用いることによつて、絶縁塗料が焼付られる際
に生じていた絶縁皮膜の波立ちがなくなり、さら
に付着物を中心に発生していた塗料の発泡による
粒発生がすくなくなるという品質アツプの利点が
生れた。これは、導体に付着した銅粉と潤滑油
が、本方法によつて、除去される結果、導体の表
面張力が均一となつた為と考えられる。また、導
体径が0.10mm以下の細い場合、本発明を用いるこ
とにより、導体変色に帰因する外観不良が著るし
く低下するという利点を生じた。
The present invention provides, by electrolytically cleaning the conductor,
The purpose is to remove deposits on the conductor and discolored parts of the conductor, but if the conductor diameter exceeds 0.10 mm, by using the present invention, the ripples of the insulating film that occur when the insulating paint is baked can be removed. This has the advantage of improving quality by eliminating particles caused by foaming of the paint, which was mainly caused by deposits. This is thought to be because the copper powder and lubricating oil adhering to the conductor were removed by this method, and as a result, the surface tension of the conductor became uniform. Furthermore, when the conductor diameter is as small as 0.10 mm or less, the use of the present invention has the advantage that appearance defects due to discoloration of the conductor are significantly reduced.

従来のフエルトや布、あるいは、有機溶剤、超
音波洗浄法を用いたあと、絶縁塗料を塗布焼付す
る場合、充分に、銅粉や潤滑油が除去されず、絶
縁皮膜は波立つたり、発泡が多かつた。過去の統
計にもとづけば、製造が容易と言われるポリエス
テル絶縁塗料を用いた場合においても絶縁皮膜の
波立ちと発泡によつて不良となつていたリール数
は、全リール数の3%はあつた。また、例えば、
非常に発泡しやすいと言われる、Du−pont社の
ポリイミド絶縁塗料Pyre−MLを用いると、発泡
による不良リール数は全リール数の約10%にも達
する為に、焼付炉温を極端に低くし、線速を遅く
して、製造しなければならなかつた。その為に、
生産性はポリエステル絶縁電線に比較して、約50
%程度で、非常に低いものとなつていた。ところ
が、本発明による導体洗浄を行なうと、銅粉と潤
滑油が完全に除去される為に、絶縁皮膜の波立ち
や発泡はポリエステル絶縁塗料は勿論、ポリイミ
ド絶縁塗料においてほとんど皆無になるという実
に顕著な効果を発揮し、品質は勿論、生産性が大
きく向上することになつた。導体径が0.10mm以下
の細い導体では、特に時計において用いられる導
体径0.060mmから、0.010mmの絶縁電線は、出来上
つた外観を顕微鏡でチエツクされる。このような
細い絶縁電線において最も問題とされていたの
が、導体上の付着物による黒点不良であつた。こ
の黒点不良は、導体上の付着物を除去しないで、
絶縁塗料を塗布焼付した時にあらわれるもので、
従つて、導体上の付着物を除去する努力が払われ
て来たが、いまだ完全な解決を見ないまま今日に
至つた。ところが、電解洗浄法を、このような細
い導体に応用すると、全く、黒点不良のない、外
観良好な絶縁電線が得られることがわかつた。従
来は、導体に絶縁塗料を塗布する前に、有機溶剤
洗浄あるいは、超音波洗浄を行なつて、付着物を
除去して来たが、黒点発生リール数は、全リール
の約30%にも達する状態であつたが、本発明を用
いると、黒点発生リール数は全リール数の約2%
にまで減少させることが出来るようになつた。ま
た、導体径が0.5mm以上の線に、0.020mm以下の絶
縁皮膜厚をもたせる場合、本発明は、顕著な効果
を示した。
When applying and baking insulating paint after using conventional felt or cloth, organic solvents, or ultrasonic cleaning methods, the copper powder and lubricating oil may not be sufficiently removed, causing the insulating film to ripple or bubble. It was a lot. Based on past statistics, even when using polyester insulation paint, which is said to be easy to manufacture, the number of reels that were defective due to rippling and foaming of the insulation coating was 3% of the total number of reels. Ta. Also, for example,
When using Du-Pont's polyimide insulation paint Pyre-ML, which is said to be extremely prone to foaming, the number of defective reels due to foaming reaches approximately 10% of the total number of reels, so the baking furnace temperature must be extremely low. However, it had to be manufactured at a slower line speed. For that reason,
Productivity is approximately 50% lower than that of polyester insulated wire.
%, which was extremely low. However, when the conductor is cleaned according to the present invention, the copper powder and lubricating oil are completely removed, so the ripples and foaming of the insulation film are almost completely eliminated not only in polyester insulation paint but also in polyimide insulation paint, which is truly remarkable. It was effective, and not only quality but also productivity improved significantly. For thin conductors with a conductor diameter of 0.10 mm or less, especially insulated wires with a conductor diameter of 0.060 mm to 0.010 mm used in watches, the appearance of the finished product is checked using a microscope. The most problematic problem with such thin insulated wires was black spot defects caused by deposits on the conductor. This black spot defect can be caused by not removing the deposits on the conductor.
It appears when insulating paint is applied and baked.
Efforts have therefore been made to remove the deposits on conductors, but to date no complete solution has been found. However, it has been found that when the electrolytic cleaning method is applied to such thin conductors, an insulated wire with no black spots and a good appearance can be obtained. Conventionally, before applying insulating paint to the conductor, organic solvent cleaning or ultrasonic cleaning has been performed to remove deposits, but the number of reels with black spots has increased to about 30% of all reels. However, by using the present invention, the number of reels with black spots is reduced to about 2% of the total number of reels.
It has now become possible to reduce it to . Further, the present invention showed remarkable effects when a wire having a conductor diameter of 0.5 mm or more had an insulation coating thickness of 0.020 mm or less.

絶縁塗料を塗布焼付した絶縁電線において、太
中線と呼ばれる導体径が0.5mm以上の導体に、塗
布焼付回数が3〜5回程度で、薄く絶縁皮膜を塗
布焼付する場合、導体上の付着物の皮膜に与える
影響は非常に大きく、付着物が付着していると、
いたるところに皮膜の大小の波立ち、あるいは大
小のクレーターを生じ、絶縁電線としての外観に
問題を生じる。本発明は、このような薄い皮膜厚
をもつ太中線導体をもつ絶縁電線に効果を発揮し
た。すなわち、導体を電解洗浄したあと、絶縁塗
料を塗布焼付すると、従来、いたるところに発生
していた皮膜の波立ち、あるいは大小のクレータ
ーは完全に無くなつた。
For insulated wires that have been coated and baked with insulating paint, when a thin insulating film is applied and baked on a conductor with a conductor diameter of 0.5 mm or more, called thick and medium wire, by applying and baking it about 3 to 5 times, deposits on the conductor may be removed. The effect on the film is very large, and if there are any deposits on it,
Large and small ripples or large and small craters are formed in the coating everywhere, causing problems with the appearance of the insulated wire. The present invention was effective for an insulated wire having a thick medium conductor having such a thin film thickness. In other words, after electrolytically cleaning the conductor, applying and baking the insulating paint completely eliminated the ripples and large and small craters that had previously appeared in the film.

また、無溶剤型絶縁塗料、あるいは、高濃度絶
縁塗料を導体に塗布する場合に導体を電解洗浄す
ると、一般の溶剤タイプの絶縁塗料を用いた場合
と全く同一の外観及び、電気的特性を示した。従
来、無溶剤型絶縁塗料や高濃度絶縁塗料を用いる
場合、塗布回数をすくなくして所望の皮膜厚を持
たせることが出来るが、皮膜に波立ちやクレータ
ー状の外観不良を呈することが多く、これらの塗
料を用いる為に必然的に塗膜の欠陥がおきるもの
との認識が強かつた。また、絶縁破壊電圧等の特
性においてもこれらの塗料を用いた場合は、必ず
しも満足すべきものではなく、溶剤タイプの絶縁
塗料を用いた場合に比較して、約70%〜80%の絶
縁破壊電圧値であつたが、これも、これらの絶縁
塗料を用いることに原因すると考えられて来た。
In addition, when a conductor is coated with a solvent-free insulating paint or a highly concentrated insulating paint, electrolytic cleaning of the conductor results in exactly the same appearance and electrical characteristics as when a general solvent-based insulating paint is used. Ta. Conventionally, when using solvent-free insulating paints or high-concentration insulating paints, it is possible to achieve the desired film thickness by reducing the number of applications, but the film often exhibits a defective appearance such as ripples or craters. There was a strong recognition that defects in the paint film would inevitably occur due to the use of paints. In addition, the properties such as dielectric breakdown voltage are not necessarily satisfactory when using these paints, and the dielectric breakdown voltage is about 70% to 80% compared to when using solvent-type insulation paints. However, this has also been thought to be caused by the use of these insulating paints.

ところが、本発明を用いて、導体を洗浄する
と、銅粉や潤滑油が完全に除去される為に無溶剤
型絶縁塗料あるいは、高濃度絶縁塗料を用いて
も、皮膜の波立やクレーター等の塗膜欠陥は起き
ず、しかも絶縁破壊電圧値は、溶剤タイプのもの
に比較して全く、そんしよく無いものが得られ
た。
However, when the conductor is cleaned using the present invention, copper powder and lubricating oil are completely removed, so even if a solvent-free insulation paint or a high-concentration insulation paint is used, there will be no ripples or craters in the coating. No film defects occurred, and the dielectric breakdown voltage value was not much better than that of the solvent type.

本発明における、もう一つの驚くべき事は、電
解洗浄によつて、導体を洗浄すると、従来、1種
構造の皮膜厚を必要としていた絶縁電線が2種構
造の皮膜厚でも、充分、電気特性を満足し、ま
た、0種構造の皮膜厚を必要としていた絶縁電線
は、1種構造の皮膜厚でも、充分、電気特性を満
足するという事実である。例えば、導体径1.0mm
の導体に40%のポリエステル絶縁塗料を塗布焼付
け、ポリエステル絶縁電線を製造する際、電解洗
浄をしない導体を用いる場合は、0種構造の皮膜
厚である0.050mmの場合飽和食塩グリセリン中で
の破壊電圧は平均7.5KVであるのに対し、電解洗
浄をした導体を用いた場合は、1種構造の皮膜厚
である0.040mmで、ほぼ同一の破壊電圧値を示し
た。以上の説明からわかるように導体を電解洗浄
することによつて、導体上の付着物が除去され絶
縁皮膜の欠陥数が減少し不良率の減少と共に、平
均的な絶縁破壊電圧値があがり、品質レベルも向
上していることが理解出来る。
Another surprising feature of the present invention is that when conductors are cleaned by electrolytic cleaning, insulated wires that conventionally required a coating thickness of one type of structure can have sufficient electrical properties even with a coating thickness of two types of structure. In addition, it is a fact that an insulated wire that previously required a coating thickness of type 0 structure satisfies the electrical characteristics even with a coating thickness of type 1 structure. For example, conductor diameter 1.0mm
When manufacturing polyester insulated wires by coating and baking 40% polyester insulating paint on the conductor, if a conductor that is not electrolytically cleaned is used, if the film thickness is 0.050 mm, which is the type 0 structure, breakdown in saturated saline glycerin will occur. The average voltage was 7.5 KV, whereas when using an electrolytically cleaned conductor, the breakdown voltage value was almost the same at a film thickness of 0.040 mm, which is the type 1 structure. As can be seen from the above explanation, by electrolytically cleaning the conductor, deposits on the conductor are removed, the number of defects in the insulation film is reduced, the defective rate is reduced, the average dielectric breakdown voltage value is increased, and the quality is improved. I can see that the level is improving.

電解洗浄によつて、導体上の付着物が除去され
る理由は、水をよく電離させる炭酸塩、リン酸
塩、カセイソーダ、食塩、塩酸、硫酸等を少量加
えた電解液の電気分解によるガス発生によつて付
着物が導体から物理的に分離するためである。直
流電圧の印加における両極の接続において、一般
的に、処理する金属を陰極にした場合には、水素
ガスが発生し陰極還元がおこり、金属は光沢ある
表面となる。一方、金属を陽極とした場合には酸
素ガスの発生と、金属の溶解いわゆる電解研摩
(電解エツチング)がおこる。その為に、強固に
付着した付着物を除去する為には、まず金属を陽
極にして、陽極を溶解させ、その後、金属を陰極
にして陰極還元を行なうと、金属表面は完全に洗
浄されてくる。しかし、銅線の場合は、銅線を陽
極にすると、陽極酸化をおこし導体変色をおこ
し、次に陰極につなぎ変えても、光沢ある表面が
得られ難たい。銅線を陰極に接続して、電解洗浄
を行なえばエツチングが起らずかつ付着物のない
金属光沢のある銅線が得られるものである。
The reason that deposits on conductors are removed by electrolytic cleaning is that gas is generated by electrolysis of an electrolytic solution containing small amounts of carbonates, phosphates, caustic soda, common salt, hydrochloric acid, sulfuric acid, etc. that ionizes water well. This is because the deposits are physically separated from the conductor. When connecting the two electrodes when applying a DC voltage, generally when the metal to be treated is used as the cathode, hydrogen gas is generated and cathodic reduction occurs, giving the metal a shiny surface. On the other hand, when a metal is used as an anode, oxygen gas is generated and the metal is dissolved, so-called electrolytic polishing (electrolytic etching) occurs. Therefore, in order to remove strongly adhered deposits, first use the metal as an anode, dissolve the anode, and then use the metal as the cathode to perform cathodic reduction.The metal surface will be completely cleaned. come. However, in the case of copper wire, if the copper wire is used as an anode, it will undergo anodic oxidation, causing discoloration of the conductor, and even if it is then connected to the cathode, it will be difficult to obtain a shiny surface. If a copper wire is connected to the cathode and electrolytically cleaned, a copper wire with a metallic luster that is free of etching and deposits can be obtained.

電解洗浄によつて導体表面の付着物を除去した
導体を用いて絶縁電線を製造する場合、導体を電
解洗浄する位置としては、絶縁電線製造におい
て、導体を軟化する前あるいは、導体を軟化した
後でも良い。
When manufacturing insulated wires using a conductor whose surface has been removed by electrolytic cleaning, the conductor can be electrolytically cleaned before or after softening the conductor. But it's okay.

さらには、導体を伸線する工程と絶縁塗料の塗
布焼付工程がタンデムの場合においては電解洗浄
したあと導体を伸線しその後、絶縁塗料を塗布焼
付しても良い。
Furthermore, if the step of drawing the conductor and the step of applying and baking the insulating paint are performed in tandem, the conductor may be drawn after electrolytic cleaning, and then the insulating paint may be applied and baked.

また本発明における電解洗浄を行なう回数は、
単に1回に限る必要はなく、必要と考えられる位
置で複数回電解洗浄することが出来る。例えば、
伸線工程、焼付工程がタンデムの場合伸線前に導
体を電解洗浄したあと。次の絶縁塗料焼付工程に
おいて、導体を軟化する前に、さらに電解洗浄を
行ない、続けて絶縁塗料を塗布焼付けることが出
来る。さらには、従来から用いられている、有機
溶剤による洗浄、超音波洗浄等を組合せることも
出来る。本発明における、電解洗浄液としては、
水の中に導電性イオンを含むあらゆる電解液が利
用出来る。しかし、導体上に付着した電解洗浄液
を除去する際に除去されやすいもの、あるいは、
使用済の電解洗浄液の処理のしやすさからみて、
炭酸塩、カセイソーダー、リン酸塩、ケイ酸塩、
あるいはこれらの混合物を溶解した水溶液、ある
いは塩酸、硫酸、硝酸等の酸を水で希釈した希薄
水溶液は、いずれも効果的である。電解洗浄槽の
大きさは長さ10cm〜100cmの範囲であれば充分で
あるが、これは線径、線速あるいは導体への付着
物の接着つよさの程度によつて適当に撰択するこ
とが出来る。また、電流値としては、これも線
径、液槽長さによつて変化するが、電流密度であ
らわした場合、0.5〜20mA/mm2の電流密度をあた
えると、良い。付着物が導体に強固に接着してい
るもの程、高い電流密度を与えてやる必要があ
る。
In addition, the number of times electrolytic cleaning is performed in the present invention is
It is not necessary to perform electrolytic cleaning only once, but it is possible to perform electrolytic cleaning multiple times at positions deemed necessary. for example,
If the wire drawing process and baking process are done in tandem, the conductor should be electrolytically cleaned before wire drawing. In the next insulating paint baking step, before softening the conductor, electrolytic cleaning can be further performed, and then the insulating paint can be applied and baked. Furthermore, it is also possible to combine cleaning with an organic solvent, ultrasonic cleaning, etc., which have been conventionally used. In the present invention, the electrolytic cleaning solution includes:
Any electrolyte containing conductive ions in water can be used. However, those that are easily removed when removing the electrolytic cleaning solution adhered to the conductor, or
Considering the ease of processing used electrolytic cleaning solution,
carbonates, caustic soda, phosphates, silicates,
Alternatively, an aqueous solution in which a mixture of these is dissolved, or a dilute aqueous solution in which an acid such as hydrochloric acid, sulfuric acid, or nitric acid is diluted with water are effective. It is sufficient for the size of the electrolytic cleaning tank to be in the range of 10 cm to 100 cm in length, but this should be selected appropriately depending on the wire diameter, wire speed, and degree of adhesion of deposits to the conductor. I can do it. The current value also changes depending on the wire diameter and the length of the liquid tank, but when expressed in terms of current density, it is best to apply a current density of 0.5 to 20 mA/mm 2 . The more firmly the deposit adheres to the conductor, the higher the current density needs to be applied.

本発明は、さらに電解洗浄を行なうために流す
電流を用いて、導体を軟化させる技術を含むもの
である。すなわち、電解洗浄槽に入る前に、導体
が電流軟化する程度に電流を流し、その後すぐさ
ま電解洗浄すると、従来からある絶縁塗料を塗布
する前の導体の軟化工程が不必要となる利点があ
る。従来の軟化工程では、導体を軟化させる為、
電気炉あるいはガス炉を通すことによつて軟化さ
せているが、導体軟化そのものに使用されるエネ
ルギーは、全エネルギーのわずか10%前後で、残
りのエネルギーは炉体の保温、あるいは炉体から
の熱放散に使用される。また、軟化炉にはパイプ
を用いたものが多く、導体をこのパイプを通すこ
とによつて軟化させているが、パイプ中で断線す
ることがあり、軟化炉を用いることは、絶縁電線
製造上の作業性を低下させていた。特に導体径が
0.1mmφ以下の細いサイズに対して、パイプ中で
の断線が多い為、本発明の効果は顕著なものがあ
る。本発明を用いることにより、この軟化炉は完
全に不必要となり、エネルギーの節約及び、製造
上の作業性に大きな効果があらわれた。
The present invention further includes a technique of softening the conductor using a current applied to perform electrolytic cleaning. That is, if a current is applied to the conductor to the extent that the conductor is softened before entering the electrolytic cleaning tank, and then electrolytically cleaned immediately thereafter, there is an advantage that the conventional softening process of the conductor before applying the insulating paint is unnecessary. In the conventional softening process, in order to soften the conductor,
The conductor is softened by passing it through an electric or gas furnace, but the energy used to soften the conductor itself is only around 10% of the total energy. Used for heat dissipation. In addition, many softening furnaces use pipes, and the conductor is softened by passing it through the pipe, but wires may break in the pipe, so using a softening furnace is not recommended for manufacturing insulated wires. This reduced workability. Especially when the conductor diameter is
The effect of the present invention is remarkable because there are many disconnections in pipes for pipes with a narrow diameter of 0.1 mm or less. By using the present invention, this softening furnace is completely unnecessary, resulting in significant energy savings and production efficiency.

次に、本発明を図面をもつて説明する。 Next, the present invention will be explained with reference to the drawings.

図1は、本発明による絶縁電線の製造方法を示
す。サプライリール1から繰り出された導体2は
電解洗浄液の入つた電解槽3に入り電解洗浄さ
れ、その後水洗槽7の中で水洗され、続いて、導
体を軟化するための熱処理炉8を通過したあと、
絶縁塗料塗布装置9で絶縁塗料を塗布したあと、
焼付炉10で焼付られ、その後、巻取リール15
に巻取られる。絶縁塗料の塗布焼付を繰返す場合
にガイド11,12,13,14が用いられる。
FIG. 1 shows a method of manufacturing an insulated wire according to the present invention. The conductor 2 fed out from the supply reel 1 enters an electrolytic bath 3 containing an electrolytic cleaning solution and is electrolytically cleaned, then washed with water in a water washing bath 7, and then passed through a heat treatment furnace 8 for softening the conductor. ,
After applying the insulating paint with the insulating paint applicator 9,
Baked in a baking furnace 10, then taken up on a take-up reel 15
It is wound up. Guides 11, 12, 13, and 14 are used when applying and baking the insulating paint repeatedly.

電解洗浄液の入つた電解槽3において、電解液
中の電極5に対して、対電極となる導体へは、給
電治具6でもつて接続している。
In an electrolytic bath 3 containing an electrolytic cleaning solution, a power supply jig 6 is also connected to a conductor serving as a counter electrode to an electrode 5 in the electrolytic solution.

4は、直流電源装置を示す。 4 indicates a DC power supply device.

第2図は、伸線工程と、焼付工程がタンデムと
なつた絶縁電線製造装置において、電解洗浄装置
を伸線機に取付けた場合を示すものである。サプ
ライリール16から繰り出された導体17は、電
解洗浄液の入つた電解槽18の中を通過し、電解
洗浄されたあと水洗槽22に入る。その後伸線機
23において、キヤプスタン24,25を回転さ
せながらダイス26で絞られ伸線され、続いて焼
付ラインへ進んでゆく。電解液の入つている電解
洗浄槽18において、19は直流電源装置であ
り、電解洗浄槽中の電極20に対し、対電極とな
る導体への給電は治具21で行なつた。
FIG. 2 shows a case where an electrolytic cleaning device is attached to a wire drawing machine in an insulated wire manufacturing apparatus in which a wire drawing process and a baking process are performed in tandem. The conductor 17 fed out from the supply reel 16 passes through an electrolytic bath 18 containing an electrolytic cleaning solution, and enters a washing tank 22 after being electrolytically cleaned. Thereafter, in the wire drawing machine 23, the wire is squeezed and drawn by a die 26 while rotating the capstans 24 and 25, and then proceeds to the baking line. In the electrolytic cleaning tank 18 containing the electrolytic solution, 19 is a DC power supply device, and a jig 21 is used to supply power to a conductor serving as a counter electrode to an electrode 20 in the electrolytic cleaning tank.

尚、電解洗浄液槽中の電極としては、どのよう
な金属あるいは合金でも利用出来るが、この電極
が陽極として働く場合は溶解するので、出来るだ
け溶解しがたい金属あるいは合金である方が良
い。例えば、ステンレス板等が望ましい。
Any metal or alloy can be used as the electrode in the electrolytic cleaning solution tank, but if this electrode serves as an anode, it will dissolve, so it is better to use a metal or alloy that is as difficult to dissolve as possible. For example, a stainless steel plate is desirable.

以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

比較例 (1) 導体径0.025mmの裸銅線を軟化したあと、ポリ
ウレタン絶縁塗料を塗布し焼付炉(炉長1.5m、
炉温360℃)の中を通すことによつて焼付た。
Comparative example (1) After softening bare copper wire with a conductor diameter of 0.025 mm, polyurethane insulation paint was applied and the wire was heated in a baking furnace (furnace length 1.5 m,
It was baked by passing it through a furnace (temperature: 360℃).

塗料の塗布焼付回数は8回とし、約3μの絶縁
皮膜厚とした。
The number of times the paint was applied and baked was 8 times, and the insulation film thickness was about 3μ.

巻取り線速は250m/minで、30g巻リールに巻
取つた。巻取つたリール85点をすべて40倍の実体
顕微鏡で外観チエツクしたところ、黒点不良によ
るリールは30点、またリール15点に導体変色がみ
られた。残りのリールは外観良好であつた。
The winding speed was 250 m/min, and the wire was wound onto a 30 g reel. When all 85 reels were inspected using a stereomicroscope at 40x magnification, 30 reels were found to be defective with black spots, and discoloration of the conductor was observed in 15 reels. The remaining reels had good appearance.

比較例 (2) 以下述べる以外は、すべて比較例(1)に同じ。Comparative example (2) Everything is the same as Comparative Example (1) except as described below.

導体を軟化する前に、長さ20cmのトリクレンの
入つた洗浄槽中を通すことによつて、導体を有機
溶剤洗浄した。
Prior to softening the conductors, they were cleaned with an organic solvent by passing them through a cleaning bath containing a 20 cm length of Triclean.

巻取つたリール85点をチエツクしたところ黒点
不良リールは20点、また、リール18点に導体変色
がみられた。残りのリールは外観良好であつた。
When we checked the 85 reels that had been taken up, we found that 20 reels had black spots and discolored conductors were found in 18 reels. The remaining reels had good appearance.

比較例 (3) 導体径0.6mmの裸銅線を軟化したあと、ポリエ
ステル絶縁塗料を塗布し、焼付炉(炉長5m、炉
温420℃)の中を通すことによつて焼付た。塗料
の塗布焼付回数を6回とし、絶縁皮膜厚は25μと
した。巻取り線速は25m/minとした。発泡によ
る粒発生をチエツクする為に、巻取つた絶縁電線
10000mを巻き戻したところ発泡による粒が20個
検出された。また、100mおきに、飽和食塩グリ
セリン中での絶縁破壊電圧をチエツクしたとこ
ろ、平均3200V最大値は5200V、最小値は1100V
であつた。
Comparative Example (3) A bare copper wire with a conductor diameter of 0.6 mm was softened, then coated with polyester insulation paint, and baked by passing it through a baking furnace (furnace length: 5 m, furnace temperature: 420°C). The number of times the paint was applied and baked was 6 times, and the insulation film thickness was 25μ. The winding speed was 25 m/min. Insulated wires were rolled up to check for grain formation due to foaming.
When rewinding 10,000 m, 20 particles due to foaming were detected. Also, when checking the dielectric breakdown voltage in saturated salt glycerin every 100m, the average value was 3200V, the maximum value was 5200V, and the minimum value was 1100V.
It was hot.

比較例 (4) 導体径1.0mmの裸銅線を軟化したあと、ポリイ
ミド絶縁塗料(Du−pont、pyre−ML)を塗布
し、焼付炉(炉長5m、炉温400℃)の中を通すこ
とによつて焼付した。塗料の塗布焼付回数を8回
とし、絶縁皮膜厚を35μとした。巻取り線速を
15m/minとした。発泡による粒発生をチエツク
する為に、巻取つた絶縁電線5000mを巻き戻した
ところ、いたるところに、発泡による粒が発生し
ていた。
Comparative example (4) After softening a bare copper wire with a conductor diameter of 1.0 mm, it is coated with polyimide insulation paint (Du-pont, pyre-ML) and passed through a baking furnace (furnace length: 5 m, furnace temperature: 400°C) In some cases, it was burned. The number of times the paint was applied and baked was 8 times, and the insulation film thickness was 35μ. Winding speed
The speed was set at 15m/min. When we unwound 5,000 m of insulated wire to check for grains caused by foaming, we found grains caused by foaming everywhere.

比較例 (5) 導体径0.75mmの裸銅線を軟化したあと、170℃
に保持した無溶剤型絶縁塗料(樹脂:ポリエステ
ル)を塗布し、焼付炉(炉長7m/min、炉温420
℃)の中を通すことによつて、焼付した。塗料の
塗布焼付回数を3回とし、絶縁皮膜厚を27μとし
た。巻取り線速を24m/minとした。巻取つたリ
ールの絶縁電線皮膜の外観をチエツクすると、と
ころどころに、波立ちがみられた。また、100m
ごとに、飽和食塩グリセリン中での絶縁破壊電圧
をチエツクしたところ、平均2500Vであつた。ま
た最大値は5000V、最小値は900Vであつた。(測
定点数n=50) 比較例 (6) 導体径0.65mmの裸銅線を、伸線機を用いて直径
0.24mmとしたあと続けて、軟化しその後、ポリア
ミドイミド絶縁塗料を塗布し、焼付炉(炉長
7m/min、炉温420℃)の中を通すことによつて
焼付した。塗料の塗布焼付回数を6回とし、絶縁
皮膜厚を24μとした。巻取り線速を26m/minと
した。発泡による粒発生をチエツクする為に、巻
取つた絶縁電線、5000mを巻き戻したところ、50
ケの粒が検出された。また、100mおきに飽和食
塩グリセリン中での絶縁破壊電圧をチエツクした
ところ、平均3500Vであり、最大値は6500V、最
小値は1200Vであつた。
Comparative example (5) After softening a bare copper wire with a conductor diameter of 0.75 mm, it was heated to 170℃.
A solvent-free insulating paint (resin: polyester) was applied to
Burning was carried out by passing it through the temperature range (°C). The number of times the paint was applied and baked was 3 times, and the insulation film thickness was 27μ. The winding speed was 24 m/min. When I checked the appearance of the insulated wire coating on the reel, I noticed some ripples in some places. Also, 100m
When we checked the dielectric breakdown voltage in saturated saline glycerin, the average was 2500V. The maximum value was 5000V and the minimum value was 900V. (Number of measurement points n = 50) Comparative example (6) A bare copper wire with a conductor diameter of 0.65 mm was
After softening to 0.24 mm, polyamide-imide insulation paint was applied and baked in a baking furnace (furnace length).
7 m/min, furnace temperature: 420°C). The number of times the paint was applied and baked was 6 times, and the insulation film thickness was 24μ. The winding speed was 26 m/min. In order to check the generation of grains due to foaming, we unwound 5000 m of insulated wire, and found that 50
ke grains were detected. In addition, when the dielectric breakdown voltage in saturated salt glycerin was checked every 100 m, the average value was 3500V, the maximum value was 6500V, and the minimum value was 1200V.

実施例 (1) 以下述べる以外は、すべて比較例(1)に同じ。
0.5%の炭酸ナトリウム水溶液の入つた長さ30cm
の電解洗浄槽を通すことによつて導体を洗浄し
た。その際導体の方を陰極とし、電解洗浄槽中の
ステンレス板を陽極として、電流密度8.5mA/mm2
を導体表面に与えた。
Example (1) Everything is the same as Comparative Example (1) except as described below.
30cm length containing 0.5% sodium carbonate aqueous solution
The conductor was cleaned by passing it through an electrolytic cleaning bath. At that time, the conductor was used as a cathode and the stainless steel plate in the electrolytic cleaning tank was used as an anode, and the current density was 8.5mA/mm 2
was applied to the conductor surface.

巻取つたリール85点をチエツクしたとこ、黒点
不良のリールはなくわずかに導体変色をしたリー
ルが2リールあつたのみで、残りのリールはすべ
て外観良好であつた。
When we checked the 85 reels that we had taken up, we found that there were no reels with defective black spots, and there were only two reels with slight discoloration of the conductor, and all the remaining reels had a good appearance.

尚、本実施例では、電解洗浄前の導体は電流軟
化をおこしていたので、絶縁塗料を塗布焼付する
前の軟化炉を用いる必要はなかつた。
In this example, since the conductor before electrolytic cleaning had undergone current softening, there was no need to use a softening furnace before applying and baking the insulating paint.

実施例 (2) 以下述べる以外は、すべて比較例(3)に同じ。Example (2) Everything is the same as Comparative Example (3) except as described below.

導体を軟化する前に、0.2%の炭酸ナトリウム
水溶液と0.2%のカセイソーダ水溶液の混合液の
入つた長さ30cmの電解洗浄槽を通すことによつ
て、導体を洗浄しその後水洗した。尚、電解洗浄
に際して、導体を陰極とし、電解洗浄槽中のステ
ンレス板を陽極として、電流密度10mA/mm2を導
体表面に与えた。
Before softening the conductors, they were cleaned by passing them through a 30 cm long electrolytic cleaning bath containing a mixture of 0.2% aqueous sodium carbonate and 0.2% caustic soda, followed by water rinsing. During electrolytic cleaning, a current density of 10 mA/mm 2 was applied to the conductor surface using the conductor as a cathode and the stainless steel plate in the electrolytic cleaning tank as an anode.

巻取つた絶縁電線1000mを巻き戻したところ、
発泡による粒は検出されなかつた。また、絶縁破
壊電圧の平均値は4100V最大値は8000V、最小値
は2000Vを示した。
After unwinding 1000m of rolled-up insulated wire,
No particles due to foaming were detected. Furthermore, the average value of the dielectric breakdown voltage was 4100V, the maximum value was 8000V, and the minimum value was 2000V.

実施例 (3) 以下述べる以外は、すべて比較例(4)に同じ。Example (3) Everything is the same as Comparative Example (4) except as described below.

導体を軟化する前に、0.7%の炭酸ナトリウム
水溶液の入つた長さ30cmの電解洗浄液槽を通すこ
とによつて、導体を洗浄し、その後水洗した。
Prior to softening the conductors, they were cleaned by passing them through a 30 cm long bath of electrolytic cleaning solution containing a 0.7% aqueous sodium carbonate solution, followed by a water rinse.

尚、電解洗浄に際して、導体を陰極とし、電解
洗浄槽中のステンレス板を陽極として、電流密度
10mA/mm2を導体表面に与えた。
In addition, during electrolytic cleaning, the conductor is used as a cathode, and the stainless steel plate in the electrolytic cleaning tank is used as an anode, and the current density is
10 mA/mm 2 was applied to the conductor surface.

巻取つた絶縁電線5000mを巻き戻したところ発
泡による粒発生は見つからなかつた。
When 5000m of rolled insulated wire was unwound, no particles were found due to foaming.

実施例 (4) 以下述べる以外は、すべて比較例(5)に同じ。Example (4) Everything is the same as Comparative Example (5) except as described below.

導体を軟化する前に、0.5%炭酸ナトリウム水
溶液の入つた長さ30cmの電解洗浄液槽を通すこと
によつて、導体を洗浄し、その後水洗した。
Prior to softening the conductors, they were cleaned by passing them through a 30 cm long bath of electrolytic cleaning solution containing a 0.5% aqueous sodium carbonate solution, followed by a water rinse.

尚、電解洗浄に際して、導体を陰極とし、電解
洗浄槽中のステンレス板を陽極として、電流密度
5mA/mm2を導体表面に与えた。
In addition, during electrolytic cleaning, the conductor is used as a cathode, and the stainless steel plate in the electrolytic cleaning tank is used as an anode, and the current density is
5 mA/mm 2 was applied to the conductor surface.

巻取つた絶縁電線皮膜の外観をチエツクする
と、表面は波立ちがなくスムーズであつた。ま
た、100mごとに、飽和食塩グリセリン中での絶
縁破壊電圧をチエツクしたところ平均3600Vであ
つた。また、最大値は7000V、最小値は1400Vで
あつた。(測定点数、n=50) 実施例 (5) 以下述べる以外は、すべて比較例(6)に同じ。
When the appearance of the wound insulated wire film was checked, the surface was smooth without any ripples. In addition, the dielectric breakdown voltage in saturated salt glycerin was checked every 100 m, and the average was 3600V. Also, the maximum value was 7000V and the minimum value was 1400V. (Number of measurement points, n=50) Example (5) Everything is the same as Comparative Example (6) except as described below.

導体を電解洗浄したあと、伸線し、その後絶縁
塗料を塗布し焼付た。
After electrolytically cleaning the conductor, it was drawn, then an insulating paint was applied and baked.

尚、電解洗浄に際して、導体を陰極とし、電解
浄浄槽(長さ、30cm)中のステンレス板を陽極と
して、電流密度7.5mA/mm2を導体表面に与えた。
電解洗浄液としては、0.5%の炭酸ナトリウム水
溶液を用いた。巻取つた絶縁電線の粒発生をチエ
ツクしたところ、粒発生はなかつた。
During electrolytic cleaning, a current density of 7.5 mA/mm 2 was applied to the conductor surface using the conductor as a cathode and a stainless steel plate in an electrolytic purification tank (length, 30 cm) as an anode.
A 0.5% sodium carbonate aqueous solution was used as the electrolytic cleaning solution. When the coiled insulated wire was checked for grain formation, no grain was found.

また、100mおきに、絶縁破壊電圧をチエツク
したところ、平均4300Vであり、最大値は、
7800V、最小値は1500Vであつた。
Also, when checking the dielectric breakdown voltage every 100m, the average was 4300V, and the maximum value was
7800V, the minimum value was 1500V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による絶縁電線の製造方法の
説明図、第2図は本発明による導体の伸線方法の
説明図である。 1,16…サプライリール、2,17…導体、
3,18…電解洗浄槽、4,19…直流電源装
置、5,20…電解洗浄槽中の電極、6,21…
導体へ供電する治具、7,22…水洗槽、8…導
体軟化炉、9…絶縁塗料塗布装置、10…焼付
炉、11,12,13,14…ガイドローラ、1
5…巻取リール、23…伸線機、24,25…キ
ヤプスタン、26…ダイス。
FIG. 1 is an explanatory diagram of a method of manufacturing an insulated wire according to the present invention, and FIG. 2 is an explanatory diagram of a method of drawing a conductor according to the present invention. 1, 16... Supply reel, 2, 17... Conductor,
3, 18... Electrolytic cleaning tank, 4, 19... DC power supply device, 5, 20... Electrode in electrolytic cleaning tank, 6, 21...
Jig for supplying power to the conductor, 7, 22... Washing tank, 8... Conductor softening furnace, 9... Insulating paint coating device, 10... Baking furnace, 11, 12, 13, 14... Guide roller, 1
5... Winding reel, 23... Wire drawing machine, 24, 25... Capstan, 26... Die.

Claims (1)

【特許請求の範囲】 1 銅導体を陰極に接続して電解洗浄したあと、
導体に絶縁塗料を塗布焼付けることを特徴とする
絶縁電線の製造法。 2 導体を電解洗浄したあと、すぐさま伸線し続
けて、絶縁塗料を塗布焼付けることを特徴とする
特許請求の範囲第1項の絶縁電線の製造法。 3 電解洗浄したあと、水洗することを特徴とし
た特許請求の範囲第1項の絶縁電線の製造法。 4 導体径が0.10mm以下の導体を電解洗浄するこ
とを特徴とした特許請求範囲第1項の絶縁電線の
製造方法。 5 導体径が0.5mm以上で絶縁皮膜厚が0.020mm以
下であることを特徴とする特許請求範囲第1項の
絶縁電線の製造法。 6 無溶剤の絶縁塗料あるいは高濃度絶縁塗料を
塗布焼付けすることを特徴とする特許請求範囲第
1項の絶縁電線の製造法。 7 ポリイミド、ポリアミドイミド絶縁塗料を塗
布焼付けすることを特徴とする特許請求範囲第1
項の絶縁電線の製造法。
[Claims] 1. After connecting the copper conductor to the cathode and electrolytically cleaning it,
A method of manufacturing insulated wires, which involves coating and baking an insulating paint on a conductor. 2. A method for producing an insulated wire according to claim 1, which comprises electrolytically cleaning the conductor, immediately continuing drawing the wire, and applying and baking an insulating paint. 3. The method for manufacturing an insulated wire according to claim 1, which comprises washing with water after electrolytic cleaning. 4. A method for manufacturing an insulated wire according to claim 1, characterized in that a conductor having a conductor diameter of 0.10 mm or less is electrolytically cleaned. 5. The method for manufacturing an insulated wire according to claim 1, wherein the conductor diameter is 0.5 mm or more and the insulation coating thickness is 0.020 mm or less. 6. A method for manufacturing an insulated wire according to claim 1, which comprises applying and baking a solvent-free insulating paint or a high-concentration insulating paint. 7. Claim 1 characterized in that polyimide or polyamide-imide insulation paint is applied and baked.
2. Manufacturing method of insulated wire.
JP8465478A 1978-07-11 1978-07-11 Methdo of manufacturing insulated wire Granted JPS5512620A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8465478A JPS5512620A (en) 1978-07-11 1978-07-11 Methdo of manufacturing insulated wire
GB7924187A GB2026035B (en) 1978-07-11 1979-07-11 Electrolytically cleaning wire
CH647279A CH633905A5 (en) 1978-07-11 1979-07-11 METHOD FOR MANUFACTURING INSULATED ELECTRIC WIRES.
SG56883A SG56883G (en) 1978-07-11 1983-09-07 An insulated electric wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8465478A JPS5512620A (en) 1978-07-11 1978-07-11 Methdo of manufacturing insulated wire

Publications (2)

Publication Number Publication Date
JPS5512620A JPS5512620A (en) 1980-01-29
JPS6158929B2 true JPS6158929B2 (en) 1986-12-13

Family

ID=13836694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8465478A Granted JPS5512620A (en) 1978-07-11 1978-07-11 Methdo of manufacturing insulated wire

Country Status (4)

Country Link
JP (1) JPS5512620A (en)
CH (1) CH633905A5 (en)
GB (1) GB2026035B (en)
SG (1) SG56883G (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165913A (en) * 1981-04-03 1982-10-13 Furukawa Electric Co Ltd Method of producng coil
JPS57165915A (en) * 1981-04-07 1982-10-13 Furukawa Electric Co Ltd Method of producng coil
JPS59207509A (en) * 1983-05-11 1984-11-24 住友電気工業株式会社 Method of producing flat type insulated wire
US8839804B2 (en) * 2009-01-22 2014-09-23 Electric Power Research Institute, Inc. Conductor cleaning system
CN109799436B (en) * 2019-03-12 2023-08-22 潘潮濒 Electromagnetic wire withstand voltage test method and test device and conductive liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496529A (en) * 1972-05-10 1974-01-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496529A (en) * 1972-05-10 1974-01-21

Also Published As

Publication number Publication date
CH633905A5 (en) 1982-12-31
JPS5512620A (en) 1980-01-29
GB2026035B (en) 1983-05-18
SG56883G (en) 1984-07-27
GB2026035A (en) 1980-01-30

Similar Documents

Publication Publication Date Title
US4432846A (en) Cleaning and treatment of etched cathode aluminum capacitor foil
JPS59207509A (en) Method of producing flat type insulated wire
US7169286B2 (en) Process control methods of electropolishing for metal substrate preparation in producing YBCO coated conductors
JPH0255516B2 (en)
JPS6158929B2 (en)
JPS6128758B2 (en)
US2933438A (en) Electro processing and apparatus therefor
US2274963A (en) Process for plating tin and tin alloys
US2304069A (en) Metal coating process
JPS5818997B2 (en) Power supply device for metal strip
US3630864A (en) Method and apparatus for continuous electrolytic polishing of fine metal wires
KR840001444B1 (en) Insulated wire
JPS5825218A (en) Method of producing low voltage electrolytic condenser electrode foil
CN113921269A (en) Double-layer insulating film of transformer coil and preparation method and device thereof
US2725355A (en) Apparatus for electropolishing metallic articles
JP2510901B2 (en) Method for manufacturing plated rectangular wire
JPH0446604A (en) Manufacture of copper wire
US3378668A (en) Method of making non-porous weld beads
CN111785445A (en) Tensile strength control process of copper-clad steel coaxial cable
US2422902A (en) Method of electrolytically cleaning and plating conductors consisting principally of copper
JPS6318286B2 (en)
JP2567970B2 (en) Electropolishing method for inner surface of long small diameter pipe
CN115709230A (en) Copper wire drawing method for producing tinned copper stranded wire
JPH0441693A (en) Pretreatment for starting sheet in continuous thin tinning line
JPS6337923B2 (en)